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Abstract

The dynamics of the COVID-19 infections is characterized by many fundamental change

points due to a quickly changing environment (e.g. policy adaptions, changing behaviour

of the population or mutations of the virus). In a framework of numerous time-varying

influencing factors, popular approaches from the disciplines of predictive or causal modelling

suffer from unrealistic model assumptions and limited validity of the model results. As an

alternative approach of online change point detection (CPD) a decision model based on a

real-time alarm statistic is proposed that can be tuned by an adaptive objective function

forcing the early identification of change points in the pandemic. In this model, one key

aspect is the analysis of micro-level information, which can be exploited to gain a more

fundamental picture of the pandemic development. For the case of Germany, the utility of

micro-level information for improving the model performance is demonstrated. The ultimate

goal of the CPD model is to anticipate periods of severe infection waves and to recognize

when pandemic policies take effect. Hence, the proposed model might serve as a valuable

early-alert system for policymakers to support timely and effective measures.
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1 Introduction

In the current Corona pandemic, the development of infections is characterized by a frequently

changing environment. There exist numerous time-varying key drivers influencing the infection

dynamics that exacerbate the prediction of infections or the identification of causal effects

due to structural changes (Hyndman, 2020). As depicted in Figures 5(a), 5(b) and 5(c), the

most popular measure of the infections, the so-called seven-days-incidence1, frequently changes

unexpectedly at the beginning, during and at the end of infection waves (especially in periods

March 2020 - May 2020 and September 2020 - January 2021). A priori, we do not know when

the next structural change occurs and how the change will look like. In view of these frequent

structural changes in the environment, models detecting causal inference clearly would have to

account for temporal heterogeneity which comes along with a large set of restrictive assumptions

(Bach et al., 2020) to be able to pin down selected causalities. Moreover, long-horizon predictions

of the infections based on previous data are not credible in view of frequently changing model

parameters (Cássaro and Pires, 2020). Finally, many other studies (e.g. Dong et al. (2020))

analysing how different countries mastered the first infection-wave suffer from limited generaliz-

ability and are problematic due to a low degree of comparability of reporting routines across

countries.

Taking these difficulties into account, my approach to the problem of predicting the future devel-

opment of the Corona pandemic is the identification of substantial changes in the development

of COVID-19 infections rather on finding the best predictive model. In the previous months,

according to Figure A.5.2, change points have occurred suddenly and have been milestones to a

new period of changed infection dynamics. Put differently, change points are a first indicator

for new phases of persistently higher or lower infection numbers. Hence, change points in the

pandemic development have a very high importance for policymakers who might wish to adapt

pandemic measures at an early stage. As presented by many studies (e.g. Dave et al. (2021),

Chen et al. (2020), Haug et al. (2020)), the timing of introduced measures is decisive for the

efficacy of political measures. Consequently, there is need for an alert system which identifies

change points as early and accurate as possible.

The core idea of the identification of change points, also known as the task of change point

1New infections during the last seven days per 1 million persons
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detection (CPD) is to cut a given time series into homogeneous segments w.r.t. certain properties

or parameters of the underlying model. In order to develop a CPD model there is need for a

clear-cut definition of what a change point is.

When analysing change points in the COVID-19 infections, the lack of a clear-cut definition for

an epidemiological change point necessitates a more detailed discussion of the term ’change point’.

Eventually, there exist neither true change point dates nor a consensus about the change point

dates in Germany. One reason for that might be the heterogeneity of the infection dynamics

across different sub-regions. Particularly, the problem in this context is that there is no clear

threshold for change points defining the required magnitude of a change to report a change

point. The lack of commonly accepted change points makes the comparison of the alert dates

between the proposed models more complicated. There exists a wide range of definitions of the

terminus ’change point’ depending on the application and the model which is used to identify

these change points. In the framework of a regression model

yt = xtβt + εt, xt ∈ R1×k, βt ∈ Rk×1, (1)

changes in the dependent variable y as the infection incidence might be deduced to changes in

the regressors xt, e.g. due to changing behaviour of the population, or in the parameters βt, e.g.

due to mutations of the virus. According to the definition of the seminal work of Basseville

et al. (1993) in the field of CPD, a change point depicts an abrupt transition between two

states subject to ’characteristic properties or parameters’ (Basseville et al. (1993),p. IX) of the

underlying data generating process of a time series. The goal of this work is to develop a model

to detect change points following this definition.

The task of CPD can be approached in two different designs that differ in the perspective of the

analysis of a time series. At the one hand, from a retrospective view, the focus is on finding po-

tential change points in historic data in the fixed interval t = 1, ..., T0 (offline CPD). On the other

hand, online CPD aims at detecting change points in current, regularly updated data at time

t = T0+1, ...T0+τ . Hereby, the goal is to monitor changes in βt of model equation (4) in real-time

to anticipate e.g. a new wave of infections. Hence, online CPD has a particularly high relevance

in the current Corona pandemic as political decisions could be derived from a data-driven CPD

model in real-time. Eventually, the ultimate goal for the CPD model is to anticipate serious in-
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fection waves as early as possible in the current COVID-19 pandemic for the example of Germany.

There are many model types based on various statistical concepts that encounter the task

of CPD comprising density ratio-estimation (Kawahara and Sugiyama, 2012), residual analysis

techniques consisting of CUSUM and MOSUM methods (Zeileis, 2003), bootstrapping (Buzun

and Avanesov, 2017) or Fused LASSO estimation (Bleakley and Vert, 2011; Aláız et al., 2013;

Harchaoui and Lévy-Leduc, 2010) etc. Jiang et al. (2020) attempt to detect CPs based on a

sequential change point test based on a hybrid of the SN (nascent self-normalization) method

(Shao, 2010) and the NOT (Narrowest-Over-Threshold) algorithm (Baranowski et al., 2016)

(offline CPD). Moreover, the general task of detecting common change points in heterogeneous

panel data has been addressed in Okui and Wang (2020) and Lumsdaine et al. (2020) imposing

a partial linear model structure with potentially common parameters over the temporal and

cross-sectional dimension. Hereby, the authors allow for structural changes in both panel dimen-

sions, i.e. if a group membership changes or the parameter vector of a group changes.

In view of the enormous variety of techniques, the mentioned models strongly differ in its

structural assumptions and in the requirement, whether the number of CPs must be known ex

ante. In the considered application of COVID-19 pandemic, the number of CPs is by assumption

unknown, such that I employ a model that generates the number of change points as an outcome.

For that reason, I develop a Fused LASSO model which chooses the optimal number of CPs by

means of total variation regularization (Truong et al., 2020).

In the framework of time-varying parametric models, the Fused LASSO method can be

applied to identify time intervals with constant dynamics in the COVID-19 infections. In more

detail, the main idea of Fused LASSO is to penalize the total variation in the parameters with

the goal to stabilize the parameter vector over time. By design, the Fused LASSO model itself

detects change points only in the retrospective view. Thus, the main contribution to the existing

literature in the field of CPD is the extension of the Fused LASSO estimation to an online

approach monitoring change points in real-time.

The analysis of the dynamics of a pandemic within a country can be approached at different
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levels of granularity. Less surprisingly, the information value might substantially depend on the

granularity level of the analysis. Clearly, the dynamics of the Corona pandemic in a country is

characterized by many different trends in sub-regions. This heterogeneity becomes visible when

examining the infection numbers at a more detailed level. Figure A.5.2 depicts the incidence of

the country (macro-level), selected federal states (mezzo-level) and selected counties (micro-level)

for three different periods. A more detailed analysis of the heterogeneity is provided in A.5.2. As

a consequence, taking micro-level information into account yields a much better understanding

of the macro-level data. My contribution to this field is to derive a (set of) macro-level measures,

later called alarm statistics, that incorporate all relevant CP information including the degree of

heterogeneity on the micro-level.

I make use of real-time CPD concepts stemming from the statistically related field of business

cycle dating that are designed to detect change points in a national business cycle determined by

a group of heterogeneously behaving micro-level entities (such as companies or business sectors).

Stock and Watson (2010) categorize the business cycle dating models into Date-Then-Aggregate

(DTA) and Aggregate-Then-Date (ATD) approaches.

Based on an aggregated alarm statistic that captures changed model dynamics based on residuals

of the AGFL model, I will employ an ATD-type decision model which monitors the incidence

dynamics on the country-level. Specifically, similar to the idea in Grillenzoni (2012), the hyper-

parameters of the decision model will be tuned by an objective function tailored to the given

application. Tuning a CPD model w.r.t. an objective function is an innovative approach in

general, particularly to the case of detecting CPs in the Corona pandemic. Though, it is an

illustrative method to detect CPs. First, this objective function is a mathematical definition of

the quality attributes of the CPD model and secondly, depicts an intuitive basement for tuning

the model hyper-parameters determining the sensitivity of the CPD model. Based on the limited

explanatory power of ATD alarm statistics, I will design supplementary DTA measures which

can be used to refine the expressiveness of the change points detected based on the ATD model.

This paper is organized as follows. In Section 2, I will provide a theoretical overview over the

total variation regularization (TVR) techniques used in the given application case and elaborate
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on real-time CPD systems which are based on the TVR methods. Hereby, the focus will be

on the derivation of useful alarm statistics for monitoring the changes in the dynamics of the

infections. Moreover, I elaborate on an objective function used as the fundament for tuning

the online CPD model. In Section 3, the data set at hand is described and the CPD model

is proposed. The results are reported in Section 4. Subsequently, challenges are presented in

Section 5. Furthermore, some limitations of the given approach and further ideas are discussed.
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2 The Change Point Detection Model

2.1 Micro-, Mezzo- & Macro-level

The application of this paper is to detect change points in the Corona pandemic in Germany

as early as possible. The presented models operate on three different granularity levels of the

data. The macro-level applies to German-wide data and the micro-level to county-level data

(Landkreis resp. Stadtkreis). In some parts of the analysis, German regions (mezzo-level) will

be formed in order to demonstrate the heterogeneity in macro-level measures and in order to

augment the testing examples for evaluating the model performance. As the incidence yi,t is

relative to the population size of the respective county, the aggregation of the micro-level data

to the macro-level accounts for the population proportions of the single counties relative to the

whole population

yt =
N∑
i=1

yi,t ·
popi∑N
j=1 popj︸ ︷︷ ︸
=ωi

. (2)

In the following, the operation can be used to aggregate not only the dependent variable or

equivalently, the residuals et = yt − ŷt, but also alarm statistics and further measures proposed

in the subsequent section. Analogously to (2), the aggregate for region Rm is calculated by

ym,t =
∑
i∈Rm

yi,t ·
popi∑

j∈Rm
popj︸ ︷︷ ︸

=ωi

,m = 1, ...,M. (3)

2.2 Offline CPD

Facing a panel of German counties on the incidence of COVID-19 infections, the data exhibit a

cross-sectional and a temporal dimension. Initially, the cross-sectional dimension is dropped by

considering a single county over time t = 1, ..., T . Assume a linear model of the form

yt = xtβt + εt, t = 1, ..., T (4)

with time-varying parameter vector βt ∈ RK . Estimating the flexible, time-varying model (4)

without regularization clearly overfits the true model. In this context, penalties on parameter
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changes are introduced to smooth parameter changes. A popular regularization technique is the

Fused LASSO (Tibshirani et al., 2005). Applied on time series data, the purpose of the LASSO

estimation will be to segment the model into periods of homogeneous model parameters βt.

For a K-dimensional parameter vector βt, the AGFL (Qian and Su, 2016) is used to estimate

the parameter matrix β

min.
β∈RT×K

1

2
‖Xβ − y‖2 + λ1‖β‖2,1 + λ2‖ẇD2β‖2,1 (5)

with β =



β1

β2

β3
...

βT


[T×K]

, X =



x′1 0 0 · · · 0 0

0 x′2 0 · · · 0 0

0 0 x′3 · · · 0 0

...
...

. . .
. . .

. . . 0

0 0 0 · · · 0 x′T


[T×TK]

.

In this equation, the first term aims to optimize the model fit by minimizing the residuals

e = Xβ̂ − y. Moreover, the group total variation (GTV)

GTV (β) = ‖β‖2,1 =

T∑
t=1

‖βt‖2 =

T∑
t=1

√√√√ K∑
k=1

β2t,k (6)

is penalized by a penalization parameter λ1 in order to shrink parameter vectors groupwise

towards zero. The last component is the matrix notation of the Adaptive Group Fused LASSO

(Zou, 2006) which penalizes parameter vector changes over time. The adaptive weighting vectors

ẇ help to improve the asymptotic estimation properties of the AGFL w.r.t. variable selection 2.

To do so, the data-driven weights ẇ account for grouped parameter vector changes reversely to

2See oracle properties of adaptive LASSO (AL) in Appendix A.2
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its `2,1-norm of parameter vector changes generated by OLS pre-estimates β̇t:

ẇ =



‖β̇2 − β̇1‖−κ

...

‖β̇2 − β̇1‖−κ


K

‖β̇3 − β̇2‖−κ
...

‖β̇T − β̇T−1‖−κ



′

[1×(T−1)K]

(7)

Intuitively, the size-inverse weighting can be understood as a compensating correction

for the dominance of larger parameter vector changes in terms of the GTV . Due to the

balancing character of the adaptive weights, the optimization algorithm is prevented from

focusing predominantly on periods with relatively high GTV . Hereby, the weighting parameter

κ determines the preferences for balancing the dominance of relatively low parameter vector

changes. Altogether, the objective of optimization problem (5) is to segment time intervals with

constant dynamics by fusing parameter vector over time in view of the trade-off between model

fit and parameter sparsity and parameter stability. Equation (5) is then optimized for each

single county in order to detect change points on the micro-level.

As proposed by Aláız et al. (2013), the optimization problem (5) is solved via the FISTA algorithm,

(Beck and Teboulle, 2009) which is an extension of the basic gradient descent technique to the

case of optimization problems including a regularization term.3 Importantly, the number of

detected change points J − 1 strongly depends on the choice of the penalization parameters

λ1 and λ2 in (5). Hereby, λ1 penalizing the absolute parameter size is set to 0, as shrinking

absolute parameter values seems to affect the ability of the AGFL algorithm to shrink parameter

change. Moreover, λ2 is tuned with respect to the target to report 10% of the periods as change

points. As explained in the next section, the AGFL model will serve the purpose to provide

parameter estimates β̂t and one-step-ahead predictions ŷt+1 based on the most recent dynamics

of the model. Given this purpose, it is more problematic in terms of the bias to underestimate

the number of change points than to overestimate it as basing the one-step ahead prediction

upon obsolete data leads to biased residuals. According to the bias-variance trade-off, having

3The applied algorithm is explained in Appendix A.1 in more detail.
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data based on a shorter segment increases the variance in the estimates, but should decrease the

one-step-ahead prediction error et+1.

Eventually, the outcome of the model is the estimated parameter vector β̂ from (5) that exhibits

constant parameter vector estimates β̂i,t for the periods t ∈ {Tj , ..., Tj+1 − 1}, j ∈ {1, ..., J},

which can be rewritten as α̂i,j = β̂i,Tj = β̂i,Tj+1 = ... = β̂i,Tj+1−1. Hence, the time-variant

regression model is smoothed by the total variation penalization generating J − 1 change points

marking J homogeneous segments with constant parameter estimates α̂i,j , j = 1, ..., J .

Furthermore, this historic change point information is denoted by cp.micAGFLi,t = 1 resp. − 1,

where the sign of the change point indicator corresponds to the sign of the one-step-ahead

prediction error ei,t = yi,t − ŷi,t associated with a significant parameter change β̂i,t − β̂i,t−1.

Eventually, the residuals ei,t provide fundamental information about the direction and the

strength of a change in the underlying model.

The parameter vector of the latest identified segment α̂i,J is used to predict the dependent

variable for the next period ŷi,t+1. In the absence of significant change points, the estimated

parameter vector estimate α̂i,j will be similar for the subsequent periods and hence, the residuals

ei,t based on the AGFL estimates reflecting the latest dynamics are expected to randomly

fluctuate around 0. If the dynamics in the pandemic development represented by (21) change,

the one-step-ahead predictions ŷi,t+1 will no longer be close to the observed yi,t+1. Instead, in

case of an upswing in the pandemic, the predictions ŷi,t+1 reflecting the previous development of

the pandemic will be lower than the observed values yi,t+1 and the residuals are expected to turn

positive during the transition period. Analogously, the one-step-ahead residuals are expected to

turn significantly negative in case of a substantial downswing in the spread and strength of a

pandemic. Hence, cp.micAGFLi,t = 1, if the residual ei,t is positive and cp.micAGFLi,t = −1 in the

opposite case. In the comparative analysis, these retrospectively identified CPs will serve as

reference CPs for the online CPD models.

2.3 Online CPD

The previously introduced AGFL (5) refers to the task of offline CPD. Solving the optimization

problem with tuned hyper-parameters directly generates change points that delineate periods

with constant parameter vector estimates. In order to adapt the AGFL estimator to an online
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CPD method, the model must be extended to process real-time data with the objective to assess

whether the incoming data indicate changes in the dynamics of the pandemic. The first approach

to this is the aggregated residual alarm (ARA) model.

Let the macro-level alarm statistic Mt be defined by the law of motion

Mt = λMt−1 + (1− λ)(et/σ̂t−1) (8)

where et = yt− ŷt is the aggregated one-step-ahead residual and σ̂t is the sample residual variance.

As the weighted sum of a rolling window of residuals, the alarm statistic Mt is substantially

affected by the smoothness parameter λ that governs the dominance of historic residuals. Hence,

λ can be interpreted as a discount factor for the historic residuals which have a decreasing

impact on Mt that can be defined as the geometric series

Mt = (1− λ)
∞∑
j=0

λj
et−j
σ̂t−1−j

. (9)

The alarm statistic contains information about the previous prediction errors of the AGFL and,

hence, is a measure for the magnitude of the change in the latest dynamics of the pandemic. As

soon as the alarm statistic exceeds a threshold value κ, a change point on the macro-level is

reported in the following way:

cp.macARAt (κ) =


1 , if Mt ≥ κ

0 , if − κ < Mt < κ

−1 , if Mt ≤ −κ

(10)

The decision rule (10) yields a ternary-coded, aggregated CP indicator signalling whether a

CP exists at time t and - in a case of a CP (cp.macARAt 6= 0) - whether the reported CP is an

up- (cp.macARAt = 1) or downswing (cp.macARAt = −1). In this ternary-choice model, the two

parameters λ and κ are selected according to an objective function. The loss

(λ∗, κ∗) = argmin
λ,κ

αFN+ + (1− α)FN−︸ ︷︷ ︸
missed change points

+βFU0 + (1− β)FD0︸ ︷︷ ︸
false alarms

+φFD+ + (1− φ)FU−︸ ︷︷ ︸
contrary alarms

,

(11)
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serves as a flexible objective function allowing for a flexible weighting of falsely reported

change points in the sense of cost-sensitive learning. Eventually, in contrast to the classical

binary classification problem, the considered key variable cp.macARAt is ternary and hence, the

confusion matrix and the loss structure for false predictions have to be tailored to a more

sophisticated classification set-up with three classes. The notational convention is given by Table

1.

Predicted/Actual cp.macAGFLt = 1 cp.macAGFLt = 0 cp.macAGFLt = −1

cp.macARAt = 1 TU FU0 FU−

cp.macARAt = 0 FN+ TN FN−

cp.macARAt = −1 FD+ FD0 TD

Table 1: Count variables for (Predicted/Actual)-pairs in a 3x3 confusion matrix. The first
letter reveals, whether the prediction is true or false. The second letter represents the predicted
category and in case of a false prediction, the superscript depicts the actual category.

It is important to mention that the indicator variables in the confusion matrix depict count

variables of the corresponding (Predicted/Actual)-pairs during the complete observation period.

Moreover, the presented confusion matrix can be calculated w.r.t. macro- or micro-level reference

CPs. In case of the micro-level, the count variables in the confusion matrix represent how well

the macro-level ternary variable cp.macARAt fits the micro-level CPs (cp.micAGFLi,t ). In case of the

macro-level, the indicator variables of the confusion matrix are based on the reported CP variable

cp.macARAt in comparison to the reference macro-level CPs from the AGFL (cp.macAGFLt ).

The tuning parameters (α, β, φ) have to satisfy some constraints following a reasonable loss

pattern in the sense of cost-sensitive learning. Clearly, costs of failing to report an upswing are

higher compared to a downswing (α > 0.5). Additionally, it is worse to report a false downswing

compared to a false upswing (β < 0.5), as a false downswing could lead to premature relaxation

of lockdown measures. Moreover, it is more severe to miss an upswing than to falsely report an

upswing (α > β). Furthermore, contrary alarms (FD+
t , FU

−
t ) are more malicious than the fail

to report a change point (FN+
t , FN

−
t ) and than false alarms in situations without real change

point (FD0
t , FU

0
t ), i.e. φ > (1 − β) and φ > α. Lastly, contrary prediction in case of a true

upswing (FD+
t ) is worse than in case of a true downswing (FU−t ), i.e. φ > 0.5.

The parameter ratios can be interpreted reasonably. α/β expresses the aversion of missing an

upswing compared to reporting an upswing if there is no real change point. Moreover, α/(1− α)

represents the aversion of the model against missing upswings relative to missing downswings.
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As a starting point, given the parameter restrictions from above, I set (α, β, φ) = (2/3, 1/3, 3/4).

The parameters might be set reasonably by taking the real-world costs of the different types of

false reports into account. Hence, based on this so-called cost-sensitive learning approach, the

parameters (κ, λ) are tuned w.r.t. the objective to minimize the real-world costs of the outcome

of the CPD model. Having specified the objective function (11), the hyper-parameters (κ, λ) are

then tuned via a dynamic, two-dimensional coarse-to-fine grid search as explained in 2.7.

2.4 Model Extension: Homogeneity Measure for Micro-Level Change Points

In response to the pitfalls of the alarm statistic Mt, the goal is to derive a supplementary alarm

statistic to (8) which indicates the CP homogeneity across counties. In order to derive such a

measure, micro-level change points have to be detected by calculating (8) on micro-level using

micro-level residuals. The identified change points cp.micARAi,t ∈ {−1, 0, 1} are used to calculate

CP proportions indicating the spread of the different CP states: P+
t =

∑N
i=1 ωi · 1(cp.micARAi,t =

1), P 0
t =

∑N
i=1 ωi · 1(cp.micARAi,t = 0), P−t =

∑N
i=1 ωi · 1(cp.micARAi,t = −1). As the proposed

supplementary measures follow the DTA principle, the ARA is extended to a mixture approach

combining the information value incorporated in ATD and DTA measures. A first DTA measure

is the total number of detected change points cp.sharet and the difference of micro-level up- and

downswings cp.excess+t .

cp.sharet = P+
t + P−t . (12)

cp.excess+t = P+
t − P

−
t . (13)

The difference measure cp.excess+t still can not distinguish scenarios of ’no change points’ and

’equally many up- and downswings’. To account for the heterogeneity in the micro-level data, the

excess share of upswings over downswings cp.excess+t is divided by the total share of identified

change points cp.sharet:

cp.homogeneityt =
cp.excess+t
cp.sharet

, cp.sharet > 0. (14)

The measure cp.homogeneityt is easily interpretable as it is bounded between [−1, 1], where, given

cp.sharet > 0, cp.homogeneityt = 0 represents perfect heterogeneity and |cp.homogeneityt| = 1

perfect homogeneity across all single counties. However, cp.homogeneityt will still exhibit an am-
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biguous statement if P+
t = P−t . However, as soon as P+

t and P−t differ slightly, cp.homogeneityt

will be able to differentiate between situations with many and only few total change points.

2.5 Model Evaluation Measures

Based on the 3x3-confusion matrix (Table 1), categorical evaluation criteria analogous to the

binary classification case can be derived (acc. to Sokolova and Lapalme (2009)):

Prec+(Upswings) =
TU

TU + FU0 + FU−
(15)

TPR+(Upswings) =
TU

TU + FN+ + FD+
(16)

FPR+(Upswings) =
FU0 + FU−

TN + TD + FD0 + FN− + FU0 + FU−
(17)

Acc(Total) =
TU + TN + TD

N
(18)

Auxiliary 2x2-confusion matrices are helpful to determine the class specific evaluation criteria

Prec+, TPR+ and FPR+. These 2x2-confusion matrices are obtained by merging the two

negative classes to the negative class respectively. The resulting confusion matrices are stated in

Appendix A.4. It is important to mention that the precision and the recall are only class-specific

measures while the accuracy is a measure for the prediction performance over all categories.

Hence, the precision and recall can analogously be calculated of neutrals or downswings. Defining

the recall and the precision makes the definition of the specificity redundant as it is equivalent

to the recall w.r.t. downswings.

Moreover, the classification performance is evaluated by the ROC- and AUC-concept. The

ROC-curve depicts the pairs of recall and false-positive-rate achievable by a classifier. In case of

three categories, ROC-curves can be constructed for each category (positive, neutrals, negatives).

The three corresponding AUC-values yield a dense performance measure that can be used to

compare CPD models. In this application, I will primarily analyse the ROC curve and its

corresponding AUC of the class of ’neutrals’ against ’non-neutrals’ (i.e. CPs) in order to analyse

the models ability to discriminate between CPs and neutral periods in general. The ROC

representation of the class ’neutral’ contrasts the neutral periods (no) with CP periods (up- and

downswings), i.e. the FPR is the share of missed CPs relative to the number of CPs and the

TPR can be interpreted as the share of correctly identified ’neutrals’ which is 1 minus the share
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of false alarms relative to the number of all ’neutrals’.

One important caveat regarding the presented confusion matrix and the derived evaluation

criteria is that all the measures are strict in the sense that these measures do not account for

the detection lag of a CP, i.e. a missed CP is considered in the confusion matrix independent

of the length of the detection lag. Another problem associated with the proposed micro-level

measures is that the evaluation measures (15)-(18) strongly depend on the heterogeneity of

the micro-level CPs across Germany. If the CP dynamics are highly heterogeneous, a single

country-level CP indicator (10) will naturally yield a higher share of misclassifications which

impedes the comparison of micro- and macro-level measures and the comparison of micro-level

measures for different samples.

2.6 Non-trivial benchmark online CPD models

2.6.1 Change Point τ-Test

The change point τ -test (CPTT) (see Lütkepohl (2005), Chapter 4.6.2) can be used as a non-

trivial benchmark online CPD model for the previously proposed ARA. Under the H0 of yT+1

being generated from the prior model dynamics α̂J , the normality assumption of the residuals

et ∼ N(0,Σ) is used to pin down a well-defined distribution of the test statistic which serves as

a measure for the deviation from the prior model dynamics at time T :

τ = e2T /Σ̂ ∼ χ2(1), Σ̂ =
1

T

T∑
t=1

(et − ēt)2 (19)

Based on the test decision, a change point at T is reported if the test statistic τ > cq where cq

is the q-quantile of the χ2(1)-distribution. As stated for the ARA in the previous section, the

direction of the change can be deduced from the sign of the AGFL one-step-ahead residuals eT .

To check the validity of the underlying normality assumption of the test, I employ the Jarque-Bera-

Test (Jarque and Bera, 1980) to see how well the third and fourth moment of the empirical residual

distribution matches the corresponding theoretical counterparts of the normal distribution.

After checking the normality assumption, the CPTT can be performed on the micro- or

macro-level based on the corresponding estimated residual variance Σ̂ in order to obtain micro-

and macro-level CPs cp.micCPTTt and cp.macCPTTt . Moreover, the DTA measures stated in

(12)-(14) are calculated based on the micro-level CPs detected cp.micCPTTt . Analogously to the
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alarm statistics of the ARA, the homogeneity measure cp.homogeneityCPTTt is calculated for

the whole country.

2.6.2 Macro-only Residual Alarm (MORA) Model

In order to demonstrate the relevance of micro-level data for the task of CPD, I set up an

online CPD model having the same structure as the ARA which is agnostic to micro-level data.

Hence, the MORA model just relies on AGFL estimates (5) of the macro-level and the alarm

statistic Mt (8) directly calculated based on macro-level residuals et instead of the aggregated

micro-level residuals ei,t. Based on the tuned ternary-choice decision model (10) the macro-level

CPs cp.macMORA
t are reported. Obviously, there exist no DTA measures if the micro-level data

are neglected.

2.7 The Model Procedure: Connecting the Model Components

The complete model procedure is depicted in the pseudo-code detect.CP in Appendix A.3.

CPs are monitored in a real-time manner at a daily frequency. The rolling window has a length

of h = 52 days and is separated into a tuning period of the first h1 = 40 days and a monitoring

period of the subsequent h2 = 12 days:

Figure 1: Separation of the rolling observation period into a tuning and monitoring sample.

Initially, estimate.AGFL (in Appendix A.3) is run for the observation period in order to

obtain one-step-ahead residuals ei,t resp. et and reference CPs on the macro-level. The remaining

pseudo-code can be intuitively partitioned into three sections:

1. Tuning:

Based on the tuning period of 40 days, a coarse-to-fine grid search algorithm on the ATD

model (run.ATD in Appendix A.3) is run in order to find the optimal parameters (λ∗, κ∗).

The objective function (11) is used to evaluate the model.

15



2. Monitoring:

Subsequently, the alarm statistic (8) is calculated for the monitoring period. Given the

optimal parameters (λ∗, κ∗), a CP is reported according to decision rule (10). The dynamic

tuning of the parameters ensures that the decision model based on the alarm statistic (8)

and the decision rule (10) may continuously adapt to environmental changes over time.

3. Model evaluation:

According to Section 4, the ARA is tested based on a monitoring period of 60 days in order

to obtain more trustable performance measures. For this purpose, the sample is extended

to 100 days in which the tuning and monitoring procedure is run 49 times (49 possible

12-day-periods within 60 days), i.e. detect.CP (in Appendix A.3) is run 49 times for

t = T − 48, ...T . Retrospectively, the reported CPs by ARA (run.ATD) can be compared

to the reference CPs detected by AGFL (estimate.AGFL) and evaluated by the measures

in 2.5.

As an extension, get.DTA.measures yields a dense measure (cp. (14)) for the degree of homo-

geneity in the pandemic dynamics across the German counties.
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3 Data

In this work, the application is to detect CPs in the epidemic development of the current

COVID-19 infection cases in Germany. In order to capture the current state of the pandemic, I

use the time series of new COVID-19 infections. In more detail, I use panel data provided by the

Robert-Koch-Institut4 containing information about COVID-19 infections at a daily frequency

for the most granular level available, i.e. for each of the 401 German counties. Concretely,

the dependent variable representing the current infection activity within county i is a moving

average measure relative to the population size, which is also known as the seven-days incidence:

yi,t =
1

7

6∑
m=0

NewInfectionsi,t−m
Populationi

· 1000000. (20)

Choosing the seven-days incidence is reasonable for two good reasons. First, correcting for the

population size enables direct inter-county comparisons (see e.g. Figure 5(g)) and secondly,

even more important, the seven-days average gets rid of weekly seasonalities in the testing

patterns and registration routines that may drive daily infection numbers substantially. Hence,

the dependent variable yi,t is free of seasonality. Some figures of the infection dynamics are

provided in Appendix A.5.1. The data set on the COVID-19 infections is available on county

level (Land- and Stadtkreise). Moreover, the data set contains lockdown variables (MOBi,t−7 in

Eq. (21)) indicating the populations’ movement behaviour that might be an important driver

of the infections. As a default lockdown state dummy variable is not reasonable in view of

the heterogeneous and quickly changing lockdown measures, I proxy the lockdown states by

movement data of the population from the mobility report 5 provided by Google. Eventually, it

seems obvious that the mobility of the population is a good control variable for the infection

dynamics in the close future. In order to capture the natural delay in the real effect and to

avoid endogeneity problems I use the 7-day lag of the mobility information on federal state level

(the highest detail level available). The mobility report contains a measure of relative mobility

of the population against a reference day6 w.r.t. different location categories or resorts of the

4www.npgeo-corona-npgeo-de.hub.arcgis.com, state: 27.10.2020
5Google LLC ”Google COVID-19 Community Mobility Reports”. https://www.google.com/covid19/mobility/

Accessed: 2020/11/19.
6The reference day is defined to be respective weekday mean of travelled distance in the period between 3rd of

January and 6th of February 2020.
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daily life. For this application, I decided to use the mobility data for the resort ’Retail and

Recreation’ incorporating the activity of the population in shopping zones, museums, cinemas

and restaurants as a proxy for the lockdown state as this resort might be affected most by

a lockdown. Other resorts such as ’Workplaces’ or ’Supermarket and Pharmacy’ might react

less flexible on a lockdown and, furthermore, might reflect the population’s acceptance of the

lockdown policies worse than the resort ’Retail and Recreation’. Apparently, people might be

able to change their leisure behaviour more self-determined as their working behaviour. Some

visualizations on the regressor of mobility are provided in Appendix A.5.3.

Finally, the baseline model underlying the CPD model is

yi,t =

(
1 yi,t−1 MOBi,t−7 ti,t

)


βi,1

βi,2

βi,3

βi,4


+ εi. (21)

where yi,t−1 is the lagged dependent variable, MOBi,t−7 indicates the mobility of the population.

Moreover, a deterministic trend ti,t and an intercept is included in the model equation.
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4 Results

In the following, the real-time CPD model ARA elaborated in Section 2.3 is evaluated with

respect to their ability to date change points and. Moreover, the ARA is compared with the

naive CPTT presented in 2.6.1 and the MORA, which is agnostic to micro-level data. Due to the

lack of commonly accepted CPs in the incidence of COVID-19 infections in Germany, the CPs

detected by the offline CPD model AGFL are employed as reference CPs. As evaluation criteria,

I take detection lags and the quality measures (15), (18) and the AUC measure into account.

4.1 The reference change points

The AGFL (5) detects dates of positive (upswings) and negative (downswings) change points.

During the period from 8th of October 2020 until 15th of January 2021, 596 individual upswings

and 960 downswings have been reported (see Figure 8). In the pre-training period from 8th of

October 2020 to 15th of November, 142 up- and 214 downswings and in the considered sample

period from 16th of November 2020 to 15th of January 2021, 454 up- and 746 downswings

have been reported. Plotting the time series of daily reported change points reveals valuable

information about the historic dynamics of the COVID-19 infections. In the Figures 9 and 10, I

consider the 5%-quantile resp. the 10%-quantile of the number of individual up- and downswings

as candidates for national change points. The reference CPs based on the different quantiles are

noted in Tables 6 and 7. The two quantiles reflect different significance levels for change points.

In the observation period (’2020-11-16’ - ’2021-01-15’), based on the 5%-quantile-criterion, the

AGFL reports upswings at ’2020-12-07’ (together with ’2020-12-08’ and ’2020-12-09’) and on

’2021-01-06’ and downswings at ’2020-12-22’ (together with ’2020-12-23’ and ’2020-12-24’) in the

COVID-19 infections (see Fig. 9). Moreover, the 10%-quantile CPs also include a downswing at

’2021-01-11’.

4.2 Online CPD model

In contrast to the retrospective change point detection method used as a reference, the proposed

online CPD models have to face the more challenging task of identifying change points in real-

time. The latter approach is more demanding as, at each time, the change point classification

has to be performed without having the future observations at hand. In Figure 12, up- and
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downswings detected by ARA are marked in the graph of the incidence of COVID-19 infections yt.

The optimized ARA ((λ∗, κ∗) = (0.9, 1.5)) reports the first upswing (’2020-12-07’-’2020-12-09’)

with a delay of three days on ’2020-12-10’-’2020-12-13’. The second upswing (on ’2021-01-06’)

is reported two days too late. The AGFL downswing on ’2020-12-22’-’2020-12-24’ is reported

with a delay of three days. The downswing ’2021-01-13’ following the reference CP definition

based on the 10%-quantile is not reported by the end of the observed period (’2021-01-15’). The

ARA reports all relevant CPs (acc. to 5%-quantile) with a delay of one day at maximum and

does not alert falsely. Generally, a potential reporting lag might result from the fact that the

moving sum of residuals of the previous 10 days Mt still contains aggregated residuals of the old

regime before the change point happens. Especially if the residuals in the old regime point in a

contrary direction, i.e. if the aggregated residuals et in (8) are negative before an upswing or

positive before a downswing, the alarm statistic will exceed the threshold parameter κ too late.

As discussed in Section 2.3, the alarm statistic Mt (8) might fail to distinguish situations with

dispersed pandemic development from situations without any change point, such that the ATD

alarm statistic is only meaningful, if the micro-level units develop fairly synchronously. In this

context, the DTA measure cp.homogeneityt (14) might help to distinguish both scenarios.
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Figure 2: Reported (a) upswings and (b) downswings based on model ARA using a monitoring
window length of 10 in the plot of the homogeneity measure cp.homogeneityt (solid line) and
the count of reported CPs cp.sharet (shaded area). The reference change points are marked
as dashed vertical lines respectively, whereas the coloured vertical lines depict the up- and
downswings detected by ARA.

Figure 2 visualizes the homogeneity measure cp.homogeneityt and the share of reported
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change points cp.sharet together with the reported change points. Both DTA measures reveal

details from the micro-level which help to interpret the binary CP information correctly. The

homogeneity measure helps to detect periods of heterogeneously changing dynamics across all

counties, when the ATD fails to detect a national CP. The measure cp.sharet indicates the

spread and the CP prevalence in Germany. The analysis of the supplementary DTA measures

reveals that the secondly reported downswing in Figure 2 results from much more micro-level

change points (29 vs. 8). At the same time, the homogeneity measure exhibits similar values

for both days (-0.793 vs. -0.750) indicating a very high degree of homogeneity compared to the

remaining observation period.

On the one hand, the two proposed measures provide more detailed information about the

reported change points w.r.t. the homogeneity (cp.homogeneityt) and the spread (cp.sharet) of

the change points on the micro-level.

On the other hand, scenarios of many contrary change points and of no change points on the

micro-level can be easily distinguished by monitoring the two presented measures even if no

change point is reported. Hence, this analysis serves as a powerful supplement to monitoring the

alarm statistic Mt. When analysing the infection dynamics at and two weeks after Christmas, it

is clear that the incidence is strongly driven by the reduced COVID-19 tests and an irregular

reporting routine of the local health authorities (Gesundheitsämter). Clearly, based on the

reported infections, the model does a good job in detecting a downswing on ’2020-12-24’ and an

upswing on ’2021-01-08’. However, the identified upswing is likely to be artificially generated by

late registrations from the period between Christmas and Epiphany 7.

4.3 Non-trivial benchmark CPD models

4.3.1 CPTT

As introduced in Section 2.6.1, the CPTT is a real time change point test based on one-step-

ahead forecast residuals. As the CPTT assumes normality of the residuals under the H0,

the Jarque-Bera-test results are reported in Table 2. The Jarque-Bera-test clearly rejects the

normality of the empirical distribution of the residuals w.r.t. the third and the fourth moments.

A visual check can be performed to capture the most salient aspects of the non-normality in the

7’2021-01-06’: Public holiday in most of the German federal states
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Type Statistic df p-value

Normality 68.993 2 0.0000
Skewness 0.665 - 0.0066
Kurtosis 6.846 - 0.0000

Table 2: Jarque-Bera-test results suggest rejecting H0 of normal residuals. Clearly, the non-
normality applies to both, the third and fourth, moments of the empirical distribution of the
residuals.

residuals (see Appendix A.7.2). According to the Jarque-Bera-test results (2), the skewness of

the empirical distribution of the residuals is not symmetric due to some outliers and a slightly

left-shifted peak. Moreover, the kurtosis seems to fit better to the normal distribution, but is

still rejected by the Jarque-Bera-test. The comparably broad peak and the comparably strong

tails are non-normal. Hence, the normality assumption is too restrictive implying that the CPTT

is a sub-optimal choice for detecting CPs in the given data set. Though, this naive CP test

yields a useful non-trivial benchmark for the ARA.

Figure 13 visualizes the CPs reported by the CPTT. On the one hand, the CPTT lately

reports the upswings from ’2020-12-07’-’2020-12-09’ with a delay of 9 days. Moreover, a false

alert of an upswing is given at ’2020-12-23’ when a downswing occurred (acc. to AGFL reference).

The upswing at ’2021-01-06’ is reported by the CPTT two days too late. On the other hand,

the CPTT reports the downswings between ’2020-12-22’ and ’2020-12-24’ at two days too late

and is the only model detecting the weak (only detected by 10% quantile AGFL) downswing at

13th of January 2021 with a delay of 4 days. Moreover, the change point test falsely reports a

downswing at ’2020-11-30’.

4.3.2 Macro-only model

Theoretically, making use of micro-level information might bear valuable insights. Hence, this

comparing the ARA with its macro-only counterpart MORA quantifies the loss induced by

neglecting the micro-level data.

As visualized in Figure 15, the MORA reports an upswing at ’2020-12-06’ already one day in

advance. Moreover, an upswing is identified at ’2020-12-16’, i.e. the first reference upswing

(5%-quantile) is hit inaccurately. The reference upswing at ’2021-01-06’ is reported only one day

too late. Moreover, some false alerts are reported on ’2020-11-22’ and ’2020-12-31’.

The downswing at ’2020-12-22’ is reported two days too late. Moreover, three false downswings
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are reported at ’2020-11-24’ and ’20200-11-30’ and ’2021-01-06’. In total, the MORA yields a

diffuse picture of the reference CPs characterized by many false alarms compared to the ARA

including micro-level information.

4.4 Comparison

Figure 16 (Appendix A.7.2) visualizes the CPs reported by the ATD ((λ∗, κ∗) = (0.9, 1.5))

together with the benchmark models, the CPTT (critical value: 5% quantile) and the MORA

((λ∗, κ∗) = (0.7, 1)), alongside the reference CPs detected by the AGFL (5% quantile).

The first upswing at ’2020-12-07’ is firstly reported by the MORA one day in advance. The

ARA reports this upswing with a delay of three days and the CPTT with a delay of nine days.

The upswing at ’2021-01-06’ is reported by the ARA and CPTT simultaneously two days too

late. The MORA just misses the AGFL upswing by one day. Moreover, the CPTT gives one

and the MORA two false alerts.

The downswing in the infection dynamics at ’2020-12-22’-’2020-12-24’ is detected by the MORA

and the CPTT one day too late (’2020-12-23’). The ARA even reports this downswing even

one day later. The CPTT detects the downswing at ’2021-01-12’ with a comparably small delay

of 3 days. Moreover, the change point test does not falsely report a downswing at ’2020-11-30’

like ARA. The MORA usually seems to report CPs one day earlier than the ARA. Moreover,

the MORA (optimized w.r.t. objective function (11)) seems to react more sensitive and less

discriminative to extreme residuals as it reports some CPs which are not reported by the ARA.

As Figure 16 illustrates is the MORA the model which reports the reference CPs first with a

reporting delay of 2 days at maximum. The ARA has a reporting lag of less than 3 days. The

CPTT reports the reference CPs with a delay of up to nine days. However, in contrast to the

MORA and the CPTT, the ARA never falsely reports a change point in the monitoring period.

This visual analysis indicates that the ARA is reporting more trustable compared to MORA

and CPTT. The ARA is the only model which reports all up- and downswing with a delay of

3 days at maximum and, moreover, never alerts falsely. From a qualitative point of view, the

ARA clearly outperforms the other two non-trivial, tuned benchmarks CPD models having the

highest sensitivity and specificity among the proposed models. It hits all reference CPs with a

small delay (at maximum 3 days) and does not alert falsely.
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The qualitative, visual analysis shall be supplemented by the comparison of the quantitative

evaluation criteria from Section 2.5 to enable a strict comparison of the different models. Though,

the evaluation criteria still have to be taken with caution as these measures just consider the

classification into ’upswing’, ’downswing’ or ’neutral’ day by day neglecting the temporal

distances between different days. Hence, the classification accuracy (18) will be the same no

matter whether a CPD model misses the true CP by one or several days. The evaluation

measures are blind w.r.t. the aspect of the reporting lag of the CPD models. Put differently, the

evaluation criteria are incomplete instrumentalization of the CPD detection performance.

Moreover, it is difficult to find a commonly accepted overall performance measure. Given the

model performance criteria of reliability and timeliness of the reported CPs it is somehow

arbitrary how to balance the trade-off between a larger prediction lag with a higher specificity.

The confusion matrices and the evaluation criteria for the ARA, the CPTT and the MORA

are reported in Appendix A.8. The prediction shares (Table 14) give a first descriptive overview

over the CP reporting of the different online CPD models compared to the AGFL. The MORA

and the CPTT report upswings and downswings in 7% resp. 8% of the periods. The prediction

pattern of the ARA is less balanced. The ARA predicts upswings in 12% and downswings in 8%

of the periods.

The confusion matrices are evaluated by the True-Positive-Rate (TPR) and the False-

Positive-Rate (FPR) which are measures indicating how sensitive (TPR) and exact (FPR)

upswings, neutrals and downswings are detected by the real-time CPD models. Tables 16-18

reveal that, given the optimized models, the ARA predicts upswings best having the highest

TPR and lowest FPR at the same time. According to the FPR and TPR, The CPTT predicts

neutrals and downswings best.

The simple accuracy measure (18) suggests going for the CPTT. However, the accuracy is not a

good performance measure due to an imbalanced class distribution (many neutrals). Classifiers

which tend to predict the neutral class will naturally have a higher accuracy. Hence, a better

evaluation criterion is the accuracy of a classifier for a fixed rate of neutral predictions or the AUC

measures that takes prediction performance for different rates of neutral predictions (positive

rate). Moreover, the accuracy measure evaluates each day separately neglecting reporting lags.

The performance of the CPD models can be compared by the ROC curves (Figure 17). The ROC
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curves together with its corresponding AUC-measures are performance measurements which

evaluate the classification performance in terms of the FPR in dependence on the sensitivity

(TPR). Based on the AUC, the ARA (AUCARA = 0.5476) seems to beat the benchmark models

MORA (AUCMORA = 0.3452) and the CPTT (AUCCPTT = 0.4487). The MORA and CPTT

exhibit AUC scores lower than 0.5 meaning that the classifiers are worse than random guessing

of the classes ’neutrals’ and ’non-neutrals’. By accounting for the option to invert the model

classification pattern, AUCeffective = max(AUC, 1 − AUC) can be achieved. The effective

AUCCPTT = 0.5513 and AUCMORA = 0.6548 are higher than AUCARA. This picture does not

align with the qualitative analysis of the CP reports. The sharp categorization of the confusion

matrix into false and true reports does not represent the timing of CPs adequately. Consequently,

the limitations of the simple classification evaluation measures also apply to the ROC curve and

the corresponding AUC measure.

The performance measures still strongly depend on the definition of the reference AGFL CPs

(5%- or 10%-quantile). Appendix A.8.2 contains the visualizations and tables analogously to the

graphs discussed before given the AGFL reference CPs based on the 10%-quantile. Moreover,

the performance measures for the ARA with changing threshold parameter κ are provided in this

section. Table 30 shows that the decrease in the prediction share of CPs improves the accuracy

for the ARA when setting the threshold parameter κ = 2. The comparison confirms that the

less sensitive models having a higher prediction rate of neutrals tend to have a higher accuracy.

The lower accuracy of the ARA compared to MORA and CPTT is mainly caused by a more

sensitive reporting scheme of change points. The difference in the accuracy between the different

CPD models vanishes as the sensitivity of the ARA is decreased (κ = 2) to the same rate of

reported CPs. However, as explained in Section 2, the previous analysis has to be interpreted

cautious due to the limited explanatory power of the performance measures.

4.5 Regional analysis

In the following, the results of ARA are analysed at a regional level which is helpful to generate

more samples in order to obtain more trustable CPD results. Moreover, the regional analysis

yields a deeper understanding about the degree of heterogeneity in the pandemic dynamics across

the German regions. The 401 German counties are assigned to 4 German regions by federal
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states. Hereby, I mainly consider geographically proximity of the federal states. Moreover, I

try to take similarities w.r.t. Corona policies and the pandemic development into account. The

exact grouping is described and visualized in Appendix A.9.2.

Figure 21 and 22 contrast the up- and downswings detected by ARA ((a) and (b)) with the

corresponding reference CPs detected by AGFL ((c) and (d)) in the four defined regions and

Germany. One important finding is that most of the detected CPs ((a) and (b)) are shared

by the four regions. The upswing in the incidence at ’2020-12-09’ on the country-level ((a))

is confirmed by upswings between ’2020-12-08’ and ’2020-12-12’ in all four regions. Moreover,

the identified German-wide downswing at ’2020-11-27’ is confirmed by sub-regional downswings

between ’2020-11-26’ and ’2020-11-28’. Even more unambiguously, the national downswing at

Christmas and the upswing after Epiphany, which might be mainly explained by the reduced

testing and limited reporting of the health authorities, are almost perfectly matched by all

regions. The German-wide downswing at ’2020-12-24’ is reflected by change points in the regions

East, North and West at the same day and in the region South one day before (’2020-12-23’).

Moreover, the reported national upswing at ’2021-01-08’ is confirmed by all regions at the same

day.

The high degree of homogeneity across all sub-regions can be explained by the synchronously

changed reporting behaviour during the period of frequent public holidays. Nevertheless, it

seems apparent that there must have been a ’real’ downswing in late December 2020 or early

January 2021 as the incidence decreased persistently to a much lower level compared to the

period in the mid of December 2020.

The CPD performance of ARA is evaluated by the criteria of timeliness and the accuracy

of the reported change points w.r.t. the reference change points depicted in ((c) and (d)).

Interestingly, the reference change points detected by AGFL reflect a much higher degree of

regional heterogeneity in the CPs, especially in the upswings. Moreover, much more change

points are reported on the regional level compared to the national level as contrary CPs in

different regions could cancel each other out. This demonstrates the need of a homogeneity

measure as cp.homogeneityt which also detects the diversified CPs.

The analysis of the downswings ((b) vs. (d)) shows that the identified downswing in the end of

November 2020 is confirmed by ’true’ change points in the regions West and North. Moreover,

26



the downswing indicated by AGFL at Christmas is detected very timely in all regions. Lastly,

the AGFL downswing at the end of the sample period ((d)) is not yet detected by the real-time

CPD model ARA.

The upswings reported by AGFL exhibit a much more diffuse and heterogeneous picture compared

to the downswings. However, the main structure of the reference CPs (in (c)) can be rediscovered

in the CP pattern reported by ARA. On the one hand, the common upswings at ’2020-12-09’

and ’2021-01-08’ are identified by the ARA. Especially, the CPs on country-level match almost

perfectly. On the other hand, some single regional upswings (e.g.the upswings in regions North

and East between ’2021-01-01’ and ’2021-01-08’) are not detected by the ARA.

In total, the ARA model seems to detect the main change points very timely and reliably.

However, the functionality of the ARA seems to be limited for minor change points that are not

shared across all regions.
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5 Conclusions

This study demonstrates the potential of the ATD-type online CPD models including micro-level

data. The reference CPs are detected by the real-time online CPD model within a delay of

three days at maximum without missing change points or reporting false alarms. One key

aspect is the information value contained in the residuals of the AGFL model which accounts

for structural changes in the assumed DGP. Using the micro-level data of the German counties

enables the applicant to obtain a deeper understanding of the infection dynamics of Germany

(macro-level). This additional information from the micro-level yields a better early-alert system

(ARA compared to the MORA) and enables the analysis of infection waves w.r.t. the degree of

the homogeneity.

However, one important issue of the change point analysis is that there is no common consensus

about the definition of change points of the COVID-19 infection dynamics in Germany contrary to

the defined business cycles according to NBER8. Hence, the evaluation of the model performance

immediately depends on the choice of the reference CPs. Furthermore, the ARA relies on a large

set of model specifications. By assuming a parametric DGP and change points based on the

AGFL, the reported change points are sensitive w.r.t. the choice of the model set-up and the

corresponding hyper-parameters.

Some aspects in context of the CPD tasks are left out for future research. In the field of

panel data models, it can be fruitful to analyse change points in heterogeneous panel data

taking cross-sectional information into account (Okui and Wang, 2020; Lumsdaine et al., 2020).

The heterogeneous sub-entities are clustered into homogeneous sub-groups on which common

model parameters are estimated. Correspondingly, the AGFL (5) could be extended to merge

the parameters βt not only over time, but also over the single counties in order to reduce

the parameter dimensionality in the cross-sectional dimension. However, many panel models

assume a constant group membership of the counties which is not appropriate in the given

application. Moreover, even models allowing for a time-varying group structure will not yield a

considerable improvement against the separate treatment of the counties as the group structure

changes frequently (see A.5.2). Beyond that, clustering of the counties might be even malicious,

when using the joint model parameters predicting future outcomes ŷt+1. First, using the same

8https://www.nber.org/research/business-cycle-dating, Accessed: 2021/05/20
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parameters for all members of a cluster might represent extreme cluster members inadequately

as clusters might still incorporate some degree of heterogeneity. And secondly, if the clusters are

obsolete or the membership of a sub-entity changes, bad predictions are caused by an outdated

clustering which could lead to misleading results in the later analysis.

Moreover, it might make sense to represent the CP variable as a probability measure indicating

the probability of a CP as the ternary CP representation (10) might be too strict. A continuous

CP variable could express much more details about the dynamics of the pandemic.

In the scope of classification tasks along the temporal dimension there is a lot of potential in

designing evaluation measures that evaluate the model performance w.r.t. time lags. In the

given task, it is less important to know whether a CP is detected by the online CPD at this

day, but how large the reporting lag is. Hence, the objective function should also depend on the

reporting lag. The implementation of the penalization pattern of lagged predictions could be

subject of a separate research project.

Furthermore, the hyper-parameters of the objective function (11) are included to allow for a

cost-sensitive tuning of the CPD model. Knowing the real-world costs of false alarms or missed

change points would enable the researcher to set the model parameters such that the expected

real-world costs of the pandemic are minimized. Lastly, the functionality of the presented online

CPD model could be systematically tested in different change point scenarios by a simulation

study in the frame of predefined known change points of various magnitude and combinations of

various change points.
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A Appendix

A.1 FISTA Algorithm

FISTA solves optimization problems which might have the general form

min{F (β) ≡ f(β) + g(β) : β ∈ Rn} (22)

where f(β) represents any smooth convex function and g(β) any continuous convex, but poten-

tially non-smooth function. In the given case, f(β) corresponds to the smooth least-squares

term and g(β) to the non-smooth Lasso-type `2,1-penalization terms in the AGFL optimization

problem (5). The authors show that F (β) can be approximated at point γ by a quadratic

function QL which exhibits improved convergence properties to the solution β∗ of (22):

QL(β, γ) := f(γ) + (β − γ)T∇f(γ) +
L

2
‖β − γ‖2 + g(β) ≥ F (β)9 (23)

with step size parameter L = L(f).10 Ignoring the constant terms w.r.t. β in (23) yields a

unique minimum

pL(γ) = argmin
β

{
L

2
‖β −

(
γ − 1

L
∇f(γ)

)
‖2 + g(β)

}
(24)

and the optimal β is recalculated

βk = pL(γk). (25)

Specifically, the update steps for γk are further determined by

γk+1 = βk +

(
tk − 1

tk+1

)
(βk − βk−1),

tk+1 =
1 +

√
1 + 4t2k

2

(26)

where γ1 = β0 ∈ Rn, t1 = 1. Most importantly in this iteration scheme is that γk is computed

based on the minimum of the two last iterations steps βk and βk−1 (instead of traditionally only

9⇔ ‖∇f(β)−∇f(γ)‖ ≤ L(f)‖β − γ‖, with L(f) being the smallest Lipschitz constant of the gradient ∇f(γ)
10L(f) is the smallest Lipschitz constant of the gradient ∇f(γ)
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βk), which improves the convergence properties of the algorithm substantially. As shown in

Theorem (4.4) in (Beck and Teboulle, 2009), the proposed optimization algorithm will yield an

ε-optimal solution at a fairly low computational complexity O(1/k2).

A.2 Oracle properties of the Adaptive LASSO (AL) by (Zou, 2006)

Meinshausen and Bühlmann (2006) show that variable selection of the LASSO is consistent only

under some restrictive conditions. The adaptive LASSO with adaptive, data-driven weights is

designed by Zou (2006) in order to establish consistent variable selection properties even under

milder assumptions. In my application, consistent variable selection refers to the consistent

detection of change points in the model.

Under the assumptions that λn/
√
n→ 0 and λnn

(γ−1)/2 →∞, Theorem 2 (Zou, 2006) states

consistent variable selection

limnP (A∗n) = A) = 1, (27)
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A.3 Pseudo-Code: Online CPD

Algorithm 1 detect.CP - verbal explanation in 2.7

1: # Last observation at t = T, h = 52, h1 = 40, h2 = 12
2: Run estimate.AGFL for t = [T-h+1,...,T-1]
3: Calculate one-step-ahead ŷi,T and ei,T based on α̂i,J = β̂i,T−1
4: Calculate ŷT and et by aggregating ŷi,T acc. to (2)
5: Obtain (λ∗, κ∗) by running run.ATD for a grid of parameter combinations (λ, κ) based on

the tuning sample t = T − h+ 1, ..., T − h+ h1
6: Calculate CP indicator cp.macARAT by run.ATD for the monitoring period t = [T − h+ h1 +

1, ..., T ] using (λ∗, κ∗) and report upswing/downswing/no CP at day T
7: Calculate evaluation measures (15)-(18)
8: Optionally calculate DTA measures by get.DTA.measures
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Algorithm 2 estimate.AGFL

1: # At any time point t = T:
2: # Input: yi ∈ RT×1, Xi ∈ RT×K for each county i
3: for each county i = 1, ..., N do
4: Estimate β̂i,t by solving (5) (with FISTA) for observations t = T − h+ 1, ..., T − 1
5: for t = T-h+1,...,T-1 do
6: ŷi,t+1 = Xi,t+1 · β̂i,t # One-step-ahead predictions assuming constant β̂i,t
7: ei,t+1 = yi,t+1 − ŷi,t+1 # One-step-ahead residuals

8: # Offline CPD

9: cp.micAGFLi,t+1 = 0

10: if β̂i,t+1 6= β̂i,t then
11: cp.micAGFLi,t+1 = 1 · sgn(ei,t+1) # Obtain reference CPs

12: end if
13: end for
14: end for
15: for t = T-h+1,...,T-1 do
16: # Count micro-level CPs

17: upswing.countAGFLt =
∑N

i=1 1(cp.micAGFLi,t+1 = 1)

18: downswing.countAGFLt =
∑N

i=1 1(cp.micAGFLi,t+1 = −1)
19: # Output 1: Aggregated macro-level residuals, see Eq.(2)
20: et+1 =

∑N
i=1 ωi · ei,t+1

21: end for
22: # Output 2: Macro-level reference CPs

23: for t = T-h+1,...,T-1 do
24: cp.macAGFLt = 1, if upswing.countAGFLt ≥ q.upswingAGFL(0.05)
25: cp.macAGFLt = −1, if downswing.countAGFLt ≥ q.downswingAGFL(0.05)
26: end for

Algorithm 3 run.ATD

1: # Input: et from estimate.AGFL

2: # Parameters: λ, κ
3: Set M0 = 0
4: for each period t = T − h+ 1, ..., T do
5: σ̂t−1 = 1

t−T+h
∑t−1

s=1(es − ēs)2 # Sample residual variance

6: Mt = λMt−1 + (1− λ)(et/σ̂t−1) # Alarm statistic

7: Set cp.macARAt = 0 # CP Indicator variable

8: # Decision rule (10)
9: if Mt−1 ≤ κ then

10: Set cp.macARAt = 1
11: end if
12: if Mt−1 > −κ then
13: Set cp.macARAt = −1
14: end if
15: end for
16: # Output: Indicator variable cp.macARAt
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Algorithm 4 get.DTA.measures

1: # Input: ei,t from estimate.AGFL

2: # Parameters: λ, κ
3: Set Mi,0 = 0
4: for each county i = 1, ..., N do
5: for each period t = T − h+ 1, ..., T do
6: σ̂i,t−1 = 1

t−T+h
∑t−1

s=1(ei,s − ēi)2 # Sample residual variance

7: Mi,t = λMi,t−1 + (1− λ)(ei,t/σ̂i,t−1) # Alarm statistic

8: Set cp.micDTAi,t = 0 # CP Indicator variable

9: # Decision rule (10)
10: if Mi,t−1 ≤ κ then
11: Set cp.micDTAi,t = 1
12: end if
13: if Mi,t−1 > −κ then
14: Set cp.micDTAi,t = −1
15: end if
16: end for
17: end for
18: # Calculate homogeneity measures

19: P dt =
∑N

i=1 ωi · 1(cp.micDTAi,t = d), d ∈ {1,−1, 0}
20: Obtain cp.sharet, cp.excess

+
t , cp.homogeneityt (Eq. (12)-(14))

21: # Output: Indicator variable cp.micDTAi,t and homogeneity measures (12)-(14)

A.4 Class-specific 2x2 Confusion Matrices

Upswings:

Predicted/Actual Upswing No Upswing

Upswing TU FU− + FU0

No Upswing FN+ + FD+ TN + TD + FD0 + FN−

Table 3: Confusion matrix for upswings

Neutrals:

Predicted/Actual Neutral No Neutral

Neutral TN FN+ + FN−

No Neutral FU0 + FD0 TU + TD + FD+ + FU−

Table 4: Confusion matrix for neutrals

Downswings:
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Predicted/Actual Downswing No Downswing

Downswing TD FD+ + FD0

No Downswing FU− + FN− TU + TN + FN+ + FU0

Table 5: Confusion matrix for downswings

A.5 Data Set - Dependent Variable on County Level (Landkreise)
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Figure 3: According to the German warning level system, the 401 German counties are classified
into category low (yt < 35), mid (35 ≤ yt < 50), high (50 ≤ yt < 100) and very high (yt > 100).
Plotting the warning level distribution over time depicts an illustrative indicator for the pandemic
development.
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A.5.1 Dependent variable
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Figure 4: Time series of the incidence (dashed line) and its 7-days moving average (solid line)
for whole Germany. The weekly reporting pattern is smoothed by the 7-days-averaging.
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A.5.2 Dependent variable - Micro-, Mezzo- and Macro-level
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Figure 5: Time series of incidence (7-days moving average) for whole (a)-c)) Germany, (d)-f))
selected federal state and (g)-i)) selected counties.
Periods: ’2020-03-15’-’2020-05-01’ (a), d), g)), ’2020-06-01’-’2020-09-01’ (b), e), h)), ’2020-10-01’-
’2020-11-19’ (c), f), i)) .

When looking at the macro-level (Figures 5(a), 5(b), 5(c)), there is only an aggregated line for

all sub-units which contains no information about the heterogeneity in the sub-units. Having a

look at the mezzo-level (Figures 5(d), 5(e), 5(f)), the incidence across different federal states
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exhibits a high degree of diversity. E.g. Figure 5(e) reveals that the peak in late June visible in

5(b) boils down to only few federal states Nordrhein-Westfalia and Bavaria while other federal

states had a constant incidence. A dispersed behaviour of the federal states is also observed

in November when some federal states faced decreasing incidence (e.g. Mecklenburg Western

Pomerania, Nordrhein-Westfalia) while other federal state still experienced a further increase

of the incidence (e.g. Saxony or Berlin). Naturally, the micro-level (Figures 5(g), 5(h), 5(i))

provides the most heterogeneous picture. Particularly during the first (Figure 5(g)) and the

second (Figure 5(i)) wave, the different timing and strength of the infection waves becomes

evident which reflects the variety of regional events and policies.
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A.5.3 Mobility data
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Figure 6: Mobility deviation against the reference period in the resort ’Retail and Recreation’
(i.e. activity of the population in museums, cinemas, cafés, restaurants, shopping zones etc.) for
(a) whole Germany and (b) all single German federal states.

42



A.6 Benchmark CPs

A.6.1 Micro-level CPs
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Figure 7: The histograms of (a) upswings and (b) downswings reveal that micro-level downswings
tend to occur synchronously while micro-level upswings arise dispersed over time.
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Figure 8: Number of micro-level reference up- and downswings by AGFL (5) during the period
from ’2020-11-18’ until ’2021-01-16’.
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A.6.2 Macro-level CPs
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Figure 9: The graphs depict the macro-level reference upswings (a) and downswings (b) (vertical
lines) defined by the upper 5% of the number of micro-level CPs (dashed line) and the dependent
variable yt (solid line, (20)).

Upswings: ’2020-12-07’, ’2020-12-08’, ’2020-12-09’, ’2021-01-06’

Downswings: ’2020-12-22’, ’2020-12-22’, ’2020-12-23’, ’2020-12-24’

Table 6: Reference macro-level CPs (AGFL) based on the 5% quantile.
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Figure 10: The graphs depict the macro-level reference upswings (a) and downswings (b) (vertical
lines) defined by the upper 10% of the number of micro-level CPs (dashed line) and the dependent
variable yt (solid line, (20)).

Upswings: ’2020-12-07’, ’2020-12-08’, ’2020-12-09’, ’2021-01-03’, ’2021-01-04’, ’2021-01-06’

Downswings: ’2020-12-21’, ’2020-12-22’, ’2020-12-23’,’2020-12-24’, ’2020-12-25’, ’2021-01-11’

Table 7: Reference macro-level CPs (AGFL) based on the 10% quantile.
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A.7 Online CPD
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Figure 11: Aggregated residuals (dashed line) based on the one-step-ahead prediction from (5)
and the dependent variable yt (solid line, (20)). [The residual plot provides an overview over
the occurrence of CPs and their CP direction. According to the development of the incidence,
the aggregated one-step-ahead residuals turn positive during upswing periods and negative in
downswing periods. In the given example, the residuals instantaneously become positive in
response to the upswings in the mid of December 2020. The residuals turn negative during the
temporary downswing of the COVID-19 infections after Christmas 2020.]

A.7.1 Macro-level CPs reported by ARA
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(b) Downswings

Figure 12: Reported (a) upswings and (b) downswings based on model ARA using a monitoring
window length of 10 days together with the incidence (solid line). The reference change points
(5% quantile) are marked as dashed vertical lines respectively, whereas the coloured vertical lines
represent the up- and downswings detected by ARA.
Optimal parameters: κ∗ = 1.5, λ∗ = 0.74, γ∗1 = 9.11, γ∗2 = −5.92
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Reported CPs:

• κ = 1

– Upswings: ’2020-12-08’,’2020-12-09’, ’2020-12-10’, ’2020-12-11’, ’2020-12-12’, ’2020-

12-13’, ’2021-01-02’, ’2021-01-03’, ’2021-01-08’, ’2021-01-09’, ’2021-01-10’, ’2021-01-11’

– Downswings: ’2020-11-27’, ’2020-11-28’, ’2020-11-30’,’2020-12-01’, ’2020-12-25’,

’2020-12-26’, ’2020-12-27’, ’2020-12-28’, ’2020-12-29’, ’2020-12-30’ , ’2020-12-31’

• κ = 1.5

– Upswings: ’2020-12-10’, ’2020-12-11’, ’2020-12-12’, ’2020-12-13’, ’2021-01-08’, ’2021-

01-09’, ’2021-01-10’

– Downswings: ’2020-12-25’, ’2020-12-26’, ’2020-12-27’, ’2020-12-28’, ’2020-12-29’,

’2020-12-30’

• κ = 2

– Upswings: ’2021-01-08’, ’2021-01-09’

– Downswings: ’2020-12-25’,’2020-12-26’, ’2020-12-27’, ’2020-12-28’, ’2020-12-29’,

’2020-12-30’
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A.7.2 CPTT
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Figure 13: Reported (a) upswings and (b) downswings based on CPTT using a monitoring
window length of 10 days together with the incidence (solid line). The reference change points
(5% quantile) are marked as dashed vertical lines respectively, whereas the colored vertical lines
represent the up- and downswings detected by CPTT.

• Upswings: ’2020-12-16’, ’2020-12-23’, ’2021-01-08’, ’2021-01-09’

• Downswings: ’2020-11-30’, ’2020-12-24’, ’2020-12-25’, ’2020-12-26’, ’2021-01-15’
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Figure 14: According to the JB test results (2), the skewness of the empirical distribution of the
residuals is not symmetric due to some outliers and a slightly left-shifted peak. Moreover, the
kurtosis seems to fit better to the normal distribution, but is still rejected by the JB test. The
comparably broad peak and the comparably strong tails are non-normal.

A.7.3 MORA
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Figure 15: Reported (a) upswings and (b) downswings based on MORA using a monitoring
window length of 10 days together with the incidence (solid line). The reference change points
(5% quantile) are marked as dashed vertical lines respectively, whereas the colored vertical lines
represent the up- and downswings detected by the MORA.

• Upswings: ’2020-11-22’, ’2020-12-06’, ’2020-12-16’, ’2020-12-31’, ’2021-01-07’

• Downswings: ’2020-11-24’, ’2020-11-30’, ’2020-12-24’, ’2021-01-06’
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A.8 Online CPD: Model Comparison

A.8.1 Reference CPs: 5% quantile based on AGFL
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Figure 16: The figures oppose the reported CPs of the ARA, the MORA and the CPTT with
the reference change points based on the AGFL.
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Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 1 6 0

Pred. Neutral 3 43 2

Pred. Downswing 0 4 1

Table 8: Confusion matrix ARA (macro)

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 72 2681 54

Pred. Neutral 343 18349 556

Pred. Downswing 39 1830 136

Table 9: Confusion matrix ARA (micro)

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 0 3 1

Pred. Neutral 4 47 0

Pred. Downswing 0 3 2

Table 10: Confusion matrix CPTT (macro)

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 30 1519 55

Pred. Neutral 399 19548 504

Pred. Downswing 25 1793 187

Table 11: Confusion matrix CPTT (micro)

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 0 5 0
Pred. Neutral 3 46 2

Pred. Downswing 1 2 1

Table 12: Confusion matrix MORA (macro)

52



Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 46 1912 47
Pred. Neutral 376 19460 615

Pred. Downswing 32 1488 84

Table 13: Confusion matrix MORA (micro)

Upswings Neutrals Downswings

AGFL 0.07 0.88 0.05
ARA 0.12 0.80 0.08

CPTT 0.07 0.85 0.08
MORA 0.08 0.85 0.07

Table 14: The prediction rates of the three classes by online CPD model.

Acc. Macro Acc. Micro

ARA 0.75 0.77
CPTT 0.82 0.82

MORA 0.78 0.81

Table 15: Prediction accuracy by online CPD model.

TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.25 0.16 0.43 0.51
CPTT 0.00 0.07 0.44 0.39

MORA 0.00 0.10 0.50 0.47

Table 16: Comparison - TPR vs. FPR on macro- and micro-level w.r.t. class ’Upswings’ by
online CPD method.

TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.81 0.80 0.71 0.75
CPTT 0.89 0.86 0.57 0.75

MORA 0.87 0.85 0.71 0.83

Table 17: Comparison - TPR vs. FPR on macro- and micro-level w.r.t. class ’Neutrals’ by
online CPD method.

TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.33 0.18 0.07 0.08
CPTT 0.67 0.25 0.05 0.08

MORA 0.33 0.11 0.05 0.07

Table 18: Comparison - TPR vs. FPR on macro- and micro-level w.r.t. class ’Downswings’ by
online CPD method.
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Figure 17: AUC scores achieved by various online CPD models
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A.8.2 Reference CPs (10% quantile):
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Figure 18: The figures oppose the reported CPs of the ARA and of the CPTT with the reference
change points based on the AGFL. The CPTT fails to detect the upswing around 10th of
December 2020. In contrast, the CPTT identifies the downswing at 12th of January 2021 with a
small delay of 3 days.

Upswings Neutrals Downswings

AGFL 0.10 0.80 0.10
ARA 0.12 0.80 0.08

CPTT 0.07 0.85 0.08
MORA 0.08 0.85 0.07

Table 19: The prediction rate of the three classes by online CPD model.

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 1 5 1
Pred. Neutral 5 39 4

Pred. Downswing 0 4 1

Table 20: Confusion matrix ARA (macro).
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Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 72 2681 54
Pred. Neutral 343 18349 556

Pred. Downswing 39 1830 136

Table 21: Confusion matrix ARA (micro).

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 0 3 1
Pred. Neutral 6 43 2

Pred. Downswing 0 2 3

Table 22: Confusion matrix CPTT (macro).

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 30 1519 55
Pred. Neutral 399 19548 504

Pred. Downswing 25 1793 187

Table 23: Confusion matrix CPTT (micro).

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 0 5 0
Pred. Neutral 5 41 5

Pred. Downswing 1 2 1

Table 24: Confusion matrix MORA (macro).

Act. Upswing Act. Neutral Act. Downswing

Pred. Upswing 46 1912 47
Pred. Neutral 376 19460 615

Pred. Downswing 32 1488 84

Table 25: Confusion matrix MORA (micro).

Acc. Macro Acc. Micro

ARA 0.68 0.77
CPTT 0.77 0.82

MORA 0.70 0.81

Table 26: Prediction accuracy (micro- and macro-level) by online CPD model.

56



TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.17 0.16 0.38 0.51
CPTT 0.00 0.07 0.36 0.39

MORA 0.00 0.10 0.38 0.47

Table 27: TPR vs. FPR on macro- and micro-level w.r.t. class ’Upswings’ by online CPD
method.

TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.81 0.80 0.75 0.75
CPTT 0.90 0.86 0.67 0.75

MORA 0.85 0.85 0.83 0.83

Table 28: TPR vs. FPR on macro- and micro-level w.r.t. class ’Neutrals’ by online CPD method.

TPR mac. TPR mic. FPR mac. FPR mic.

ARA 0.17 0.18 0.07 0.08
CPTT 0.50 0.25 0.04 0.08

MORA 0.17 0.11 0.06 0.07

Table 29: TPR vs. FPR on macro- and micro-level w.r.t. class ’Downswings’ by online CPD
method.
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Figure 19: AUC scores achieved by various online CPD models

A.8.3 Comparison ARA with lower sensitivity (κ = 2)

58



q = 0.95 q = 0.90

κ = 1.5 κ = 2 κ = 1.5 κ = 2

ARA 0.733 0.783 0.700 0.733
CPTT 0.817 0.817 0.767 0.767
MORA 0.783 0.783 0.633 0.633

Table 30: (Macro) prediction accuracy for the different CPD models for different threshold
values of ARA and different reference CP definitions.

A.9 Regional Analysis

A.9.1 Regions

48°N

50°N

52°N

54°N

6°E 8°E 10°E 12°E 14°E

German Sub−Regions

Figure 20: Regions
West (grey): Nordrhein-Westfalia, Lower Saxony, Bremen, Hesse
East (blue): Thuringia, Saxony, Saxony-Anhalt, Brandenburg, Berlin
South (green): Baden-Württemberg, Saarland, Rhineland-Palatinate, Bavaria
North (red): Schleswig-Holstein, Mecklenburg-Vorpommern, Hamburg
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A.9.2 CPs by Region (ARA vs. AGFL) - reference: 5% quantile AGFL
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Figure 21: In (a) and (b), the CPs detected by the real-time model ARA are marked for the
considered sample period ’2020-11-16’ - ’2021-01-15’. These CPs are opposed to the reference
CPs identified by AGFL ((c) and (d)). [The upswings are detected fairly well on the country-level
(5th row). The downswings are detected in time, but also false alarms are reported in the first
half of the observation period. On the regional level, the results are worse. Some true CPs are
not reported and furthermore, there are numerous false alarms.]
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Figure 22: In (a) and (b), the CPs detected by the real-time model ARA are marked for the
considered sample period ’2020-11-16’ - ’2021-01-15’. These CPs are opposed to the reference
CPs identified by AGFL ((c) and (d)). [The figure shows reported CPs by the ARA on the
regional level. The downswings are detected in time, but also false alarms are reported in the
first half of the observation period. On the regional level, the ARA detection performance is
only partially good. Some reference CPs are not reported in all regions (e.g. regional upswings
in all regions around 10th of December) and furthermore, there are few false alarms (e.g. ARA
downswings in the beginning of December).]
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A.9.3 CPs by Region (ARA vs. AGFL) - reference: 10% quantile AGFL
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Figure 23: In (a) and (b), the CPs detected by the real-time model ARA are marked for the
considered sample period ’2020-11-16’ - ’2021-01-15’. These CPs are opposed to the reference
CPs identified by AGFL ((c) and (d)).
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Figure 24: In (a) and (b), the CPs detected by the real-time model ARA are marked for the
considered sample period ’2020-11-16’ - ’2021-01-15’. These CPs are opposed to the reference
CPs identified by AGFL ((c) and (d)).
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