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Abstract

We represent the dynamic relation among variables in vector autoregressive (VAR)

models as directed graphs. Based on these graphs, we identify so-called strongly con-

nected components (SCCs). Using this graphical representation, we consider the prob-

lem of variable selection. We use the relations among the strongly connected compo-

nents to select variables that need to be included in a VAR if interest is in forecasting

or impulse response analysis of a given set of variables. We show that the set of selected

variables from the graphical method coincides with the set of variables that is multi-step

causal for the variables of interest by relating the paths in the graph to the coefficients

of the ‘direct’ VAR representation. Empirical applications illustrate the usefulness of

the suggested approach: Including the selected variables into a small US monetary VAR

is useful for impulse response analysis as it avoids the well-known ‘price-puzzle’. We

also find that including the selected variables into VARs typically improves forecasting

accuracy at short horizons.
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1 Introduction

Vector autoregressive (VAR) models are popular tools in the analysis of multiple time series.

Typical applications include forecasting or impulse response analysis. The popularity of the

VAR model is at least partly due to the fact that it typically does not require strong economic

theory assumptions. Often VAR models without any restrictions on the parameters are used

to describe the joint dynamics of a set of economic time series.

While the general VAR lag structure allows to uncover dynamic relations between the

variables included in the system, the use of unrestricted VARs comes at a cost: The number

of parameters to be estimated from the data increases with the square of the number of

variables in the system. Even in moderately large VARs the degrees of freedom exhaust

quickly. Thus applied researchers have to choose the number of variables to be included in

the VAR wisely. On the one hand, a researcher would like to include all relevant variables

to avoid omitted variable bias and to get a complete picture of the underlying dynamics.

On the other hand, including too many variables makes parameter estimates unreliable and

estimation uncertainty may lead to rather uninformative results such as estimated impulse

responses with very wide confidence intervals.

Given variables of interest, our paper suggests to use a graphical modeling approach in

order to select a ‘minimal’ VAR containing only variables that are relevant for predicting

the variables of interest. This approach is helpful in selecting the relevant variables for VAR

analysis in a data-driven way. We argue that this is a useful addition to the toolbox of time

series econometricians as on the one hand, it exploits the information from large dimensional

data sets but on the other hand eventually uses smaller VAR models for forecasting and

structural analysis.

To fix ideas, suppose a researcher is interested in a set of variables denoted by yI, including

say GDP growth, the consumer price (CPI) inflation, and a key interest rate. She either

wants to forecasts the variables in yI or to conduct an impulse response analysis for the

variables in yI. For this purpose, typically a large cross-section of time series on e.g. output,

income, consumption, the labor market, orders and inventories, money and credit, interest

and exchange rates, financial market variables and various price measures, is available.1

In recent years, suggestions have been made on how to include the information from a

large dimensional data set into VARs. Factor-augmented VARs (FAVARs) (see e.g. Bernanke,

Boivin & Eliasz (2005) and Stock & Watson (2016)) condense the information from a large

time series data set into a few factor time series, which are then included in a VAR model.

Factor-augmented models have been used for forecasting and structural analysis.2 Clearly,

these models are only suitable if the underlying data has a factor structure, i.e. if the large

number of time series are really driven by a small number of common factors (see e.g. Uhlig

(2009) on this point). Other potential problems in empirical work on FAVARs include the

1Large data sets of this type have been used in various studies. See e.g. Stock & Watson (2003) or

McCracken & Ng (2015) with references therein. They typically contain up to 130 variables.
2See e.g. Stock & Watson (2002), Ludvigson & Ng (2007), Eickmeier & Ziegler (2008), Ludvigson & Ng

(2009), Stock & Watson (2012), Clements (2016) and Cheng & Hansen (2015) for applications of factor-

augmented regressions and FAVARs.
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identification of factors, determination of the number of factors and cross-correlation among

the idiosyncratic disturbances. An alternative are large Bayesian VARs (BVARs) as suggested

by Banbura, Giannone & Reichlin (2010).3 In large dimensional settings, however, these

models require to use a very tight prior. Consequently, using a large BVAR might impose

more structure on the model than typical VAR users feel comfortable with. Other shrinkage

methods4 have also been used for large VAR models, including the least absolute shrinkage

and selection operator (LASSO) (see e.g. Kascha & Trenkler (2015)). The LASSO approach

can handle large dimensional VAR models by setting some VAR coefficients to zero and at

the same time shrinking the remaining coefficients. While already frequently used in applied

work, the theoretical underpinning is still developing and it is not entirely clear how to

conduct inference based on LASSO-VAR models.

Consequently, using FAVARs or large BVARs may not be ideal in some situations faced

by applied time series econometricians. Researchers may actually prefer to use smaller VARs

also because they might be easier to interpret and resemble more closely small scale dynamic

stochastic general equilibrium (DSGE) models used in macroeconomics. At the same time,

the researcher would like to include additional ‘relevant’ variables that affect predictions

and/or impulse responses for the variables of interest. Against the background of the large

number of time series available today, this entails a variable selection procedure.

Our paper is concerned with the question of how to choose variables for the smallest

(‘minimal’) VAR that contains all variables that are ‘relevant’ in forecasting the variables of

interest yI. For structural analysis, our paper addresses the question: What is the smallest

VAR containing all variables ‘relevant’ for impulse responses of the variables of interest yI? To

address our research questions, we develop a variable selection strategy based on a graphical

modeling approach. The first contribution of our paper is to use so-called strongly connected

components (SCCs) and the relation among these components for variable selection. We

first represent a sparse VAR structure as a directed graph with vertices and edges. From this

graph we identify all SCCs in our VAR model by using a simple graphical modeling algorithm.

The concept of SCCs is well-established in the graphical modeling literature but to the best

of our knowledge, this concept has not been used in econometrics. We show how the SCCs

and their connections to other SCCs are helpful in identifying the set of ‘relevant’ variables.

Effectively, the set of relevant variables can be found from the graphical representation of

the SCCs, known as a component graph. In a second theoretical contribution, we show the

relation between the SCCs and the concept of multi-step causality as in Dufour & Renault

(1998). In particular, given the variables of interest yI, we show that a minimal VAR chosen

by SCCs is identical to the VAR that contains yI and all variables that are multi-step causal

for yI.

Methodologically, our paper is related to the literature on using graphical models in econo-

metrics. Following the work on causal analysis of multivariate data (see e.g. Lauritzen (1996),

Pearl (2000) and Edwards (2000)), graphical models have also been introduced for time se-

ries models. Brillinger (1996) and Dahlhaus (2000) are the first papers mentioning the use

3See e.g. Carriero, Kapetanios & Marcellino (2009, 2012, 2015), Giannone, Lenza, Momferatou & Ono-

rante (2014), and Koop (2013) for applications of this method.
4See also Stock & Watson (2012).
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of graphical modeling for time series data and present concepts based on the partial correla-

tion and partial spectral coherence.5 Dahlhaus & Eichler (2003) introduce causality graphs

based on the autoregressive representation. Our work is most closely related to the work

of Eichler (2006, 2007, 2012), who shows the close relation of different causality concepts

(Granger-causality and multi-step causality) to graphical representations in vector autore-

gressive models. We add to this work the link from causality structures to variable selection

using the concept of strongly connected components.6

Our paper is also closely related to the work of Jarociński & Maćkowiak (2017), who

investigate the same research question of variable choice for VAR analysis, albeit with a

different econometric approach. Based on the concept of Granger-causal priority (see Sims

(1982, 2015), Doan & Todd (2010)), their paper evaluates in a Bayesian setup the posterior

probability of Granger-causal priority. As pointed out by Jarociński & Maćkowiak (2017),

Granger-causal priority is a sufficient condition for Granger-noncausality at all horizons and

thus also related to Dufour & Renault (1998). For a given set of variables of interest yI,

Jarociński & Maćkowiak (2017) would drop a variable yj, say, if the variables in yI are likely

to be Granger-causal prior to yj. Thus, their method may also be used to choose variables

for VAR analysis.

We illustrate the usefulness of our suggested variable selection in two applications to US

macroeconomic data. The first application is similar to the one in Jarociński & Maćkowiak

(2017). The variables of interest in yI are US output, CPI inflation and the federal funds

rate, three variables often used in stylized three-variable VARs for the US. Given yI, we use

our variable selection method based on SCCs to select a minimal VAR from 41 US time

series for a period between 1979 and 2014. Starting point is a sparse VAR structure obtained

from applying the LASSO to the large VAR. A number of interesting results emerge: First,

regardless of the considered estimation period, 10 out of the 41 variables are always selected

into the model and the selection is fairly stable over different samples before the financial

crisis in 2008. Second, the set of selected variables is remarkably similar to the one obtained

by Jarociński & Maćkowiak (2017) from their Bayesian analysis. Third, additional variables

are selected into the model in a number of periods. Consequently, the ‘minimal VAR’ is

still relatively large, indicating that the underlying relations are typically quite complex and

may not be captured adequately in a three-variable VAR. We also find that including the

selected variables into the VAR leads to more reasonable responses to a monetary policy

shock, indicating that the selection is useful. Finally, we also conduct pseudo-out-of-sample

forecasting experiments. Our results indicate that VARs with only the selected variables

outperform both, the baseline VAR and a large VAR with all variables included. Similar

results are obtained in the second empirical application, where selecting ‘minimal VARs’

leads to better forecasts in US output growth and unemployment.

The remainder of the paper is structured as follows. Section 2 shows how VARs can

5See also Flamm, Kalliauer, Deistler, Waser & Graef (2012) for an overview of different approaches.
6Graphical modelling has also been used for identifying the instantaneous relations. The first work in this

area is the paper by Swanson & Granger (1997), followed by a number of studies that use graphical modeling

for identifying structural VAR models (see e.g. Demiralp & Hoover (2003), Hoover, Demiralp & Perez (2009)

and Heinlein & Krolzig (2012)).
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be represented as directed graphs. We also introduce the concept of strongly connected

components and explain how this can be used for variable selection and for finding a ‘minimal

VAR’. Section 3 relates the graph-theoretical concepts to multi-step causality and shows how

variable selection based on both concepts leads to the same set of relevant variables. In

Section 4, we illustrate the usefulness of our method in empirical applications. Section 5

concludes. All proofs are deferred to the appendix.

2 Vector Autoregressive Models, Directed Graphs and

Strongly Connected Components

In this section, we explain how VAR models can be represented by directed graphs. We then

review the concept of strongly connected components (SCCs) in directed graphs and explain

how SCCs can be used for selecting relevant variables.

We denote the VAR model of order p, a VAR(p) for the K-dimensional time series vector

yt = (y1,t, y2,t, . . . , yK,t)
′ by

yt = A1yt−1 + · · ·+ Apyt−p + ut, (2.1)

where A1, . . . , Ap are K×K coefficient matrices and ut is a zero mean white noise disturbance

vector with non-singular covariance matrix Σu. We have not included deterministic terms

(e.g. intercepts) into the VAR in (2.1) to simplify the notation. Adding deterministic terms

would not change the results discussed below and they can be included in empirical work.

The VAR(p) can be written in VAR(1) companion form as

Yt = AYt−1 + Ut, (2.2)

where Yt = (y′t, y
′
t−1, . . . , y

′
t−p+1)

′ and Ut = (u′t, 0, . . . , 0)′ are Kp× 1 vectors and

A :=


A1 A2 A3 . . . Ap

IK 0 0 . . . 0

0 IK 0 . . . 0

0 0
. . .

...

0 0 . . . IK 0

 . (2.3)

To make use of graphical modeling concepts, we represent the VAR in (2.2) as a directed

graph. Following the standards in graphical modeling, a directed graph G is described by a

set of vertices V and a set of edges E that are ordered pairs of vertices. In our application

the vertices correspond to the Kp elements in the vector Yt and the edges are determined by

the elements of the companion form matrix A as in the following definition:

DEFINITION 1 (Directed VAR Graph) Given a VAR(p) model as in (2.1), the associated

directed graph is G = (V,E) with V = {1, 2, 3, . . . , Kp} and

(i, j) ∈ E ⇔ aij 6= 0, (2.4)

where aij is the element in row i and column j of the companion matrix A.
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Remark 1 In this graph, a directed edge (i, j) leads from vertex i to vertex j. This is

standard in the graphical modeling literature. In our context, using this definition (i, j) ∈ E

implies that the ith variable depends on the jth component in Yt, however, the arrow would

point from vertex i to vertex j. Thus, the direction of the arrows is reversed compared to

the type of arrows sometimes used to denote (Granger-)causality.

Remark 2 Different definitions of directed graphs for VAR models are possible. E.g. Eichler

(2007) uses a different definition for VAR(p) models. In particular, Eichler works directly on

the matrices As, s = 1, . . . , p and defines the VAR graph G1 = (V 1, E1) with V 1 = {1, . . . , K}
and

(i, j) ∈ E1 ⇔ ∃s ∈ {1, . . . , p} : Aij,s 6= 0,

where Aij,s denotes the element in row i and column j of As. Obviously, for p > 1 this defi-

nition would yield a different graph compared to that obtained from Definition 1. However,

as discussed below, our central result does not depend on whether we use Definition 1 or this

from Eichler (2007) (see Remark 11).

Given a sparse VAR structure, i.e. a VAR with zero restrictions on the VAR coefficients, we

may use the associated directed graph to learn about the set of relevant variables. We do so

by using the notion of the strongly connected components (SCCs) in a graph (Tarjan (1972)).

In order to define these, one makes use of the concept of a path or a pathway. A path is

defined to be a sequence of vertices to go from one vertex to another. More formally, a path P

of length k leading from vertex u to u′ in graph G = (V,E) is a sequence P = (v0, v1, . . . , vk)

of vertices such that u = v0 and u′ = vk and (vi−1, vi) ∈ E for i = 1, 2, . . . , k. If there is a

path from u to u′, we say that u′ is reachable from u, denoted as u
P
 u′. We may now define

the strongly connected components of a directed graph:

DEFINITION 2 (Strongly Connected Components (Tarjan (1972))) Let G = (V,E) be a

directed graph and let two vertices u and v in G be equivalent if u
P
 v and v

P
 u, i.e. u

and v are mutually reachable. Call the corresponding equivalence classes of vertices Vi and

let Ci = (Vi, Ei) where Ei = {(u, v) ∈ E : u, v ∈ Vi} for i = 1, . . . , k. The subgraphs Ci are

called the strongly connected components of G.

Remark 3 Note that if we refer to SCC Ci in the following, we mean the corresponding set

of vertices Vi that belongs to Ci in the sense of Definition 2. For example, if we write j ∈ Ci,

we mean j ∈ Vi.

Remark 4 Note that each vertex of graph G belongs to exactly one strongly connected

component. Consequently, the set of all equivalence classes V1, . . . , Vk belonging to the

strongly connected components C1, . . . , Ck forms a partition of the set of vertices V such

that V = V1 ∪ . . . ∪ Vk (see e.g. Duff & Reid (1978)).

Remark 5 Following Tarjan (1972), a depth-first search algorithm may be used to compute

the strongly connected components efficiently. We have implemented a variant of Tarjan’s

algorithm using Matlab according to the exposition in Cormen, Leiserson, Rivest & Stein

(2009).
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Remark 6 Duff & Reid (1978) suggest to order the SCCs such that there is no path from

one strongly connected component to another later in the sequence, i.e. the SCCs C1, . . . , Ck

may be ordered such that there is no path from Ci to any Cj for j > i. The associated

reordered matrix of the graph is then lower block-triangular. Each block on the diagonal

corresponds to one of the SCCs. In the context of our economic applications, the structure

of the SCCs may give additional insights on the relevance of different variables.

In the next step, we condense the information of the graph G by moving from graph G

to a graph of the SCCs. The resulting graph is called a component graph, which is defined

next.

DEFINITION 3 (Component Graph) A component graph is defined as GSCC = (V SCC, ESCC),

where V SCC = {C1, . . . , Ck} is the set of strongly connected components of graph G. There is

an edge (Ci, Cj) ∈ ESCC ⇔ ∃x ∈ Ci : ∃y ∈ Cj : (x, y) ∈ E.

Remark 7 Definition 3 implies that there is only an edge (Ci, Cj) between two strongly

connected components if the original graph G has a directed edge from one member of the

SCC Ci to a member of the SCC Cj.

Remark 8 The component graph may be viewed as a condensed view of the original graph.

Essentially, the component graph collapses all edges of the original graph whose vertices are

contained in the same SCC.

Finally, for a given set of variables of interest, say yI ⊆ y, i.e. I ⊆ {1, . . . , K}, we would like

to identify a ‘minimal’ set of variables which have to be taken into account when modeling

yI. We denote this set of relevant variables as R(yI). For that purpose, we define the set

RGSCC (Ci) as the set of all variables contained in SCCs that are reachable from Ci in GSCC

(including Ci). Thereby, note that reachability in GSCC is defined analogous to G. That is,

RGSCC (Ci) can be interpreted as the set of variables on which Ci ‘depends’ and which have to

be taken into consideration when forecasting variables in Ci. We specify the ‘minimal’ VAR

system in the following definition.

DEFINITION 4 (Relevant Variables) Given a subset of interest yI ⊆ y, the minimal VAR

is a VAR composed of the series that are contained in the relevant SCCs given by:

R(yI) :=
⋃

{Ci : yI∩Ci 6=∅}

RGSCC (Ci).

Thereby, the set of variables that are reachable from SCC Ci (i = 1, . . . , k) is defined as:

RGSCC (Ci) :=
{
yj ∈ y : (j ∈ Ci) ∨

(
∃l ∈ {1, . . . , k} : j ∈ Cl : Ci

P
 Cl

)}
.

Remark 9 Definition 4 states that the minimal VAR is the one composed of the series in

the SCCs which contain elements of yI and all SCCs that may be reached from these SCCs.

We illustrate the graph theoretical concepts using a simple example, starting with a four-

dimensional VAR(1) with coefficient matrix as shown on the left side in Figure 1.7 The

7To avoid cluttering of the graph, we exclude self-loops from the graphical representation.
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
a11 0 a13 0

a21 0 0 a24

a31 0 a33 0

0 a42 a43 a44


1

3 2

4

C1 C2

Figure 1: VAR matrix, associated directed graph, and component graph

associated directed graph indicates that this system has two strongly connected components.

The set of vertices of the first SCC C1 consists of variables 1 and 3, i.e. V1 = {1, 3}, as vertex

1 may be reached from vertex 3 and vice versa. The set of vertices of the second SCC C2

consists of variables 2 and 4, i.e. V2 = {2, 4}. Note that the vertices within each strongly

connected component are mutually reachable (see Definition 2) and each variable (vertex) is

in exactly one SCC (see Remark 4).

We may also illustrate Remark 6 as it is easy to see that we may reorder the variables

such that a lower block-triangular matrix results. For this purpose, we order the SCC that

has no leaving edges first. In our example, SCC C1 containing the set of vertices V1 = {1, 3},
has no leaving edges and is hence ordered first. The new ordering of variables is then (1, 3,

2, 4), which results in the following reordered VAR matrix:

A∗ =


a11 a13 0 0

a31 a33 0 0

a21 0 0 a24

0 a43 a42 a44

 =

(
A11 0

A21 A22

)
,

where the coefficients within the matrix A∗ still have their original names. Obviously, this

matrix has the desired block-triangular form. After having grouped the variables according

to the strongly connected components, we may now draw a corresponding component graph

according to the partition of the matrix A∗. The resulting component graph is shown in

the right panel of Figure 1. This component graph indicates that component C1 may be

reached from component C2 but not vice versa. Consequently, if the variable(s) of interest

are included in component C1, then the minimal VAR only includes the variables contained

in C1 but not those contained in C2. In contrast, if the variable(s) of interest are contained in

C2, a corresponding VAR needs to include the variables from C2 and in addition, the variables

from C1 as C1 may be reached from C2. For instance, if the variable of interest is e.g. variable

3, then the VAR needed in forecasting or structural analysis needs to contain all variables

that are in the corresponding component C1. In our example, these are the variables 1 and

3. In contrast, if the variable of interest is variable 2, then we need to include all variables

in C2 and C1, i.e. all four variables, in the VAR model. Similarly, we may find the minimal

VAR from the component graph even if we have more than one variable of interest. In our
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example, if variables 1 and 3 are of interest, a VAR for just these two variables suffices as

both variables form a strongly connected component (C1) and no other strongly connected

component can be reached from C1. In contrast, if variables 2 and 4 are of interest, we need

a VAR with all variables from C1 and C2 as C1 may be reached from C2. In other words, we

need all four variables. Now assume that variables 1 and 2 are of interest. Then again, we

need to consider all variables from the strongly connected components that include variable

1 and variable 2, which in our example boils down to again using all variables since there are

only the two components C1 and C2.

3 Econometric Causality Concepts and Graphs

The graph theoretical concepts discussed in Section 2 have a close relation to multi-step

causality concepts in time series econometrics. In this section we explain how the two concepts

are related and show that the set of variables selected for a minimal VAR by the SCC method

as in Definition 4 of Section 2 coincides with the set of variables that are multi-step causal

for at least one of the variables of interest.

The simple notion of Granger causality (see Granger (1969)) is known to neglect any indi-

rect effects and influences of ‘auxiliary’ variables as it is based on 1-step ahead predictability.

Consequently, the original definition of Granger non-causality is not helpful in the context of

variable selection. A more general causality concept that takes into account all indirect ef-

fects of auxiliary variables is known as multi-step causality and has been formally introduced

into the literature by Dufour & Renault (1998).8 Informally, a subset yB of the variables

causes another subset yA at a specific horizon h if the best linear forecast for yA at horizon

h can be improved by including the variables in yB in the information set. Dufour & Re-

nault (1998) discuss necessary and sufficient conditions for non-causality at different forecast

horizons h. Dufour, Pelletier & Renault (2006) focus on developing corresponding multi-step

non-causality tests in the context of VAR models. For our purpose, it is convenient to note

that multi-step non-causality at different horizons may be formulated as linear exclusion re-

strictions on the so-called direct VAR model. For h ≥ 1, we write this direct VAR model

as:

yt+h = Π
(h)
1 yt + · · ·+ Π(h)

p yt−p+1 + u
(h)
t+h, (3.1)

where this representation is obtained by successive substitution from the VAR in (2.1). Du-

four & Renault (1998) show that Π
(0)
1 = IK , Π

(1)
s = As, Π

(h+1)
s = As+h +

∑h
l=1Ah−l+1Π

(l)
s =

Π
(h)
s+1 + Π

(h)
1 As and the MA(h− 1) innovation term u

(h)
t+h =

∑h−1
j=0 Π

(h)
1 ut−j.

Given sets of indices A and B, let Π
(h)
AB,s denote the submatrix of Π

(h)
s consisting of the

intersection of rows with indices in A and columns with indices in B. If A and B are

singletons, say A = {k}, B = {l}, we simply write Π
(h)
kl,s. We reproduce Theorem 3.1 of

Dufour & Renault (1998) tailored to the regular, finite VAR case.

8The effect of intermediate variables have also been pointed out earlier by e.g. Sims (1980), Penm &

Terrell (1986) and Lütkepohl (1993) but Dufour & Renault (1998) were the first who formalized the concept

of multi-step causality in a general framework.
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THEOREM 1 (Dufour-Renault (1998)) Given yA, yB ⊆ y and y is generated by a regular,

finite-order VAR(p) as in (2.1), it is:

yB 9h yA ⇔ ∀s = 1, . . . , p : Π
(h)
AB,s = 0,

where 0 indicates a zero matrix of appropriate dimension. That is, yB does not cause yA at

horizon h if and only if all the relevant coefficients in the direct VAR model for horizon h

are zero.

By definition, yB causes yA at lag h if at least one of the parameter matrices in the above

theorem is not zero. For some indices I, we denote by C(yI) the set consisting of the variables

in yI itself and all variables that cause yI at any horizon in the above sense. When I is a

singleton, say I = {i}, we write C(yi) instead. Formally, we define the causal variables in the

following definition.

DEFINITION 5 (Causal variables) Given yI ⊆ y, the set of variables that cause yI is given

by:

C
(
yI
)

:=
{
yj ∈ y :

(
yj ∈ yI

)
∨
(
∃h ∈ N : yj →h yI

)}
.

First, we investigate the case of a VAR with p = 1. For this case, we show that the

coefficients of the direct VAR representation Π
(h)
1 are related to the set of paths in the directed

graph representing the VAR model. To show this, note that the direct VAR representation

for p = 1 is:

yt+h = Π
(h)
1 yt + u

(h)
t+h, with Π

(h)
1 = Ah

1 for all h ∈ N. (3.2)

By induction, each element Π
(h)
ij,1 in Π

(h)
1 can be linked to the set of all paths that lead from

the associated vertices i to j in h steps. We state this result formally in Theorem 2.

THEOREM 2 Given two variables yi, yj ∈ y following a regular VAR(1) as in (2.1), the

entry at position (i, j), Π
(h)
ij , corresponds to the set of paths:

P(h)
ij = {P : P = (e1, . . . , eh) : ∀k = 1, . . . , h : ek = (vk−1, vk) ∈ E, v0 = i, vh = j} ,

(3.3)

leading from vertex i to vertex j for all h ∈ N in that:

Π
(h)
ij =

∑
P∈P(h)

ij

∏
(l,m)∈P

alm. (3.4)

Proof. See Appendix A.1.1.

P(h)
ij is the set of all paths of length h leading from vertex i to vertex j. Theorem 2

essentially states, that the coefficients of the direct VAR Π
(h)
ij can be written in terms of

sums of products of autoregressive coefficients in A1, where the indices correspond to edges

on different paths from i to j. To illustrate this, consider again our simple VAR(1) from

9



Figure 1. In this example, there are two paths of length h = 2 from variable 2 to variable 3,

thus the set of paths is:

P(2)
23 = {〈(2, 1), (1, 3)〉, 〈(2, 4), (4, 3)〉}.

Using the result from Theorem 2, we find for h = 2, i = 2 and j = 3:

Π
(2)
23,1 = a21a13 + a24a43.

Note that the indices of the VAR coefficients match with the edges of the path set P(2)
23 .

Obviously, the same Π
(2)
23,1 would be obtained from the direct VAR coefficient definition.

At first sight, the result of Theorem 2 seems to imply that variable j would be multi-step

causal for variable i, whenever there exists at least one path from i to j. However, P(h)
ij 6= ∅

does not imply that variable yj causes yi as the following example illustrates. Consider a

VAR(1) with the associated directed graph:

A =


1 0 0 0

0.5 1 0 0

0 0.5 1 0.5

−0.5 0 0 1


1

2

3

4

In this example, we have P(1)
31 = ∅ and P(2)

31 = {〈(3, 2), (2, 1)〉, 〈(3, 4), (4, 1)〉} but variable

y3 is not caused by y1 at neither horizon one nor horizon two since:

Π
(2)
31 = a32a21 + a34a41 = 1/4− 1/4 = 0.

Furthermore, one can easily verify Π
(h)
31 = 0 and P(h)

31 6= ∅ for all h ≥ 2. This ‘canceling-out’

effect of course happens very rarely with any real data set and most reasonable estimation

methods. Therefore, one might exclude it by assumption.

ASSUMPTION 1 Given a VAR(1) system with Π
(h1)
ij = 0 for all h1 > 1, then it is:

∀h2 ∈ N : ∀k ∈ {1, . . . , K} : aikΠ
(h2)
kj = 0.

We basically assume that if variable j is multi-step non-causal for variable i, then this is

because there is no path form i to j and not because there is a path from i to j with VAR

coefficients such that there is ‘canceling-out’. Assumption 1 thus ensures the correspondence

between paths and causality as in Lemma 1.

LEMMA 1 Given a VAR(1) system and Assumption 1, for all h ≥ 1:

P(h)
ij 6= ∅ ⇔ Π

(h)
ij 6= 0. (3.5)

Proof. See Appendix A.1.2.
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This result states that variable j is multi-step causal for variable i if and only if there is

at least one path from variable i to variable j. Under Assumption 1, the strongly connected

components can be now be interpreted very easily.

LEMMA 2 Given a VAR(1) system and Assumption 1, the strongly connected components

are sets of variables that are mutual causal.

Proof. See Appendix A.1.3.

This follows immediately from the definition of a SCC as for each pair i and j, there is

a path from i to j and from j to i. The last step is to analyze multi-step causality across

SCCs. Consider a strongly connected component Ci and, as in Section 2, denote the set of

all SCCs that are reachable from Ci by RGSCC (Ci). Then, all variables in RGSCC (Ci) are

multi-step causal for variables in Ci as there is a path from any variable in Ci to the variables

in RGSCC (Ci).

Finally, based on the foregoing discussion and for a given set of variables of interest yI, we

note that the variables, which are multi-step causal for yI are all the variables in the SCCs

that contain elements of yI and all variables in all SCCs that may be reached from these

SCCs. Note that under Assumption 1, this coincides with Definition 4 of the minimal set of

relevant variables R(yI) from Section 2. Moreover, remember Definition 5 of causal variables

C(yI). In case of ‘canceling-out’, the set of relevant variables R(yI) will be larger than the

set of causal variables C(yI). We summarize this result more formally in Theorem 3.

THEOREM 3 Given a VAR(1) system, C(yI) ⊆ R(yI), that is, all variables that cause yI

are contained in the set of relevant variables. If Assumption 1 is true, then the set of relevant

variables is identical to the set of causal variables, C(yI) = R(yI).

Proof. See Appendix A.1.4.

This establishes the relation between the set of relevant variables found from the graph of

strongly connected components and the variables that are multi-step causal for the variables

of interest.

To transfer this result to a general VAR(p) model, let Assumption 1 hold for the companion

matrix of the corresponding VAR(1) representation. Then, we show that it is equivalent to

define the set of causal variables C(yI) based on either the VAR(p) representation or the

VAR(1) companion form in Theorem 4.

THEOREM 4 Given a finite-order VAR(p) model (2.1), Assumption 1 for the companion

matrix (2.3) of the corresponding VAR(1) representation (2.2) and yI ⊆ y:

∃h1 ∈ N : yj →h1 y
I ⇔ ∃h2 ∈ N : Π

(h2)
Ij,1 6= 0. (3.6)

Proof. See Appendix A.1.5.

Consequently, the set of causal variables is independent of the fact whether we use the

VAR(p) or the corresponding VAR(1) companion form to define it given that Assumption 1

holds for the companion matrix. This is because for i, j ≤ K, causality in the companion

11



form representation only depends on the upper left (K ×K) block of all Ah which is Π
(h)
1 .

Furthermore, the set of relevant variables R
(
yI
)

as constructed in Definition 4 is based on

the concept of reachability in G. This directed VAR graph G defined in Definition 1 relies

on a general finite-order VAR(p) model written in VAR(1) companion form. Hence, the set

of relevant variables is defined in the same way for p = 1 and p > 1, i.e. one first constructs

the companion matrix A which determines graph G and finally R
(
yI
)
. Therefore, Theorem

3 also holds for a general finite-order VAR(p) model.

Remark 10 Given that Assumption 1 holds for the companion matrix of the VAR(1) rep-

resentation of a general finite-order VAR(p) model, all results transfer to VAR(p) processes.

We also note again that Assumption 1 is not restrictive at all as the ‘canceling-out’ effect

will essentially never occur in practice.

Remark 11 One can show that reachability in our sense based on Definition 1 is equivalent

to this imposed by the graph definition of Eichler (2007) (see Remark 2). This is shown

formally in Appendix A.2. Thus, it does not matter whether one defines the set of relevant

variables R
(
yI
)

based on our directed VAR graph or based on the graph defined by Eichler

(2007).

4 Empirical Applications

To illustrate the usefulness of the graph theoretical approach for selecting the relevant infor-

mation set, we apply the method on a large set of US economic time series. We focus on the

selection of variables, on impulse response analysis and forecasting properties of the selected

models.

We start from a set of 41 quarterly economic time series that includes a large variety of

macroeconomic and financial series. The collection of variables is similar to related studies as

e.g. Jarociński & Maćkowiak (2017) and Kascha & Trenkler (2015) and includes real GDP and

its components, business cycle indicators, various price measures and interest rates, monetary

aggregates and a number of labor market variables. In addition, the data includes exchange

rate data together with three key variables for the Euro area (Euro area GDP, Euro area CPI

and a Euro area interest rate). The US data is taken from the FRED data base, while the

European series are obtained from the Area Wide Model (AWM) data base maintained at

the European Central Bank (ECB). A detailed list with variables and data sources is shown

in Table A.1.

For some variables, we only have data starting in the mid 1970s. Consequently, our baseline

sample starts in 1975. The end of the baseline sample is the last quarter of 2014.

To apply the approach discussed in Section 2, we first transform the data to stationarity.

This involves taking logarithms and/or differences depending on the property of the respective

variable.9 We describe the details of data preparation in Appendix A.3 and document the

transformations by reporting the transformation codes listed in Table A.1.

9Transforming the variables to stationarity cancels possible common trends and cointegration relations

between the variables. Extending the graphical methods to models with common trends such as cointegrated

VARs and vector error correction models is left for future research.
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In what follows, we apply the graph theoretical methods to a sparse VAR, i.e. a VAR with

a number of zero coefficients in the autoregressive matrices. In our application, these sparse

VARs are selected by applying the least absolute selection and shrinkage operator (LASSO)

in the context of the VAR model. There is ample evidence in the literature that LASSO is a

useful device and often leads to forecasts that are more precise than standard (unrestricted or

subset) VARs (see e.g. Kascha & Trenkler (2015) and references therein). While in principle

other methods for subset selection may be employed, we only use LASSO and point out that

the subset selection is not the main focus of our paper. Instead, we start from a given subset

structure and explore how this structure can be used to detect the smallest possible VAR

system.

4.1 Variable Selection

To illustrate the variable selection, we need to define a set of ‘variables of interest’ yI. In the

first example, we choose real US GDP, the US consumer prices (CPI), and the federal funds

rate as variables of interest. This includes three key economic variables often analyzed with

VARs and also corresponds to the variables chosen by Jarociński & Maćkowiak (2017). Then,

we estimate a LASSO-VAR with p = 1 lag in all 41 variables from Table A.1. The shrinkage

parameter in the LASSO approach is chosen by the Bayesian information criterion (BIC).10

We use a balanced data panel by removing all missing observations (after transforming the

variables) at the beginning and the end of the sample. In this case, the first available

observation corresponds to 1979Q3, the last to T = 2014Q4.

To investigate which variables are selected into a VAR and how the selection changes over

time, we have used the following expanding window setup. The initial estimation period

ends in T1 and we report the variables selected based on the VAR structure estimated on this

sample. We then add recursively observations to the sample and re-estimate the LASSO-

VAR with T1 + 1, T1 + 2, . . . , T − h∗ − 1, T − h∗ observations, where h∗ = 4 is the maximal

forecasting horizon used in the forecasting exercise below. In our baseline specification, we

choose T1 = 1998Q4 and thus report recursive selection results for samples ending between

1998Q4 and 2013Q4. Consequently, we report selection results for 61 periods and we show

them in graphical form in Figure 2. The rows in the checkerboard graph correspond to the

different economic variables, whereas the columns refer to different estimation samples. The

filled green squares correspond to the variables of interest (here: GDP, CPI and the Federal

Funds Rate), a filled blue square in a specific row indicates that the variable in that row is

selected into the minimal VAR in the period corresponding to the column. Accordingly, a

white square indicates that the variable has not been selected into the minimal VAR in a

particular period.

A number of interesting results emerge: First, there are ten variables that are always

selected into the minimal VAR in each of the periods considered. This includes the change

of real inventories, employment, the corporate bond spread, the 1-year T-Bill rate, a three-

month money market interest rate, the mortgage interest rate, the CPI less food and energy

price index, residential investment, an industrial confidence index, and the purchasing man-

10As for the implementation of the VAR-LASSO we follow the paper by Kascha & Trenkler (2015) and

refer to their paper for details.
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Figure 2: Variable selection results: Variable of interest yI: US Real GDP, CPI and FFR

(green). Relevant variables as selected by graphical method (blue) and variables not selected

(white). Sample period: 1975Q3-2014Q4.

.

ager’s index. A tentative interpretation of this result may be that these variables form the

minimal set of additional variables that should be considered if a VAR in output, inflation

and interest rate is of interest. We also note that some of these variables have typically not

been included in related empirical studies on the effects of monetary policy shocks.

We compare our set of selected variables with those from Jarociński & Maćkowiak (2017).

As discussed earlier Jarociński & Maćkowiak (2017) use a Bayesian model and compute the

posterior probability that the variables of interest are Granger causal prior to variables in

the larger data set. If this probability is low for a particular variable, then this variable

is likely to enter the model of the variables of interest. We note that the comparison is

somewhat limited by the fact, that we use slightly different data, a different sample period

and different variable transformations.11 Nevertheless, we find some similarity of the sets of

relevant variables identified from the suggested graphical approach and the set of important

variables identified from the Bayesian approach in Jarociński & Maćkowiak (2017). We note

that (except for residential investment) the variables that have been always selected by our

graphical methods show a very low posterior probability (< 0.1) of being Granger causally

11Within their Bayesian approach Jarociński & Maćkowiak (2017) use (log) levels for most variables, while

we use stationary transformations.
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prior to the variables in yI and consequently are also marked as relevant in the Bayesian

analysis of Jarociński & Maćkowiak (2017) (see their Table 1). From the results in Table

1 of Jarociński & Maćkowiak (2017), one would select 22 variables, which are relevant for

yI if one selects all variables with a posterior probability less than 0.1. Interestingly, most

of these variables are also often (but not always) selected by our methods. With exception

of real investment, real exports and M1, our selection rates for the other variables and

over the recursive sample range between 68% and 87%. It is also noteworthy that these

variables are always selected by our method if the sample includes the post 08/09 crisis

period and ends in 2013Q4, which matches the sample end used in Jarociński & Maćkowiak

(2017). In addition, we note that real government consumption, stock market volatility,

and the US/Euro exchange rate are never selected in our approach, which is also in line

high posterior probabilities (ranging from 0.36 to 1) in Jarociński & Maćkowiak (2017).

There are only three variables that show a somewhat different pattern in both studies: Real

investments, real exports and M1 are almost never selected in our approach, while they are

important in the analysis of Jarociński & Maćkowiak (2017). A possible explanation is that

in our setup these variables have little additional information not already included in other

selected variables (as e.g. the change in real inventories and residential investment, interest

rates and real imports). Overall, our selection results seem to match those from Jarociński

& Maćkowiak (2017) reasonably well.

In a number of periods additional variables are selected into the minimal VAR. The number

of selected variables is quite large (on average 24.4 out of the 41 are selected).12 This provides

evidence that the dynamic relationship between economic variables is more complex than

small scale VARs tend to suggest. While there are some changes as we increase the estimation

sample, the overall selection of variables is relatively stable for the period before the 2008/2009

economic crisis. Interestingly, when the estimation sample extends beyond the crisis period,

we observe that our method tends to select more variables, possibly suggesting that the

linkages between variables have become more pronounced.

4.2 Impulse Response Analysis

We illustrate the effect of including the selected variables into a small VAR system on es-

timated impulse responses. As in Section 4.1, the small VAR consists of the variables of

interest with real GDP, the CPI and the federal funds rates (FFR). These type of systems

have also been used by Jarociński & Maćkowiak (2017) and Banbura et al. (2010). Following

standard specifications from the literature (see e.g. Christiano, Eichenbaum & Evans (1999)),

we have used VAR(4) models in the (log) levels of the variables for the comparison of impulse

responses. For the VAR with selected variables, we have added the 10 variables (again in (log)

levels) that have been selected for all considered sample periods in Section 4.1. We use the

standard ordering of variables and thus include the change of real inventories, employment,

the CPI less food and energy price index, residential investment, an industrial confidence

index, and the purchasing manager’s index in the group of ‘slow moving’ variable, i.e. they

12Note that this is again in line with results in Jarociński & Maćkowiak (2017) who find that the number

relevant variables ranges between 22-36 variables (see their Table G.2).
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Figure 3: Impulse responses in small VAR and selected variable VAR. Left: Responses to a

shock in FFR in 3-variable (small) VAR(4) including GDP, FFR, and CPI. Right: Responses

to a shock in FFR in 13-variable VAR(4) with 10 selected additional variables. Sample

period: 1975Q3-2007Q4.

are ordered above the federal funds rate variable. In contrast, the corporate bond spread, the

1-year T-Bill rate, a three-month money market interest rate, and the mortgage interest rate

are in the group of ‘fast moving’ variables and are consequently ordered below the federal

funds rate. Using a Cholesky decomposition, this ordering implies that a shock in the federal

funds rate (typically labeled a monetary policy shock) may have immediate impact on the

‘fast moving’ variables, while the ‘slow moving’ variables may only react with a lag of one

quarter. All VAR models are estimated by unrestricted multivariate LS (i.e. no shrinkage

is applied) and the reported (pointwise) confidence intervals are asymptotic 95% intervals

obtained using the ‘delta method’ (see e.g. Lütkepohl (2005, Section 3.7)). In Figure 3, we

report results for a sample that ends in 2007 to exclude the effects of the 2008/09 financial

crisis. The left panel of the figure shows the responses of GDP, CPI and the federal funds rate

to a contractionary shock in the federal funds rate within the small VAR containing three

variables. In line with results from the literature, we find the typical pattern in these type of

systems with a significant and persistent drop in output. We also find a significant increase
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in CPI, which is known as the ‘price-puzzle’ because economic theory suggests a decrease

rather than an increase in the price level after tightening monetary policy. In other words,

the response of the price level in the small VAR is counterintuitive. Adding the ten selected

variables changes the response patterns substantially. First, the drop in output is now much

less persistent. In fact, two years after the shock the response of output is no longer signifi-

cantly different from zero. Moreover, the price puzzle disappears. While the point estimate

of the response shows the expected sign, this effect is not significantly different from zero in

the considered sample period. Thus, including the variables selected by our method leads

to much more reasonable impulse response patterns and changes the interpretation of the

results substantially. Using the right information set is of obvious importance for structural

analysis.

We report additional results for different sample periods in Figures A.1 andA.2 in Appendix

A.4. We just note here that similar results have been obtained for the other sample periods.

Using a sample that starts in 1972 (earliest possible starting date given our selected variables),

the response of the CPI is even significantly negative (see Figure A.1). In the longer sample

that extends to the end of 2014, we find that the output response in the selected variable

VAR is less strong and only borderline significant while again the positive significant response

of CPI disappears by adding our ten variables (see Figure A.2). It is interesting to note that

the changes in the response pattern obtained by just adding ten variables are to some extent

similar to the changes obtained by Banbura et al. (2010) in their medium (20 variables) and

large (131 variables) system for monthly data. Also, the working paper version of Jarociński

& Maćkowiak (2017), see Jarociński & Maćkowiak (2013), finds that adding selected variables

changes the response pattern of output, price level, and short-term interest rate in a similar

way as in our paper (however using data for the Euro area). In other words, it seems that

our methodology provides a perspective that complements the ‘large VAR’ idea of Banbura

et al. (2010) and the Bayesian approach of Jarociński & Maćkowiak (2017).

4.3 Forecasting Performance

We also investigate the usefulness of our method in forecasting. First, we use the same data

and variables of interest yI as in Sections 4.1 and 4.2 to report forecasting results for the GDP

growth, CPI inflation and the federal funds rate. We compare forecasts of four different VAR

models. Our benchmark model is an unrestricted VAR in the three variables of interest (GDP,

CPI, federal funds rate). We compare this against predictions obtained from (i) a LASSO-

VAR applied to all 41 variables (LVAR), (ii) a LASSO-VAR applied only to the variables

of interest and the variables selected in a first step by our method (selLVAR), and (iii) a

LASSO-VAR applied to the variables of interest and the variables not selected (irrelevant

variables) by our method on the first step (irrLVAR). The selected variable VARs correspond

to the VARs discussed in Section 4.1. All VAR models are specified for the transformed

variables (according to Table A.1). We compare forecast accuracy in terms of mean squared

forecast errors (MSFEs) for (iterative) forecasts at horizons h = 1, 2, 4. We use the same

expanding window setup as in Section 4.1 and report results for different forecast evaluation

periods. We discuss results for a baseline evaluation period from 1999Q1-2014Q1. Moreover,
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Table 1: MSFEs Relative to VAR in Real GDP, CPI and the Federal Funds Rate
1999Q1-2014Q4 1999Q1-2007Q4

h = 1 h = 2 h = 4 h = 1 h = 2 h = 4

US Real GDP LVAR 0.87 0.96 0.98 0.83 1.02 0.99

selLVAR 0.81 0.84 0.92 0.85 1.01 1.01

irrLVAR 0.95 1.04 1.01 0.89 1.03 1.00

US CPI LVAR 1.07 0.90 1.00 1.35 0.97 1.01

selLVAR 0.95 0.94 1.00 1.07 0.99 1.01

irrLVAR 1.11 0.92 1.00 1.24 0.98 1.01

Federal Funds Rate LVAR 0.36 0.55 0.95 0.36 0.57 1.00

selLVAR 0.43 0.64 0.95 0.35 0.65 0.98

irrLVAR 0.47 0.56 0.96 0.47 0.58 1.00

Note: The table shows relative mean squared forecast errors (MSFEs) for different variables,

forecasting horizons, and evaluation periods. All results are relative to the forecasting results

of an unrestricted VAR in the three variables of interest (real GDP, CPI and the federal funds

rate). LVAR denotes results based on a LASSO-VAR applied on all 41 variables, selLVAR

denotes results from a LASSO-VAR applied to the minimal VAR with selected variables,

irrLVAR denotes results from a LASSO-VAR applied to a VAR including the variables of

interest and all variables not selected by the graphical method.

we also report results for a shorter evaluation period that ends in 2007Q4 to exclude the

2008/2009 financial crisis period.

From results reported in Table 1, we find gains from variable selection in the forecasting

accuracy of GDP growth in the evaluation period ending in 2014. There are also gains for

CPI forecasts for short-term predictions (h = 1). For other horizons and for the federal funds

rate, selecting the variables is not necessarily beneficial in terms of forecasting precision. This

might reflect that we model the change in the CPI inflation rate and the change in the federal

funds rate, two variables that are quite noisy, not very persistent and inherently difficult to

forecast. In this case, applying a LASSO-VAR on all 41 variables is useful because almost no

variables remain in the model after shrinkage. Thus, in this situation, the LASSO is quite

successful in ‘kicking’ out variables from the model and consequently, the potential gains

from additional (pre-)selection is limited. We also note that the gains from the selection are

more pronounced in the period including the financial crisis and in this example disappear

almost completely in the shorter evaluation period ending in 2007Q4. Thus, a tentative

conclusion is that the variable selection is particularly useful in periods that also include

changing economic conditions like the 2008/2009 financial crisis.

To provide some additional evidence on the forecasting performance, we also report results

from a forecasting exercise that focuses on two key indicators of real economic activity, US

real GDP and the unemployment rate. We start from the same 41 time series as before

but yI now contains the output growth and the unemployment rate. We apply the variable

selection based on the strongly connected components as explained in Section 2 and Figure

A.3 in Appendix A.4 reports the variables that have been selected in different periods. The

models and setup of the forecasting exercise is very similar to the previous exercise. Table

2 shows MSFEs of the different VARs relative to an unrestricted (small VAR) with just two
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Table 2: MSFEs Relative to VAR in Real GDP and the Unemployment Rate

1999Q1-2014Q4 1999Q1-2007Q4

h = 1 h = 2 h = 4 h = 1 h = 2 h = 4

US Real GDP LVAR 0.82 0.99 0.99 0.70 1.01 1.00

selLVAR 0.79 0.91 0.92 0.72 1.00 1.00

irrLVAR 0.95 1.07 1.01 0.82 1.04 1.01

Unemployment Rate LVAR 1.13 1.06 0.99 0.98 0.99 0.98

selLVAR 0.98 0.98 0.92 1.01 0.98 0.92

irrLVAR 1.17 1.13 1.01 1.07 1.05 1.01

Note: The table shows relative mean squared forecast errors (MSFEs) for different variables,

forecasting horizons, and evaluation periods. All results are relative to the forecasting results

of an unrestricted VAR in the two variables of interest (real GDP and the unemployment

rate). LVAR denotes results based on a LASSO-VAR applied on all 41 variables, selLVAR

denotes results from a LASSO-VAR applied to the minimal VAR with selected variables,

irrLVAR denotes results from a LASSO-VAR applied to a VAR including the variables of

interest and all variables not selected by the graphical method.

variables.

We again find gains in forecasting accuracy when using the graph-theoretic approach to

select the variables of the VAR. In our baseline sample, for both variables considered, the

MSFE of the selected variable VAR is smallest for all forecasting horizons considered. The

corresponding MSFEs from a VAR with all 41 variables (estimated by LASSO) is larger.

In other words, selecting the variables first and then applying LASSO leads to more precise

forecasts than solely relying on LASSO. To further investigate the usefulness of the variable

selection, we also report results for a VAR that includes the two variables of interest, together

with the set of non-selected variables. As expected, including the ‘irrelevant variables’ de-

teriorates the predictive accuracy. MSFEs from this model are higher than both, the LVAR

and the selected variable VAR. In addition, the irrLVAR results are also often worse than

those from a standard VAR (indicated by relative MSFEs larger 1). Again, this highlights

the role for variable selection since applying only LASSO does not succeed to ‘kick out’ all

noise due to irrelevant variables. In the shorter evaluation period, the gains from selecting

the variables disappear and predictions from the LVAR are as good as prediction of the sel-

LVAR. Inspection of the recursive forecasts (not shown to conserve space) reveals that the

selected variable VAR is especially useful in predicting the sharp drop in output during the

08/09 crises.

Overall, the results indicate that the set of selected variables is typically helpful in getting

more precise forecasts of key economic variables. Consequently, the results support our

hypothesis that the graph-theoretic approach is a useful tool for the selection of variables in

VAR analysis.

5 Conclusion

This paper uses concepts from graph theory for variable selection in VAR models. To this end,

we identify strongly connected components from the directed graph representing the dynamic

relationships among the variables in a sparse VAR. We suggest to use relations among the
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strongly connected components in a so-called component graph to identify a minimal set of

variables that we need to include in a VAR analysis for a small set of variables if forecasts

or impulse response analysis are of interest. The paper adds to the existing literature by

introducing a graphical method, which to the best of our knowledge has not been used for

variable selection in econometrics.

We also show that there is a simple relation between the graph theoretical concept and

multi-step causality and relate the paths in the graph to coefficients of a direct VAR system.

It follows from the results in the paper that the set of relevant variables selected from the

graphical approach coincides with the set of variables that are multi-step causal for the

variables of interest.

We illustrate the usefulness of the variable selection method in forecasting and structural

analysis in empirical applications on US macroeconomic data. We use a small monetary

system (US real GDP, CPI inflation and the federal funds rate) as the variables of interest.

Given this set, we apply the graphical approach to select additional variables out of a large

set of US macroeconomic variables. The selected VAR typically includes some variables from

the real sector (changes of inventories, employment, residential investment), forward looking

indicators (industrial confidence and the purchasing manager’s index), different interest rates

(corporate bond spread, money market rates, 1 year T-Bill rate) and a CPI related measure

(CPI less food and energy). The selection of variables seems sensible from an economic

point of view. Interestingly, we find that this list includes some variables that up to now,

researchers typically have not included in small monetary systems. We also find that the

variable selection suggested by our method is comparable to what related papers have found

on similar data but with completely different (Bayesian) methods. Moreover, we find that

including the selected variables for impulse response analysis is useful: In the small monetary

system in output, inflation and interest rate, we find that including the selected variables

avoids the so-called ‘prize puzzle’. In addition, short-term forecasts for real GDP and in-

flation improve by including the selected variables. In a second application, we take real

output and unemployment as the variables of interest and find from pseudo-out-of-sample

forecasting experiments that including the selected variables improves forecasting accuracy

of both variables.

Overall our empirical results suggest that using graphical modeling for variable selection is

an useful addition to the VAR econometricians’ toolbox. The method complements existing

methods for large data sets and is particularly useful if a researcher prefers to work with

smaller scale models, e.g. for maintaining consistency with small scale theoretical models.

Moreover, compared to alternative methods for large data sets, a graphical representation

of the strongly connected components may give useful insights on the (causal) relationships

among the VAR variables.

Extensions of the current paper could use graphical models for variable selection taking

also the contemporaneous relationships among variables into account. Moreover, extending

the approach to models with integrated and cointegrated variables would be of interest. We

leave this for future research.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 2

Proof. We prove Theorem 2 by mathematical induction.

Base Case Let h = 1. Then, it is Π
(h)
ij = Π

(1)
ij = aij.

If P(1)
ij is empty, (i, j) 6∈ E what imposes aij = 0 because of Definition 1. Then, equality

(3.4) holds trivially.

If P(1)
ij 6= ∅, it follows that P(1)

ij = {(i, j)}. Consequently,
∑

P∈P(1)
ij

∏
(l,m)∈P

alm = aij = Π
(1)
ij ,

which proves (3.4) for h = 1.

Induction Step Let (3.4) hold for h− 1, i.e.

∀i, j ∈ {1, . . . , K} : Π
(h−1)
ij =

∑
P∈P(h−1)

ij

∏
(l,m)∈P

alm. (A.1)

Moreover, define:

Ei := {k ∈ {1, . . . , K} : (i, k) ∈ E} ⇒ P(h)
ij =

⋃
k∈Ei

⋃
P∈P(h−1)

kj

[{(i, k)} ∪ P ] . (A.2)

This just means that any path from vertex i to vertex j of length h can be decomposed

into a tuple (i, k) and a path from vertex k to vertex j of length h − 1 for all k ∈
{1, . . . , K} with aik 6= 0 and P(h−1)

kj 6= ∅. Using this, we get:

Π
(h)
ij =

K∑
k=1

aikΠ
(h−1)
kj

(A.1)
=

K∑
k=1

aik
∑

P∈P(h−1)
kj

∏
(l,m)∈P

alm

=
∑
k∈Ei

∑
P∈P(h−1)

kj

aik
∏

(l,m)∈P
alm

=
∑
k∈Ei

∑
P∈P(h−1)

kj

∏
(l,m)∈[{(i,k}∪P ]

alm

(A.2)
=

∑
P∈P(h)

ij

∏
(l,m)∈P

alm.

A.1.2 Proof of Lemma 1

Proof. We prove both directions of the if-and-only-if statement (3.5):

”⇒” Let P(h)
ij 6= ∅. We prove Π

(h)
ij 6= 0 by mathematical induction.

Base Case Let h = 1. Then, it is P(1)
ij = {(i, j)}, i.e. aij 6= 0 due to Definition 1.

Consequently, it is Π
(1)
ij = aij 6= 0.
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Induction Step Let one direction of (3.5) hold for h− 1, i.e.

∀i, j ∈ {1, . . . K} with P(h−1)
ij 6= 0, it is Π

(h−1)
ij 6= 0. (A.3)

Now, let P(h)
ij 6= ∅:

⇒ ∃k ∈ {1, . . . , K} : aik 6= 0 ∧ P(h−1)
kj 6= ∅

(A.3)⇒ Π
(h−1)
kj 6= 0⇒ aikΠ

(h−1)
kj 6= 0

⇒ Π
(h)
ij =

K∑
l=1

ailΠ
(h−1)
lk 6= 0

because of Assumption 1 and aikΠ
(h−1)
kj 6= 0.

”⇐” Let Π
(h)
ij 6= 0. Assume P(h)

ij = ∅. Consequently, by Theorem 2 it is

Π
(h)
ij =

∑
P∈P(h)

ij

∏
(l,m)∈P

alm = 0 because it is an empty sum. This is a contradiction. Thus,

P(h)
ij 6= ∅ has to hold.

A.1.3 Proof of Lemma 2

Proof. Without loss of generality, let i, j ∈ Ck. By Definition 2, yi and yj are mutually

reachable. Therefore, it is:

∃hi ∈ N : P(hi)
ij 6= ∅

Lemma 1⇐⇒ Π
(hi)
ij 6= 0

Theorem 1⇐⇒ yj →hi
yi ⇒ yj ∈ C (yi) ,

∃hj ∈ N : P(hj)
ji 6= ∅

Lemma 1⇐⇒ Π
(hj)
ji 6= 0

Theorem 1⇐⇒ yi →hj
yj ⇒ yi ∈ C (yj) .

Consequently, yi and yj are mutually causal.

A.1.4 Proof of Theorem 3

Proof. First, we prove the general subset relation C
(
yI
)
⊆ R

(
yI
)
.

”⊆” Let yj ∈ C
(
yI
)

and w.l.o.g. j ∈ Cj∗ . Due to Definition 5, either

(a) yj ∈ yI, or

(b) ∃h ∈ N : yj →h yI has to hold.

In case (a), yj ∈ Cj∗ ∩ yI and therefore Cj∗ ∩ yI 6= ∅. By Definition 4, yj ∈ RGSCC (Cj∗)

has to hold what directly imposes yj ∈ R
(
yI
)
.

In case (b):

∃h ∈ N : yj →h yI
Theorem 1⇐⇒ Π

(h)
Ij 6= 0⇔ ∃i ∈ I : Π

(h)
ij 6= 0

Theorem 2⇒ P(h)
ij 6= ∅.

Let i ∈ Ci∗ . Obviously, j is reachable from i in G. Hence, Cj∗ is also reachable from

Ci∗ in GSCC . Consequently, it is yj ∈ RGSCC (Ci∗). Because of i ∈ Ci∗ and i ∈ I, it

is yi ∈ yI ∩ Ci∗ and therefore yI ∩ Ci∗ 6= ∅. Thus, RGSCC (Ci∗) ⊆ R
(
yI
)

and therefore

yj ∈ R
(
yI
)
.
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”⊇” Let Assumption 1 hold, yj ∈ R
(
yI
)

and w.l.o.g. j ∈ Cj∗ . Due to Definition 4, then:

∃i∗ ∈ {1, . . . , k} : Ci∗ ∩ yI 6= ∅ : yj ∈ RGSCC (Ci∗) .

Again by Definition 4, this means that either

(i) j ∈ Ci∗ , or

(ii) Ci∗
P
 Cj∗ has to hold.

In case (i):

Ci∗ ∩ yI 6= ∅ ⇒ ∃i ∈ I : i ∈ Ci∗ ⇒ i, j ∈ Ci∗
Lemma 2

=⇒ yj →h yi ⇒ yj ∈ C
(
yI
)
.

In case (ii):

∃i1 ∈ Ci∗ : ∃j1 ∈ Cj∗ : ∃h ∈ N : P(h)
i1j1
6= ∅. (A.4)

As Assumption 1 holds, we can apply Lemma 2 to get:

∀i1 ∈ Ci∗ : ∃h1 ∈ N : yi1 →h1 yi
Theorem 1⇐⇒ Π

(h1)
i,i1
6= 0

Lemma 1⇐⇒ P(h1)
i,i1
6= ∅,

∀j1 ∈ Cj∗ : ∃h2 ∈ N : yj →h2 yj1
Theorem 1⇐⇒ Π

(h2)
j1,j
6= 0

Lemma 1⇐⇒ P(h2)
j1,j
6= ∅.

As we have paths from vertex i to i1, vertex i1 to j1 and vertex j1 to j, there is also a

path from vertex i to j as we can simply connect them, i.e.

P(h+h1+h2)
ij 6= ∅ Lemma 1⇐⇒ Π

(h+h1+h2)
ij 6= 0⇒ Π

(h+h1+h2)
Ij 6= 0

Theorem 1⇐⇒ yj →(h+h1+h2) y
I ⇒ yj ∈ C

(
yI
)
.

A.1.5 Proof of Theorem 4

Proof. We prove both directions of the if-and-only-if statement (3.6) whereas the second

implication is trivial:

”⇒” Let yj be a variable that causes yI, i.e. ∃h1 ∈ N : yj →h1 y
I. By Theorem 1 it follows:

∃s1 ∈ {1, . . . , p} : Π
(h1)
Ij,s1
6= 0⇒ ∃i ∈ I : Π

(h1)
ij,s1
6= 0.

For s1 = 1, Π
(h1)
ij,1 6= 0 and thus Π

(h1)
Ij,1 6= 0 follows immediately. So, let s1 ∈ {2, . . . , p}.

Note that one can easily show that JAh =
[
Π

(h)
1 : . . . : Π

(h)
p

]
with J =

[
IK : 0 : . . . : 0

]
being a (K × Kp) selection matrix. Consequently, Π

(h)
ab,s = Ah

a,(s−1)K+b holds for all

a, b ∈ {1, . . . , K}, s ∈ {1, . . . , p} and h ∈ N.

Therefore, Ah1

i,(s1−1)K+j = Π
(h1)
ij,s1
6= 0 holds. Moreover, Al,l−K = 1 for l = K + 1, . . . , Kp

by construction of the companion matrix (2.3). Applying this argument for l = (s1 −
1)K+j and using Assumption 1, it follows that Π

(h1+1)
ij,s1−1 = Ah1+1

i,(s1−2)K+j 6= 0. Continuing

this argument, one shows that Π
(h1+s1−1)
ij,1 = Ah1+s1−1

ij 6= 0. So, Π
(h1+s1−1)
Ij,1 6= 0 is true.

”⇐” Assume that there is a h ∈ N such that Π
(h)
Ij,1 6= 0. Due to Theorem 1, this directly

implies yj →h yI.
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A.2 Equivalence of Graph Definitions

In this part, we show that it is equivalent to define reachability for a VAR(p) in G (see

Definition 1) or in G1 (see Remark 2). Therefore, we first restate the definition of reachibility

for both graphs.

DEFINITION 6 We write u
P
 u′, if vertex u′ is reachable from u in G (see Definition

1), i.e. if there is a path from u to u′ in E. Analogously, we write u
P 1

 u′, if vertex u′ is

reachable from u in G1 (see Remark 2), i.e. if there is a path from u to u′ in E1.

Remark 12 Note that the following relations hold:

Let (i, j) ∈ E for i = K + 1, . . . , Kp⇔ Aij 6= 0⇔ j = i−K. (A.5)

Let (i, j) ∈ E1 ⇔ ∃s ∈ {1, . . . , p} : Aij,s = Ai,(s−1)K+j 6= 0⇔ (i, [s− 1]K + j) ∈ E.

(A.6)

Before stating the result of interest, we first prove two Lemmas.

LEMMA 3 Let (i, j) ∈ E1. Then, j is reachable from i in G, i.e. i
P
 j.

Proof. Let (i, j) ∈ E1. Because of (A.6), ∃s ∈ {1, . . . , p} : (i, [s− 1]K + j) ∈ E. For s = 1,

(i, j) ∈ E follows directly and therefore i
P
 j. So, let s ∈ {2, . . . , p}. Due to (A.5), it is:

([s− 1]K + j, [s− 2]K + j) , . . . , (j + K, j) ∈ E.

Consequently, there is a path of length s in E from i to j, i.e. i
P
 j.

LEMMA 4 Let i, j ≤ K and i
P
 j through path P ∗ = (v0, . . . , vs) in E such that vl > K

f.a. l = 1, . . . , s− 1 with s ∈ {1, . . . , p}. Then, (i, j) ∈ E1 holds.

Proof. Because of (vs−1, vs) ∈ E, vs = j and (A.5), it is vs−1 = vs +K = j+K. Applying the

same argument repeatedly, we get v1 = j+(s−1)K. Moreover, (v0, v1) = (i, j+[s−1]K) ∈ E.

Due to (A.6), (i, j) is contained in E1.

Using these results, we show the equivalence of reachability in G and G1, respectively.

COROLLARY 1 Let i, j ≤ K. Then, it holds:

i
P 1

 j ⇔ i
P
 j. (A.7)

Proof. We prove both directions of the if-and-only-if statement:

”⇒” Let i
P 1

 j. Then, there is a path P ∗ = (v0, . . . , vn) of length n ∈ {1, . . . , K − 1} in

E1. So, for all l ∈ {1, . . . , n} : (vl−1, vl) ∈ E1. Lemma 3 yields vl−1
P
 vl for all

l ∈ {1, . . . , n}. Moreover, we can simply connect these paths to find that there is a

path from v0 = i to vn = j, i.e. i
P
 j.
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”⇐” Let i
P
 j. Then, there is a path P ∗ = (v0, . . . , vs) of length s ∈ {1, . . . , p} with

v0 = i, vs = j and (vl−1, vl) ∈ E for all l = 1, . . . , s. Let L := {l : vl ≤ K} and its

cardinality be equal to n ∈ {2, . . . , s+1}. Define 0 = l1 < . . . < ln = s such that lm ∈ L

for m = 1, . . . , n. Moreover, define P ∗m :=
(
vlm , . . . , vlm+1

)
for m = 1, . . . , n − 1. This

means that we have decomposed P ∗ into n−1 contiguous subpaths P ∗m that satisfy the

assumptions of Lemma 4.

Due to Lemma 4,
(
vlm , vlm+1

)
∈ E1 for all m = 1, . . . , n − 1. Consequently, there is a

path P ∗∗ = (vl1 , . . . , vln) with vl1 = v0 = i and vln = vs = j in E1, i.e. i
P 1

 j.

Because we show in Corollary 1 that reachability in G and G1 is equivalent, these two def-

initions determine the same SCCs. Moreover, they impose the same component graph why

the resulting sets of relevant variables are also identical.

A.3 Data

We describe the data used in the empirical illustrations. Raw data for most series are obtained

from the FRED database and Table A.1 shows the corresponding FRED mnemonics. We

construct some variables from splicing two series in order to obtain long time series: As a

measure for the exchange rate, we use the US/DM exchange rate (EXGEUS) until 1998Q4.

From 1999Q1 we use EXUSEU and splice both series accordingly. The resulting variable is

called EXCH. We follow McCracken & Ng (2015) and use OILPRICE (Spot Oil Price) until

1985Q4 and MCOILWTICO (Crude Oil Price, Cushing) since 1986Q1, since the former series

has been discontinued. The resulting series is labeled POIL in our data set. To obtain a

crude measure of stock market volatility, we simply use the squared stock market returns,

since the time series of volatility indices in FRED are rather short. This series is called

VOLA. Seasonally adjusted series have been taken from FRED where necessary. The time

series on Government Debt (GFDEBTN) has been seasonally adjusted by the authors using

X-ARIMA-13. The resulting series is GFDEBTNSA. The Euro area time series have been added

using the update 15 to the AWM database maintained at the ECB. The AWM mnemonics

for the real GDP, CPI, and a short-term interest rates are YER, HICP, and STN. HICP has

been seasonally adjusted by the authors using X-ARIMA-13. We use EMUGDP, EMUHICPSA,

and EMURS to denote the three Euro area variables.

The last columns in Table A.1 lists the transformation codes 1-6, corresponding to the

following transformations of the series yt: (1) no transformation, yt, (2) ∆yt, (3) ∆2yt, (4)

400× log(yt), (5) 400×∆ log(yt), (6) 400×∆2 log(yt).
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Table A.1: Variables, Data Sources and Transformations

Name Mnemonic Transf.Code

Real GDP GDPC96 5

CPI CPIAUCSL 6

Federal Funds Rate FEDFUNDS 2

Real Consumption PCECC96 5

Real Government Consumption GCEC1 5

Real Investment GPDIC1 5

Real Exports EXPGSC1 5

Real Imports IMPGSC1 5

Change in Real Inventories CBIC96 1

Unit Labor Cost ULCNFB 5

Employment PAYEMS 5

Unemployment Rate UNRATE 2

Hours worked HOHWMN02USQ065S 1

1-year T-Bill Rate GS1 2

10-year T-Bill Rate GS10 2

Corporate Bond Spread AAAFFM 1

Lending Rate to NFCs TB3MS 3

Mortgage Rate MORTG 2

M1 M1SL 6

M2 M2SL 6

Government Debt GFDEBTNSA GFDEBTN. seas.adj: X-13 5

Real Estate Loans REALLN 5

Consumer Credits TOTALSL 5

Commercial Loans BUSLOANS 5

Dollar/Euro Exchange Rate (EXCH) spliced from EXUSEU and EXUSEU 5

Effective Exchange Rate NNUSBIS 5

Oil Price (POIL) spliced from OILPRICE and MCOILWTICO 5

Commodity Prices CUSR0000SAC 6

Consumer Prices (excl. food, energy) CPILFESL 6

Producer Price Index PPIACO 5

House Prices USSTHPI 6

Real Housing Investment PRFI 5

Total Share Prices SPASTT01USQ661N 5

Volatility Index VIXCLS 5

Capacity Utilization CUMFNS 2

Consumer Confidence CSCICP03USM665S 2

Industrial Confidence BSCICP03USM665S 2

Purchasing Manager’s Index NAPM 1

Real GDP (Euro Area) AWM mnemonic: YER 5

CPI (Euro Area) AWM mnemonic: HICP, seas.adj: X-13 6

Short term interest rate (Euro Area) AWM mnemonic: STN 2

Note: The table shows FRED and AWM database names together with the transformation codes.

See Appendix A.3 for a detailed description of the transformations.
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A.4 Additional Results
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Figure A.1: Impulse responses in small VAR and selected variable VAR. Left: Responses to a

shock in FFR in 3-variable (small) VAR(4) including GDP, FFR, and CPI. Right: Responses

to a shock in FFR in 13-variable VAR(4) with 10 selected additional variables. Sample

period: 1972Q1-2007Q4.
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Figure A.2: Impulse responses in small VAR and selected variable VAR. Left: Responses to a

shock in FFR in 3-variable (small) VAR(4) including GDP, FFR, and CPI. Right: Responses

to a shock in FFR in 13-variable VAR(4) with 10 selected additional variables. Sample

period: 1975Q3-2014Q4.
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Figure A.3: Variable selection results: Variable of interest yI: GDP growth and unemploy-

ment (green). Relevant variables as selected by graphical method (blue) and variables not

selected (white). Sample period: 1975Q3-2014Q4.
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