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Abstract

This paper studies discounted stochastic games with perfect or imper-
fect public monitoring and the opportunity to conduct voluntary monetary
transfers. This generalization of repeated games with transfers is ideally
suited to study relational contracting in applications that allow for long-
term investments, and also allows to study collusive industry dynamics.
We show that for all discount factors every public perfect equilibrium pay-
off can be implemented with a simple class of equilibria that have a sta-
tionary structure on the equilibrium path and optimal penal codes with a
stick and carrot structure. We develop algorithms that exactly compute or
approximate the set of equilibrium payoffs and find simple equilibria that
implement these payoffs.
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1 Introduction

Discounted stochastic games are a natural generalization of infinitely repeated
games that provide a very flexible framework to study relationships in a wide
variety of applications. Players interact in infinitely many periods and discount
future payoffs with a common discount factor. Payoffs and available actions in a
period depend on a state that can change between periods in a deterministic or
stochastic manner. The probability distribution of the next period’s state only
depends on the state and chosen actions in the current period. For example,
in a long-term principal-agent relationship, a state may describe the amount of
relationship-specific capital or the current outside options of each party. In a
dynamic oligopoly model, a state may describe the number of active firms, the
production capacity of each firm, or demand and cost shocks that can be persistent
over time.

In many relationships of economic interest, parties cannot only perform actions
but also have the option to transfer money to each other or to a third party. Re-
peated games with monetary transfers and risk-neutral players have been widely
studied, in particular in the relational contracting literature. Examples include
studies of employment relations by Malcomson and MacLeod (1989) and Levin
(2002, 2003), partnerships and team production by Doornik (2006) and Rayo
(2007), prisoner dilemma games by Fong and Surti (2009), international trade
agreements by Klimenko, Ramey and Watson (2008) and cartels by Harrington
and Skrzypacz (2007, 2011).! Levin (2003) shows for repeated principal-agent
games with transfers that one can restrict attention to stationary equilibria in
order to implement every public perfect equilibrium payoff. Goldliicke and Kranz
(2012) derive a similar characterization for general repeated games with transfers.
Despite the wide range of applications, repeated games are nevertheless consid-
erably limited, because they cannot account for actions that have technological
long run effects, like e.g. investment decisions.

This paper extends these results to stochastic games with voluntary transfers and
imperfect monitoring of actions. For any given discount factor, all public perfect
equilibrium (PPE) payoffs can be implemented with a class of simple equilibria.
Based on that result, algorithms are developed that allow to approximate or to
exactly compute the set of PPE payoffs.

A simple equilibrium is described by an equilibrium regime and for each player a
punishment regime. The action profile that is played in the equilibrium regime
only depends on the current state, as in a stationary Markov perfect equilibrium.
Transfers depend on the current state and signal and also on the previous state.
Play moves to a punishment regime whenever a player refuses to make a required
transfer. Punishments have a simple stick-and-carrot structure: one punishment

'Baliga and Evans (2000), Fong and Surti (2009), Gjertsen et. al (2010), Miller and Watson
(2011), and Goldliicke and Kranz (2013) study renegotiation-proof equilibria in repeated games
with transfers.



action profile per player and state is defined. After the punishment profile has
been played and subsequently required transfers are conducted, play moves back to
the equilibrium regime. We show that there exists an optimal simple equilibrium,
with largest joint equilibrium payoff and harshest punishments, such that all PPE
payoffs can be implemented by varying the up-front payments of this equilibrium.

Repeated games have a special structure, in which the current action profile does
not affect the set of continuation payoffs. This means that the harshest punish-
ment that can be imposed on a deviating player is independent of the form of
a deviation. For repeated games with transfers, this fact allows to compress all
information of the continuation payoff set that is relevant to determine whether
and how an action profile can be used, into a single number (Goldliicke and Kranz,
2012). In stochastic games, complications arise because different deviations can
cause different state transitions. An optimal deviation is a dynamic problem and
optimal punishment schemes must account for this. As a consequence, key results
of the analysis of repeated games with transfers no longer apply, and different
algorithms are needed.

For stochastic games with perfect monitoring and finite action spaces, we develop
in Section 4 a fast algorithm to exactly compute the set of pure strategy subgame
perfect equilibrium payoffs. To find the action profiles and transfers of the equilib-
rium regime we iteratively solve a single agent Markov decision problem. In each
iteration the set of possible action profiles that can be played in equilibrium can
be reduced. A key element is a fast method to find in each iteration the optimal
punishment policies: it quickly solves the nested dynamic optimization problem
of finding for a given punishment policy the optimal deviations in an inner loop
and the corresponding optimal punishment policy in an outer loop.

To solve stochastic games with imperfect public monitoring, we develop methods
that are more closely related to the methods by Judd, Yeltekin and Conklin (2003)
and Abreu and Sannikov (2014), that were developed to approximate the payoff
set of repeated games with perfect monitoring and public correlation.? They are
based on the recursive techniques developed by Abreu, Pearce and Stacchetti
(1990, henceforth APS) for repeated games. Our methods, developed in Section
5, allow to compute arbitrary fine inner and outer approximations of the PPE
payoff set. Sufficiently fine approximations allow to reduce for each state the set
of action profiles that can possibly be part of an optimal simple equilibrium. If
these sets can be sufficiently quickly reduced, it may even become tractable to
then apply a brute force method, which solves a linear optimization problem for
every combination of remaining action profiles, to exactly characterize optimal
equilibria and the PPE payoff set.

Our characterization with simple equilibria not only allows numerical solution
methods, but also helps to find closed form solutions in stochastic games. Section
6 illustrates this with two relational contracting examples. In the first example,

2Judd and Yeltekin (2011) and Sleet and Yeltekin (2015) extend these methods to approxi-
mate equilibrium payoff sets in stochastic games with perfect monitoring and public correlation.



an agent can exert effort to produce a durable good for a principal. It is illustrated
how under unobservable effort levels, grim-trigger punishments completely fail to
induce positive effort for any discount factor while optimal punishments that use
a costly punishment technology can sustain positive effort levels. In the second
example, an agent can invest to increase the value of his outside option. It illus-
trates how the set of equilibrium payoffs can be non-monotonic in the discount
factor.

While the relational contracting literature on repeated games usually focuses on ef-
ficient SPE or PPE, applied industrial organization literature that studies stochas-
tic games often restricts attention to Markov perfect equilibria (MPE) in which
actions only condition on the current state.> Focusing on MPE has advantages,
since strategies have a simple structure and there exist quick algorithms to find
a MPE. Finding optimal collusive SPE or PPE payoffs is usually a much more
complex task.?

However, there are also drawbacks of restricting attention to MPE. One issue is
that the set of MPE payoffs can be very sensitive to the definition of the state
space. For example, in the special case of a repeated game (a stochastic game
with a single state), only stage game Nash equilibria can be played in an MPE.
If the state-space of the repeated game is augmented by defining the current
state to be the previous period’s action profile as state, collusive strategies may
now be supported as MPE. In contrast, the set of SPE payoffs (under perfect
monitoring) is not changed by such an technological irrelevant augmentation of
the state space. Another issue is that there are no effective algorithms to compute
all MPE payoffs of stochastic game, even if one just considers pure strategies.’
Existing algorithms, e.g. Pakes & McGuire (1994, 2001), are very effective in
finding an MPE, but except for special games there is no guarantee that it is
unique. Besanko et. al. (2010) illustrate the multiplicity problem and show how
the homotopy method can be used to find multiple MPE. There is, however, still
no guarantee that all (pure) MPE are found. For those reasons, effective methods
to compute the set of all PPE payoffs and an implementation with a simple class
of strategy profiles seem quite useful in order to complement the analysis of MPE.

While monetary transfers may not be feasible in all social interactions, the possi-

3Examples include studies of learning-by-doing by Benkard (2004) and Besanko et. al.
(2010), advertisement dynamics by Doraszelski and Markovich (2007), consumer learning by
Ching (2010), capacity expansion by Besanko and Doraszelski (2004), or network externalities
by Markovich and Moenius (2009).

4Characterizing the SPE or PPE payoff set can be challenging even in the limit case of the
discount factor converging towards 1. While by Dutta (1995) established a folk theorem for
perfect monitoring, folk theorems for imperfect public monitoring have been derived much more
recently by Fudenberg and Yamamoto (2010) and Horner et. al. (2011) and with restriction to
irreducible stochastic games.

5For a game with finite action spaces, one could always use a brute-force method that checks
for every pure strategy Markov strategy profile whether it constitutes a MPE. Yet, the number
of Markov strategy profiles increases very fast: is given by [], .y |A(x)], where |A(z)] is the
number of strategy profiles in state x. This renders a brute-force method practically infeasible
except for very small stochastic games.



bility of transfers is plausible in many problems of economic interest. Monetary
transfers are a standard assumption in the already mentioned literature on rela-
tional contracting, even though attention has been usually restricted to repeated
games. But even for illegal collusion, transfer schemes are in line with the ev-
idence from several actual cartel agreements. For example, the citric acid and
lysine cartels required members that exceeded their sales quota in some period to
purchase the product from their competitors in the next period; transfers were
implemented via sales between firms. Harrington and Skrzypacz (2011) describe
transfer schemes used by cartels in more detail and provide further examples.
Even in contexts in which transfers may be considered strong assumptions, our
results can be useful since the set of implementable PPE payoffs with transfers
provides an upper bound on payoffs that can be implemented by equilibria without
transfers.

The structure of this paper is as follows. Section 2 describes the model. In
Section 3, simple equilibria are defined and it is shown that every PPE can be
implemented with an optimal simple equilibrium. Section 4 develops an exact
policy elimination algorithm for games with perfect monitoring. We illustrate the
algorithm by numerically characterizing optimal collusive equilibria in a Cournot
model with renewable, storable resources. We have implemented the policy elimi-
nation algorithm for stochastic games with perfect monitoring in the open source
R package dyngame. Installation instructions are available on its Github page:
https://github.com/skranz/dyngame. Section 5 highlights the links with the re-
cursive structure of APS and we describe decomposition methods for our setting
that allow to approximate the PPE payoff set for games with imperfect public
monitoring. Finally, Section 6 studies relational contracting examples and shows
how the methods allow closed-form analytical characterizations. The appendix
contains remaining proofs.

2 The game

We consider an n player stochastic game of the following form. There are infinitely
many periods, and future payoffs are discounted with a common discount factor
9 € [0,1). There is a finite set of states X, with 29 € X denoting the initial state.
A period is comprised of two stages: a transfer stage and an action stage without
discounting between stages.

In the transfer stage, every player simultaneously chooses a non-negative vector
of transfers to all other players.® Players also have the option to transfer money
to a non-involved third party, which has the same effect as burning money. All

6To have a compact strategy space, we assume that a player’s transfers cannot exceed an
upper bound of ﬁ > [maxwex,aeA(w) mi(a, ) — Mingex acA(x) ﬂ'i(a,x)} where 7;(a,x) are
expected stage game payoffs defined below. This bound is large enough to be never binding

given the incentive constraints of voluntary transfers.
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transfers are perfectly monitored, there is no limited liability, and transfers do not
affect the state transitions.

In the action stage, players simultaneously choose actions. In state z € X, player
i can choose an action a; from a finite or compact action set A;(x). The set of
possible action profiles is denoted by A(z) = A;(z) X ... x A,(x).

After actions have been taken, a signal y from a finite signal space Y and a
new state ' € X are drawn by nature and commonly observed by all players.
We denote by ¢(y, 2|z, a) the probability that signal y and state z’ are drawn,
depending on the current state x and the chosen action profile a. Player i’s stage
game payoff is denoted by 7;(z, a;,y) and depends only on what is observable to
this player: the signal y, the player’s own action a;, and the current state x. We
denote by m;(x, a) player i’s expected stage game payoff in state z if action profile
a is played. If the action space in state x is not finite, we assume in addition that
stage game payoffs and the probability distribution of signals and new states are
continuous in the action profile a.

We assume that players are risk-neutral and that payoffs are additively separable
in the stage game payoff and money. This means that the expected payoff of
player i in a period in which the state is x, action profile a is played, and #’s net
transfer is given by p;, is equal to m;(z,a) — p;.

For the case of a finite stage game we also consider behavior strategies and let
A(z) denote the set of mixed action profiles at the action stage in state x. If
the game is not finite, we restrict attention to pure strategy equilibria and let
A(x) = A(x) denote the set of pure action profiles. For a mixed action profile
a € A(x), we denote by m;(x, ) player i’s expected stage game payoff, taking
expectations over mixing probabilities and signal realizations. A vector « that
assigns an action profile a(x) € A(z) to every state x € X is also called a policy,
and A = X cxA(x) denotes the set of all policies.” For briefness sake, we often
suppress the dependence on x and write 7(x, «) instead of 7(z, a(x)). Moreover,
we often use capital letters to denote the joint payoff of all players, e.g.

(z,a) = Zm(a:,a). (1)

When referring to payoffs of the stochastic game, we mean expected average dis-
counted payoffs, i.e., the discounted sum of expected payoffs multiplied by (1 —9).

A public history of the stochastic game is a sequence of all states, monetary
transfers and public signals that have occurred before a given point in time. A
public strategy o; of player 7 in the stochastic game maps every public history that
ends before the action stage in period ¢ into a possibly mixed action in A;(x,;), and
every public history that ends before a payment stage into a vector of monetary
transfers. A profile of public strategies for each player determines a probability

"Whether o denotes a single action profile or a whole policy depends on the context.



distribution over the outcomes of the game. Expected payoffs from a strategy
profile o are denoted by

wi(zg,0) = (1 —=9) i(StEmo,g[?Ti(iCu o) — Pril- (2)

t=0

A public perfect equilibrium (PPE) is a profile of public strategies that constitute
mutual best replies after every public history. We restrict attention to public
perfect equilibria. We denote by U(x) the set of PPE payoffs with initial state
To, and by U°(zg) the set of payoffs of PPE without up-front transfers. These sets
depend on the discount factor, but since the discount factor is fixed, we do not
make this dependence explicit.

We show in Section 5 how the recursive methods of APS can be translated to this
stochastic game with monetary transfers. Following the steps of APS, one can
show the following compactness result, which we already state here to simplify
the subsequent discussion.

Proposition 1. The set U(xy) of PPE payoffs in our discounted stochastic game
with monetary transfers is compact.

Proof. Follows directly from Lemma 2 in Section 5. [

3 Characterization with simple equilibria

This section first defines simple strategy profiles and characterizes PPE in simple
strategies. To convey the intuition behind our results, it is explained in what
ways monetary transfers simplify the analysis. First, up-front transfers in the
first period allow the players to flexibly distribute the total equilibrium payoff.
Similarly, variation in transfers can be used in every period to substitute for
variation in continuation payoffs. This intuition is used to show that simple
equilibria suffice to describe the PPE payoff set. Second, transfers can balance
incentive constraints between players in asymmetric situations and third, payment
of fines allows to settle punishments within one period.

3.1 Simple strategy profiles

A simple strategy profile is characterized by n + 2 regimes. Play starts in the
up-front transfer regime, in which players are required to make up-front transfers
described by net payments p°.® Afterward, play can be in one of n + 1 regimes,

8In a simple strategy profile, no player makes and receives positive transfers at the same
time. Any vector of net payments p can be mapped into a n x (n + 1)-matrix of gross transfers
Dij (= payment from i to j) as follows. Denote by Ip = {i|p; > 0} the set of net payers and by



which we index by k € K = {e,1,2,...,n}. We call the regime k = e the equilib-
rium regime and k = ¢ € {1,...,n} the punishment regime of player i.

A simple strategy profile specifies for each regime k € K and state x an action
profile o (x) € A(x). We refer to a® as the equilibrium policy and to o' as the
punishment policy for player 7. From the second period onwards, required net
transfers are given by p*(z,y,2’) and hence depend on the current regime k, the
previous state x, the realized signal y, and the realized state x’. The vectors of
all policies (a*)rex and all payment functions (p*)rex are called action plan and
payment plan, respectively.

The equilibrium and punishment regimes follow the logic of Abreu (1988), exploit-
ing that transfers are perfectly monitored so that any deviation from a transfer
can be punished in the same way. If no player unilaterally deviates from a required
transfer, play moves to the equilibrium regime (k = e). If player i unilaterally
deviates from a required transfer, play moves to the punishment regime of player ¢
(k =1). In all other situations the regime does not change. A simple equilibrium
is a simple strategy profile that constitutes a public perfect equilibrium of the
stochastic game.

For a given simple strategy profile, we denote expected continuation payoffs in
the equilibrium regime and the punishment regime by v and !, respectively. For
all k € K and each player 4, these payoffs are given by’

ui(2) = (1= 8)my(x, o) + 6 B[ (1 = 0)pf (2, y,2) + uj(2)|x,a*]. (3)

We call U(z) = X, ué(x) the joint equilibrium payoff and v;(z) = wui(x) the
punishment payoff of player 7.

We use the one-shot deviation property to establish equilibrium conditions for
simple strategies without up-front transfers. In state x, player ¢ has no profitable
one-shot deviation from any pure action a; in the support of o (z) if and only if
the following action constraints are satisfied for all a; € A;(z):

(1 - 5>7Ti($7 (l?, O/iz) + 5E[_(1 - 5)pf(‘ra Y, ZL'/) + US(I/MZL’, g, a/liz] >
(1 - 5)7Ti(x7 di7 O-/]iz) + 5E[_(1 - 5)p§($a Y, $/) + U’f(l‘/”xv &i7 O'/liz] (Ac_k)

Ir = {i|p; <0} U{0} the set of net receivers including the sink for burned money indexed by 0.

For any receiver j € Ir, we denote by

;]
55 =
! ZjeIR [Pl

the share she receives from the total amount that is transferred or burned and assume that each
net payer distributes her gross transfers according to these proportions

- sjp; ifielpandjelp

Dij =

0 otherwise.

9For k = e, the payoff u¢ is defined implicitly by this equation, which has a unique solution.



Moreover, player ¢ should have no incentive to deviate from required payments
after the action stage. Hence we need for all regimes k € K, states z,2’ and
signals y that the following payment constraints hold:

(1 - 5)pf(1'7 Y, I/) < uf(%l) - Ui<x/)' (Pc_k)

Finally, the budget constraints must hold that require that the sum of payments
is non-negative:

> pi(z,y,2) > 0. (BC-k)
i=1
The sum of payments is simply the total amount of money that is burned.

3.2 Distributing with up-front transfers

The effect of introducing up-front transfers is illustrated in Figure 1. Assume

Figure 1: Distributing with up-front transfers

the shaded area is the PPE payoff set in a two player stochastic game with fixed
discount factor without up-front transfers. The point u is the equilibrium payoff
with the highest sum of payoffs for both players. If one could impose any up-front
transfer, the set of Pareto optimal payoffs would be simply given by a line with
slope —1 through this point. If up-front transfers must be incentive compatible,
their maximum size is bounded by the harshest punishment that can be credibly
imposed on a player that deviates from a required transfers. The points w' and w?
in Figure 1 illustrate these worst continuation payoffs after the first transfer stage
for each player, with v; denoting the worst payoff of player i. The Pareto frontier
of PPE payoffs with voluntary up-front transfers is given by the line segment
through point u with slope —1 that is bounded by the lowest equilibrium payoff



v1 of player 1 and the lowest equilibrium payoff vy of player 2. If we allow for
money burning in the up-front transfers, any point in the depicted triangle can
be implemented in an incentive compatible way.

This intuition naturally extends to n player games. We denote by

the maximum over joint PPE payoffs, and by

V;(xg) = min wu; 5
(o) = min ()
the minimum over all possible PPE payoffs of player i = 1, ..., n. Note that these
values would be the same if only PPE without up-front transfers, i.e, only payoff
vectors in U°(zy), were considered instead.

Proposition 2. The set of PPE payoffs is equal to the simplex

U(z) = {u € R"| zn:ul < Ul(zo) and u; > vy(wo)}.

i=1

3.3 Optimal simple equilibria can implement all PPE pay-
offs

We now show that every PPE payoff can be implemented with a simple equilib-
rium. Assume that for all initial states a PPE exists. Since the set of PPE payoffs
is compact for each initial state x, we can take the PPE o¢(x) with the largest
total payoff U(z), and the PPE ¢'(z) with the lowest possible payoff v;(x) for
player 7 among all PPE without up-front transfers. For all k € K, we define o (z)
as the action profile that is played in the first period of o*(z), and w*(z)(y, z') as
the continuation payoffs in the second period when the realized signal in the first
period is y and the game transits to state 2. We denote the equilibrium payoffs
of o*(z) in the game without up-front transfers by

4 (2) = (1 = 8)mi(x, o) + S Bwj (w)(a', y) |z, a"]. (6)
Then w*(x) enforces o (z), meaning that for all a;, d; € A;(x) with o;(a;) > 0 it
holds that
(1=0)m;(2, as, & )+ E[wk (x)|x, as, o )] > (1=8)m;(x, a5, o )+ E[wh(x)|x, a;, o

(7)
The vector of policies (a*)zex will be the action plan for the simple strategy
profile that we are going to define. We define the payments in state 2’ following
signal y and previous state x such that we achieve the continuation payoffs that
enforce o*(z). Hence, we define payments p*(z,y, z’) such that

10

!



wh(z)(2',y) = (") — (1 = 6)p*(x, y, ). (8)

It is straightforward to verify that the so defined simple strategy profile is indeed a
PPE: Since continuation payoffs u¥ in the simple strategy profile are equal to the
payoffs @ in the original equilibria, the action constraints (AC-k) are satisfied
for all £ € K. The payments in the payment plan are incentive compatible
because player i at least weakly prefers the continuation payoff w*(z)(2’,y) to
v;(2"). Moreover, the sum of payments is non-negative since

0 2 3w ) v). )

Hence, (PC-k) and (BC-k) are satisfied as well and we have shown the following
result.

Theorem 1. Assume a PPE exists. Then an optimal simple equilibrium exists
such that by varying its up-front transfers in an incentive compatible way, every
PPFE payoff can be implemented.

The goal of the following two subsections is to provide some easier intuition for
why and how monetary transfers allow to restrict attention to simple equilibria.

3.4 Intuition: Stationarity on equilibrium path by balanc-
ing incentive constraints

A crucial factor why action profiles on the equilibrium path can be stationary (only
depending on the state ) is that monetary transfers allow to balance incentive
constraints among players. We want to illustrate this point with a simply infinitely
repeated asymmetric prisoner’s dilemma game described by the following payoff
matrix:

C [ D
Cl 42 -36
D|[5-1] 0,1

The goal shall be to implement mutual cooperation (C,C') in every period on
the equilibrium path. Since the stage game Nash equilibrium yields the min-max
payoff for both players, grim trigger punishments constitute optimal penal codes:
Any deviation is punished by playing forever the stage game Nash equilibrium
(D, D).

No transfers First consider the case that no transfers are conducted. Given grim-
trigger punishments, player 1 and 2 have no incentive to deviate from cooperation
on the equilibrium path whenever the following conditions are satisfied:

Player 1: 4 > (1 —6)5 & 602>0.2,
Player 2: 2> (1-4§)6 +0 < 6> 0.8.

11



The condition is tighter for player 2 than for player 1 for three reasons:

i) player 2 gets a lower payoff on the equilibrium path (2 vs 4),
ii) player 2 gains more in the period of defection (6 vs 5),

iii) player 2 is better off in each period of the punishment (1 vs 0).

Given such asymmetries, it is not necessarily optimal to repeat the same action
profile in every period. For example, if the discount factor is § = 0.7, it is not
possible to implement mutual cooperation in every period, but one can show that
there is a SPE with a non-stationary equilibrium path in which in every fourth
period (C, D) is played instead of (C,C'). Such a strategy profile relaxes the tight
incentive constraint of player 2, by giving her a higher equilibrium path payoft.
The incentive constraint for player 1 is tightened, but there is still sufficiently
much slack left.

With transfers Assume now that (C, C) is played in every period and from period
2 onwards player 1 transfers an amount of % to player 2 in each period on the
equilibrium path. Player 1 has no incentive to deviate from the transfers on the
equilibrium path if and only if'°

(1-6)15<d6(4—15)<6§>0375

and there is no profitable one shot deviation from the cooperative actions if and
only if

Player 1: 4 — 15> (1 —6)5 & 6> 0.5,
Player 2: 2+ 15> (1 —-0)6 +6 < >0.5.

The incentive constraints between the players are now perfectly balanced. Indeed,
if we sum both players’ incentive constraints

Joint: 442> (1—-0)(54+6) +(0+1) ¢ > 0.5,

we find the same critical discount factor as for the individual constraints.

This intuition generalizes to stochastic games. Section 4 illustrates the incentive
constraints with optimal balancing of payments for the case of perfect monitoring.

10To derive the condition, it is useful to think of transfers taking place at the end of the
current period but discount them by §. Indeed, one could introduce an additional transfer stage
at the end of period (assuming the new state would be already known in that stage) and show
that the set of PPE payoffs would not change.

12



3.5 Intuition: Settlement of punishments in one period

If transfers are not possible, optimally deterring a player from deviations can be-
come a very complicated problem. Basically, if players observe a deviation or an
imperfect signal that is taken as a sign of a deviation, they have to coordinate on
future actions that yield a sufficiently low payoff for the deviator. The punish-
ments must themselves be stable against deviations and have to take into account
how states can change on the desired path of play or after any deviation. Under
imperfect monitoring, such punishments arise on the equilibrium path following
signals that indicate a deviation, and thus efficiency losses must be as low as
possible in Pareto optimal equilibria.

The benefits of transfers for simplifying optimal punishments are easiest seen for
the case of punishing an observable deviation. Instead of conducting harmful
punishment actions, one can always give the deviator the possibility to pay a
fine that is as costly as if the punishment actions were conducted. If the fine is
paid, one can move back to efficient equilibrium path play. Punishment actions
only have to be conducted if a deviator fails to pay a fine. After one period of
punishment actions, one can again give the punished player the chance to move
back to efficient equilibrium path play if she pays a fine that will be as costly as
the remaining punishment. This is the key intuition for why optimal penal codes
can be characterized with stick-and-carrot punishments with a single punishment
action profile per player and state.

Despite this simplification, an optimal punishment policy must consider all states
and take into account the dynamic nature of a punished player’s best reply. The
nature of this nested dynamic problem can be seen most clearly in the perfect
monitoring case in Section 4, which develops a fast method to find optimal pun-
ishments policies.

3.6 A brute force algorithm to find an optimal simple equi-
librium

We have shown in Subsection 3.1. that a simple equilibrium with action plan
(a*)rex exists if the set of payment plans that satisfy conditions (AC-k), (PC-k)
and (BC-k) is nonempty. Moreover, this set is compact. We say a payment plan
is optimal for a given action plan if all constraints (AC-k), (PC-k) and (BC-k)
are satisfied and there is no other payment plan that satisfies these conditions
and yields a higher joint payoff or a lower punishment payoff for some state x and
some player .

Proposition 3. There exists a simple equilibrium with an action plan (a*)yex
if and only if there exists a payment plan (p*)rex that solves the following linear
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program

(p")), € arg max > zn: (u$(z) — vi(z)) (LP-OPP)

k zeX i=1

s.t.(AC-k),(PC-k),(BC-k)for all k € K.
The plan (p*)rex is an optimal payment plan for (a*)rex.
Proof. The proof is straightforward and therefore omitted. O

An optimal simple equilibrium has an optimal action plan and a corresponding
optimal payment plan. Together with Theorem 1, this result directly leads to a
brute force algorithm to characterize the set of pure strategy PPE payoffs given
a finite action space: simply go through all possible action plans and solve (LP-
OPP). An action plan with the largest solution will be optimal. Similarly, one
can obtain a lower bound on the set of mixed strategy PPE payoffs, by solving
(LP-OPP) for all mixing probabilities from some finite grid. Despite an infinite
number of mixed action plans, the optimization problem for each mixed action
plan is finite because only deviations to pure actions have to be checked.

The big weakness of this brute-force method is that it becomes computationally
infeasible, except for very small action and state spaces. That is because the
number of possible action plans grows very quickly in the number of states and
actions per state and player. Unfortunately, the joint optimization problem of
action plan and payment plan is non-convex, so that one cannot rely on efficient
general purpose methods of convex optimization problems that guarantee a global
optimum. For mixed strategy equilibria, there is the additional complication that
the number of action constraints depends on the support of the mixed action
profiles that shall be implemented.

4 Solving Games with Perfect Monitoring

In this section, we develop efficient methods to find an optimal simple equilibrium
and to exactly compute the set of PPE payoffs in games with perfect monitoring
and a finite action space.

4.1 Characterization for a given action plan
Consider a pure equilibrium regime policy a® that specifies an action profile for

each state x. An optimal payment plan under perfect monitoring involves no
money burning. Therefore the joint equilibrium path payoffs U are given as the
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solution to the following linear system of equations:!!

U(x) = (1= 0)(z,a®) + §E[U(2)|x,af] for all z € X. (10)

Now consider a pure punishment policy a’ against player i. After a deviation, a
punished player ¢ will be made exactly indifferent between paying the fines that
settle the punishment within one period, or to refuse any payments and play
against other players who follow this punishment policy in all future. Player i’s
punishment payoffs v; given a punishment policy a’ will therefore be given as the
solution to the following Bellman equation

vi(z) = max {(1—9) (m(&i,ai_i,x» +0E[vi(2))|x, a;,a" ]} forall x € X. (11)

It follows from the contraction mapping theorem that there exists a unique payoff
vector v; that solves this Bellman equation. This optimization problem for finding
player i’s dynamic best reply payoff is a discounted Markov decision process. One
can compute v;, for example with the policy iteration algorithm.!? It consists of a
policy improvement step and a value determination step. The policy improvement
step calculates for some punishment payoffs v; an optimal best-reply action a;(x)
for each state x, which solves

ai(v) € arg max {(1-0) (mi(ai,a’y, 2)) + 0E[vi(a) |z, 05,0’ ]} (12)

a;€A;(x v

The value determination step calculates the corresponding payoffs of player ¢ by
solving the system of linear equations

vi(z) = (1 = 8)m(ay, a";, x) + S Ev;(2))|x, @, a* ;). (13)

Starting with some arbitrary payoff function v;, the policy iteration algorithm
alternates between policy step and value iteration step until the payoffs do not
change anymore, in which case they will satisfy (11).

The following result is key for solving games with perfect monitoring.

Theorem 2. Assume there is perfect monitoring. Under an optimal payment
plan given a pure action plan (a*)rex, joint equilibrium payoffs U solve (10) and
for each player i the punishment payoffs v; solve (11). There exists a simple
equilibrium with action plan (a*)rex if and only if for all v € X these payoffs
satisfy

U(x) > ivi(x), (14)

1 The condition has a unique solution since the transition matrix has eigenvalues with absolute
value no larger than 1. The solution is given by U = (1 — §)(I — §Q(a®)) "I (a®), where Q(a®)
is the transition matrix given that players follow the policy a®.

12For details on policy iteration, convergence speed and alternative computation methods to
solve Markov Decision Processes, see e.g. Puterman (1994).
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and (a¥)y satisfies for allk € K and x € X

(1 —6I(x,a*) + SE[U|x, a* i max — O)mi(z, a5, a",) + OE[v;|z, a;, a® ]

— aZGA

(15)

4.2 Finding optimal action plans

Note from inequality (15) that it is easier to implement any action profile a*(x) if
-ceteris paribus- joint payoffs U(x) increase in some state or punishment payoffs
v;(z) decrease for some player in some state. Therefore the action plan of an
optimal simple equilibrium maximizes U(z) and minimizes v;(x) for each state
and player across all action profiles that satisfy the conditions (14) and (15) in
Theorem 2.

We now develop an iterative algorithm to find such an optimal action plan. In
every iteration of the algorithm there is a candidate set of action profiles fl(x) -
A(z) which have not yet been ruled out as being possibly played in some simple
equilibrium. A = [T.ex fl(:c) shall denote the corresponding set of policies.

Optimal equilibrium regime policy

Let U(.,a®) denote the solution of (10) for equilibrium regime policy a®. We
denote by

Ul(x; 121) = max U(z, a®) (16)

a®€A

the maximum joint payoff that can be implemented in state x using equilibrium
regime policies from A. Like the problem (11) of finding a dynamic best reply
against a given punishment policy the problem of computing U(_; 121) is a finite dis-
counted Markov decision process. A solution always exists and it can be efficiently
solved using policy iteration.

Optimal punishment policies

Let v;(.,a’) be the resulting punishment payoffs, which solves the Bellman equa-
tion (11), given a policy a’ against player 7. For the punishment regimes, we define
by

vi(z; A) = min v;(z, ') (17)

at€eA

player ¢’s minimum punishment payoff in state x across all punishment policies
in A. Let Ezi(fl) be the optimal punishment policy that solves this problem.
Computing v;(z; A) and @ (A) is a nested dynamic optimization problem. We
need to find that dynamic punishment policy that minimizes player i’s dynamic
best-reply payoff against this punishment policy. While a brute force method that
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tries out all possible punishment policies is theoretically possible, it is usually
computationally infeasible in practice since already for moderately sized games
(like our example in Subsection 4.3 below) the set of candidate policies can be
incredibly large.

A crucial building block for finding an optimal simple equilibrium is Algorithm
1 below, that solves this nested dynamic problem by searching among possible
candidate punishment policies @’ in a monotone fashion.

We denote by

ci(x,a,v;) = Amj)(( : (1 = 8)mi(z, a5, a_) + OE[v(2)|x, 4;, a_;]) (18)
a;€EA;(x

player ¢’s best-reply payoff of a static version of the game in state x in which
action profile a shall be played and continuation payoffs in the next period are
given by fixed numerical vector v;.

Algorithm 1. Nested policy iteration to find an optimal punishment policy &i(fl)

0. Set the round to r = 0 and start with some initial punishment policy a” € A

1. Calculate player i’s punishment payoffs vi(.,a") given punishment policy a”
by solving the corresponding Markov decision process.

2. Let a"*! be a policy that minimizes state by state player i’s best-reply payoff
against action profile a"(x) given continuation payoffs vi(.,a"), i.e.

ar+1<$> € arg mjn Ci(xa a?”i('? aT)) (19)

a€A(x)

3. Stop if a” itself solves step 2. Otherwise increment the round r and go back
to step 1.

Note that in step 2, we update the punishment policy by minimizing state-by-state
the best reply payoffs ¢;(x, a,v;(.,a")) for the fixed punishment payoff v;(.,a") de-
rived in the previous step. This operation can be performed very quickly. Re-
markably, this simple static update rule for the punishment policy suffices for the
punishment payoffs v;(.,a”) to monotonically decrease in every round r.

Proposition 4. Algorithm 1 always terminates in a finite number of periods,
yielding an optimal punishment policy a'(A). The punishment payoffs decrease in
every round (except for the last round):

vi(z,a™) < wvilx,a”) for allz € X and

vi(z,a") < wvi(x,a") for some x € X.
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The proof in the appendix exploits monotonicity properties of the contraction
mapping operator that is used to solve the Markov decision process in step 1. In
the examples we computed, the algorithm typically finds an optimal punishment
policy by examining a very small fraction of all possible policies.'®* While one can
construct examples in which the algorithm has to check every possible policy in
fl, the monotonicity results suggest that the algorithm typically stops after a few
rounds.

The outer loop

The procedure allows us to compute for every set of considered action profiles
A the highest joint payoffs U (,fl) and lowest punishment payoffs vi(.,fl) that
can be implemented if all action profiles in A would be enforceable in a PPE.
Following similar steps as in the proof of Theorem 2, one can easily show that
given a simple equilibrium with equilibrium regime payoffs U (., fl) and punishment
payoffs v;(., fl) exists, an action profile a(x) can be played in a PPE starting in
state x, if and only if the following condition on joint payoffs is satisfied.

(1 —8)I(a,z) + SE[U (2, A)|a, x] >

> max (1 —8)m(z,a;,a_;) + §E[v (2, A)lag, a_i(x),z]. (20)

=1 a;€Ai(x)

If we start with the set of all action profiles A = A, we know that all action
profiles that do not satisfy this condition can never be played in a PPE. We can
remove those action profiles from the set A. If the optimal policies a* (/Al) have
remained in the set, they form an optimal simple equilibrium, otherwise we must
repeat this procedure with the smaller set of action profiles until this condition is
satisfied.

Algorithm 2. Policy elimination algorithm to find optimal action plans

0. Let 7 =0 and initially consider all policies as candidates: A = A.

1. Compute Ue(.;flj) and a corresponding optimal equilibrium regime policy

ac(A7).

2. For every player i compute v;(.; AT) and a corresponding optimal punishment
policy a'(A")

13For an example, consider the Cournot game described in Subsection 4.3 below. It has
21*%21=441 states and, depending on the state, a player has between 0 to 20 different stage
game actions. If we punish player 1, the number of potentially relevant pure strategy punishment
policies a brute force algorithm has to search is given by the number of pure Markov strategies
of player 2. Here, each player has Hi?lzo 7232:0 my = (20!)2! different pure Markov strategies.
This is an incredible large number and renders a brute-force approach infeasible. Yet, in no
iteration of the outer loop, does Algorithm 1 need more than just 4 rounds to find an optimal

punishment policy.
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3. For every state x, let flj“(x) be the set of all action profiles that satisfy
condition (20) using U°(.; A7) and v;(.; A7) as equilibrium regime and pun-
ishment payoffs.

4. Stop if the optimal policies &k(flj) are contained in AIT!. They then con-
stitute an optimal action plan. Also stop if for some state x the set ATt g
empty. Then no SPE in pure strategies exists. Increment the round r and
repeat Steps 1-3 until one of the stopping conditions is satisfied.

The policy elimination algorithm always stops in a finite number of rounds. It
either finds an optimal action plan (@*)ex or yields the result that no SPE in
pure strategies exists.

Given our previous results, it is straightforward that this algorithm works. Unless
the algorithm stops in the current round, Step 3 always eliminates some candidate
policies, i.e. the set of candidate policies A gets strictly smaller with each round.
Therefore U (x; A7) weakly decreases and v;(x; A7) weakly increases each iteration.
Condition (20) is easier satisfied for higher values of U (x; A7) and for lower values
of v;(x; Al ). Therefore, a necessary condition that an action profile is ever played
in a simple equilibrium is that it survives Step 3. Conversely, if the polices &k(flj )
all survive Step 3, it follows from Proposition 2 that a simple equilibrium with
these policies exists. That they constitute an optimal action plan simply follows
again from the fact that U(x; A7) weakly decreases and v;(x; A7) weakly increases
each round. That the algorithm terminates in a finite number of rounds is a
consequence of the finite action space and the fact that the set of possible policies
A¥ gets strictly smaller each round.

4.3 Example: Quantity competition with stochastic re-
serves

As numerical example, consider a stochastic game variation of the example Cournot
used to motivate his famous model of quantity competition. There are two pro-
ducers of mineral water, who have finite water reserves in their reservoirs. A state
is two dimensional x = (x1, z3), where x; describes the amount of water currently
stored in firm ¢’s reservoir. In each period, each firm ¢ simultaneously chooses
an integer amount of water a; € {0,1,2,...,2;} that it takes from its reservoir
and sells on the market. Market prices are given by an inverse demand function
P(ay,as). A firm’s reserves can increase after each period by some random integer
amount, up to a maximal reservoir capacity of z. We solve this game with the
following parameters: maximum capacity of each firm x = 20, discount factor
0= %, inverse demand function P(aq,as) = 20 — a; — ay, and reserves refill with
equal probability by 3 or 4 units each period.'*

14To replicate the example, follow the instructions on the Github page of our R package dyn-
game: https://github.com/skranz/dyngame. This package has implemented the policy elimina-
tion algorithm described above. This example with 21*21=441 states is solved with 8 iterations
of the outer loop, and takes less than a minute on an average notebook bought in 2013.
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Prices under Collusion
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Figure 2: Optimal collusive prices as function of firms’ reserves. Brighter areas
correspond to lower prices.

Figure 2 illustrates the solution of the dynamic game by showing the market prices
in an optimal collusive equilibrium as a function of the oil reserves of both firms.

Starting from the lower left corner, one sees that prices are initially reduced when
firms’ water reserves increase. This seems intuitive, since firms are able to supply
more with larger reserves. Yet, moving to the upper right corner we see that
equilibrium prices are not monotonically decreasing in the reserves: once reserves
become sufficiently large, prices increase again. An intuitive reason for this effect is
that once reserves grow large, it becomes easier to facilitate collusion as deviations
from a collusive agreement can be punished more severely by a credible threat to
sell large quantities in the next period.

Figure 3 corroborates this intuition. It illustrates the sum of punishment payoffs
v1(z) + vz(x) that can be imposed on players as a function of the current state. It
can be seen that harsh punishments can be credibly implemented when reserves
are large.
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Sum of punishment payoffs
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Figure 3: Sum of punishment payoffs v;(x) + v9(z). Darker areas correspond to
lower punishment payoffs.

5 Decomposition methods

To deal with imperfect public monitoring, we first reformulate the recursive APS
approach for our class of games. We then adapt the implementation of Judd,
Yeltekin, and Conklin (2003) to our framework with transfers and imperfect public

monitoring to develop decompositions methods that allow to approximate the set
of PPE payofts.

5.1 APS

The recursive methods of APS directly transfer to stochastic games (see e.g. Judd
and Yeltekin (2011) for such an extension). In the following, we adapt the termi-
nology to our case of a stochastic game with transfers.

For any collection of (continuation payoff) sets W = [, x W(x) with W(z) C R™,
we say that an action profile @ € A(x) is enforceable on W in state z if there
exists a function

w:Y x X = |J W(2) with w(y,2") € W(a') for all y,

zeX

such that « is a Nash equilibrium of the static game with action set A(z) and
payoffs
(1 —=8)mi(x,a) + 0FE[w;(y, 2|z, a.
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The function w enforces a. Note that the payoff functions in the static game are
continuous. We say that a payoff vector v is decomposable on W in state x if
there exist a € A(z) and w such that « is enforced by w on W in state x and

v = (1 = 8)mi(x, ) + dEw;(y, )|z, a.

We define an operator B that maps a collection of continuation payoff sets WV into
a collection of sets of decomposable payoffs:

B(W) = ] {v € R*;v is decomposable on W in state z}.

zeX

We have illustrated in Section 3.2 how the possibility of upfront transfers trans-
forms the payoff set into a simplex. To account for upfront transfers (but not yet
assuming compactness of the payoff set), we define a set operator T' that maps a
subset W C R" to

n n
T(W) = {u € R"| Zu, < Zwi and u; > wf for some w, w?, ..., w™ € W} .
i=1 i=1

(21)
The possibility of up-front transfers is incorporated by defining

D(W) = XuexT(BOWV).),
A set W is called self-generating if YW C D(W).

Lemma 1. The results of APS apply:

(i) The operator D is monotone: If W C W' then D(W) C D(W').
(ii) If W is compact, then D(W) is compact.

(iii) The set of PPE payoffs U = Tl ex U(xo) is a fized point of D.
(iv) Any bounded self-generating set is a subset of U.

Proof. Closely following the arguments in APS yields the results (i) — (iv) for the
operator B. The results for D follow since T' is monotone, preserves compactness,
and has U(xg) as a fixed point. Moreover, applying 7" to a subset of U(zy) yields
again a subset of U(zo). O

Note that when we apply the operator D to a compact set, the result is a collection
of n-simplices, which are spanned by n + 1 vectors of the form (uq,...,u,) with
u; = v; for all but at most one j, and u; = U — 3=, ., vs, for some vy, ..., v,, U.
To represent such a simplex, one therefore needs only n 4+ 1 numbers, and if we
iteratively apply the operator D, we obtain decreasing sequences of such simplices.
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To ensure that ¢/ is a subset of the sets in this sequence, we start with vectors U 0
and v° satisfying U%(z) > U(z) and v)(x) < v;(z) forallz € X and alli =1, ..., n.
For example, we can start with the maximum feasible payoff

n

U°(z) = mngui(a:, s),

=1

where we know from Dutta (1995) that maximization over the set of pure Markov
strategies suffices, and transfers play no role. Similarly, v can be the min-max
payoffs

v)(x) = inf sup u;(z, o),

(o o2}

where again transfers play no role. When we iteratively apply D to the set

F=T[{ueR": 3 u < U%) and u > ()},

zeX =1

then YU C D™(F) for all m. This follows from monotonicity of the operator D
and the fact that U is a fixed point of D. The sequence D™ (F') converges against
U in the Hausdorff-metric.

Lemma 2. The set ooy D™(F) is equal to U.
Proof. The proof is omitted as it directly follows from APS. O

As the intersection of compact sets, the set of PPE payoffs &/ must be compact
as well.

5.2 Decomposition methods for outer and inner approxi-
mations

For any (U,v) € R™*DIXI and action profile o € A(z), let W(z, a, U, v) be the
set of all w that enforce « in state x on the set of continuation payofts

[[{veRr": zn:luZ < U(2') and u; > v(z)}.

z’'eX

We can rewrite our decomposition operator D as a map D ROHDIX] _y RHDIX |
which maps a collection (U,v) of maximum total payoffs and minimum payoffs
into a new collection of such payoffs (U’,v) such that the following conditions
hold:

e For each state z € X

A

Ulx) = ij)U(x, a,U,v) (22)



where U(m, a, U, v) is defined by U(x, a,U,v) = —oo if the set W(x, o, U, v)
is empty and else by

A

Ulx,a,U,v) = max (1 —0)I(z,a) + 0E[W (y,2')|z,a]. (23)

weW(z,a,Uv)
 For each state v € X and i € {1,...,n}

: = i Ai ) b, U7 24
vi(z) = min 0i(z,, U,v) (24)
where ¥;(z, a, U, v) is defined by 0;(z, o, U, v) = o0 if the set W(z, a, U, v) is
empty and else by

Blea,U0) = min (1= 8)m(r,0) + 0E[wi(y. 2,0l (25)

Note that the condition that w € W(x, o, U, v) means that w;(y, z') > v; for all i =

1,...,n, and
n

W(ya l’l) = Z wi(y> ml) < Ua

i—1
and

(1= 0)m(x, ;o) + 6B w;|x, a;, )] > (1 — 0)mi(w, 4, a—;) + O E|w;|z, a;, o/fi]

for all a;,a; € A;(x) with a(a;) > 0. Therefore, the optimizations over W are just
linear optimization problems.

We can directly write the results for the operator D obtained in Lemma 1 in
terms of this new operator D. Since U is compact, it is described by the largest
total payoffs and lowest possible payoffs (U, 7). Hence (U,v) is a fixed point of
ﬁ, which means that

Ulz) = U(x,ac(x), U, o) for all z, (26)
vi(x) = 03(x, &' (x), U, ) for all z,i (27)

for some action plan (a*),. This action plan is the action plan of an optimal
simple equilibrium which according to Theorem 1 describes the PPE payoff set.
Since U is the largest fixed point of D, a converse also holds: Among all action
plans (a*); and values (U, v) that satisfy equations (26) and (27), the action plan
that maximizes > ,cx (U(x) — X", v;(x)) must be an action plan of an optimal
simple equilibrium, with the corresponding (U, v) describing the PPE payof set.

There is also a connection between simple equilibria and the compact self-generating
sets of D. There exists a simple equilibrium with an action plan (a*).ex if and
only if there exist U and v such that

Uz,a®,Uwv) > Ulx) forall z € X, (28)
vi(z,a",Uv) < wvi(z)forallz € X,i=1,...,n. (29)
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Finally, we know from Lemma 2 that if we start with a set F that contains U,
the sequence (D™(F)),, that is obtained by iteratively applying the operator D
converges to 4 in the Hausdorff metric as m — oo. Expressed in terms of the
operator D, this result means: Starting with values U%(z) > U(z) and 09(z) <
i(z) for all z € X, the sequence (D™(U°,1°)),, converges to U (from above)
and v (from below). Repeatedly applying the operator D yields in every round a
tighter outer approximation for U and o, and hence for the PPE payoff set.

A tighter outer approximation is obtained more quickly if the initial values U°
and v° are closer to U and v. For games with imperfect monitoring, good initial
values U° and v° will be the optimal joint equilibrium and punishment payoffs of
a perfect monitoring version of the game, which can be solved much faster using
the methods from Section 4.

To obtain bounds on the approximation error, it is also necessary to obtain inner
approximations of the equilibrium payoff sets. To find an inner approximation for
the payoff set of a repeated game, Judd, Yeltekin, and Conklin (2003) suggest to
shrink the outer approximation of the payoff set by a small amount, say 2%-3%
and to apply the decomposition operator on the shrunken set. If the decomposi-
tion operator increases the shrunken set then the decomposed set forms an inner
approximation of the equilibrium payoff set.

A similar approach can be used in our framework. One reduces the outer ap-
proximations of U and increases the outer approximations of o by a small amount
and then applies the decomposition operator D on these adjusted values. If the
decomposition increases all joint equilibrium payoffs and reduces all punishment
payoffs, we have found an inner approximation. For each decomposition step, we
get a corresponding action plan consisting of the optimizers of (22) and (24). For
this action plan the linear program (LP-OPP) always has a solution. We obtain
from that solution a simple equilibrium and an even tighter inner approximation.

An alternative method to search for an inner approximation is to run (LP-OPP)
for the action plans that result from the decomposition steps of the outer approx-
imation. If a solution exists, it also forms an inner approximation.

Inner and outer approximations allow to reduce for every state and regime the
set of action profiles that can possibly be part of an optimal action plan. Let
(U™, v"™) and (U v°") describe the inner and outer approximations. Consider
a state z and an action profile o € A(z). If W(z, o, U, v°") is empty, then
there does not exist any PPE in which « is played and we can dismiss it. If o can
be enforced by some w € W(x, o, U, v°%), but

lj(l’, , Uout7vout) < Um(ZL‘),

then o will not be played in the equilibrium regime in state x of an optimal
equilibrium, since even with the outer approximations of U and v it can only
decompose a lower joint payoff than the current inner approximation. Similarly,
if

iz, o, U™, 0" > UZ”(:E)
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then o will not be an optimal punishment profile for player ¢ in state x.

Hence, finer inner and outer approximations speed up the computation of new
approximations since a smaller set of action profiles has to be considered. More-
over, if the number of candidate action profiles can be sufficiently reduced, it may
become tractable to compute the exact payoff set by applying the brute force
method from Subsection 3.6 on the remaining action plans.

6 Principal-agent examples

The following two examples illustrate how our results can be used to easily obtain
closed form solutions in two examples of principal-agent relationships that are
described by stochastic games.

6.1 A principal-agent game with a durable good

In our first example, a principal (player 1) can employ an agent (player 2) to pro-
duce a single durable good for her. If the product has been successfully produced,
the state of the world will be given by x7, otherwise it is xy. In state x(, the
agent can choose production effort e € [0, 1] and the product will be successfully
produced in the next period with probability e. The principal’s stage game payoff
is 1 in state x; and 0 in state zy. The agent’s stage game payoff is —ce where
¢ > 0 is an exogenous cost parameter. For the moment, we assume that once the
product has been produced, the state stays x; forever.

Perfect monitoring We first consider the case of perfect monitoring. In the
terminal state x7, joint payoffs are given by U(z;) = 1. The joint equilibrium
payoff in state x( in a simple equilibrium with effort e satisfies

U(zg,e) = —(1—=06)ce+d(e+ (1 —e)U(xg,e)) <
d—(1—=9)c
U(xo,@) = me.

We assume (1 —9)c < 0, i.e., it is socially efficient that the agent exerts maximum
effort. In an optimal simple equilibrium, the agent’s punishment payoff in both
states is vo = 0, and the principal’s punishment payoffs are v1(xg) = 0 and
v1(z1) = 1. Using Theorem 2, we can conclude that effort e can be implemented
if and only if U(xg,e) > e, i.e., if

(1—0)c<do*(1—e). (30)

Condition (30) implies that positive effort can be induced under sufficiently large
discount factors, while it is not possible to induce full effort e = 1 under any given
discount factor § € [0,1). The intuition is simple. Once the product has been
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successfully built, the game is in the absorbing state x;. Since payoffs in x; are
fixed, the principal will not conduct any transfers. The principal can only reward
the agent for positive effort in the case that the agent has exerted high effort but
the project has not been successful, which happens with probability (1—e). Thus,
the agent cannot be reimbursed for full effort, but there is a positive chance to
get reimbursed for partial effort.

Imperfect monitoring and costly punishment Consider now imperfect mon-
itoring in the form that the principal can only observe the realized state. It is
straightforward that then in every simple equilibrium the agent chooses zero ef-
fort and no transfers are conducted. The reason is that the principal cannot be
induced to make any payments in state x;, and at the same time any transfers
by the principal in the state zy increase the agent’s incentives not to exert any
effort. This observation illustrates how monitoring imperfections may be much
more devastating in a stochastic game than in a repeated game: in a standard
repeated principal agent games with a noisy public signal about the agent’s effort
choice, (approximately) socially optimal effort levels can always be implemented
for sufficiently large discount factors.

We now introduce the possibility of costly punishment. Assume that in state x;
the agent can choose destructive effort d € {0, 1} where d = 1 has the consequence
that the product is destroyed in the next round and the state becomes again x,
while for d = 0 the product remains intact. The agent incurs costs for destructive
efforts of size kd with k£ > 0.

To find the optimal simple equilibrium, we consider the possible action profiles of
the agent. If the optimal simple equilibrium has no destructive effort (a3(z1) = 0),
it must be the same as in the previous case with zero production effort. If the
optimal simple equilibrium has a}(z1) = 1, the principal’s punishment payoffs are
v1(zg) = 0 and
v1(zq) = (1 =9).

The agent’s punishment payoff is still v = 0 in both states. To find the optimal
simple equilibrium for the case that positive effort is possible, note first that max-
imum incentives for the agent are created by maximally rewarding the transition
between the two states compared to staying in a state. According to condition
(28), an action plan with equilibrium regime action a$(z¢) = e > 0 and punish-
ment regime action a}(zg) = 1 can be part of a simple equilibrium if and only if
there exist values U(zq), U(x1) with —(1—48)ce+0(eU(x1)+(1—e)U(x0)) > U(xo)
and 1 > U(x;) such that

— (1= 8)k + 6U (29) > 0. (31)

and
¢ € arg max —(1—=9)cé+0é(U(x1) — (1 —0)) (32)

This last condition shows that every optimal simple equilibrium in which the agent
chooses positive effort must have maximal effort e = 1. Moreover, the conditions
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are easiest to satisfy if U(zy) = 1 and U(zg) = § — (1 — d)c¢, which means that
destroying output is not optimal on the equilibrium path. Overall, it follows that
high effort can be implemented if and only if

(1—0)(6c+ k) < 62 (33)

and
(1—0)c <o (34)

Hence, if the agent has the opportunity to exert costly effort to punish the prin-
cipal after a successful project, full effort provision can be implemented under
sufficiently large discount factors.

The constructed simple equilibria use optimal penal codes in which the agent
uses a punishment that is costly in the current period and that is only conducted
because it is rewarded in the future. In repeated games, simple Nash reversion
strategies that punish any deviation by an infinite reversion to a stage game
Nash equilibrium are generally also able to implement cooperative actions given
sufficiently large discount factors. In the current example, a natural analog to
Nash reversion would be to punish any deviation from required effort or transfers
by reverting to the unique MPE of the stochastic game: e = d = 0 and no
transfers. However, such a punishment cannot achieve any positive effort by the
agent, since the principal will never make positive transfers in state x;. The
ineffectiveness of reversion to a MPE as a punishment in this simple example
illustrates that for stochastic games it is particularly useful to have a simple
characterization of equilibria with optimal penal codes.

6.2 A principal-agent game with an outside option

As our last example, we consider a principal-agent game in which the agent can
devote effort to two different tasks: He can exert production effort in the rela-
tionship with the principal, and/or exert search effort to work towards an outside
alternative.' This example illustrates that the presence of transfers does not im-
ply that the set of PPE payoffs is increasing in the discount factor. We will see
that when the agent can invest into his outside option, his punishment payoff is
increasing in the discount factor and consequently the set of PPE payoffs can be
smaller for larger discount factors.

The game between the principal (player 1) and the agent (player 2) is as follows.
If the game is in the initial state xg, principal and agent first decide whether
they take their outside option, which yields 0 for both. If both decide against the
outside option, the agent can choose unobservable productive effort e € [0, 1] and
search effort s € [0, 1]. The cost of effort to the agent is equal to c(e, s) = (e+s)>.

15The set-up is reminiscent of Herbold (2014), who analyzes on the job search. In our sim-
ple example, however, it is never optimal to have the agent spend some effort in the current
relationship and some on search.
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With probability e, the principal receives a return y > 2.1 'With probability s,
the game moves to a state x1, in which the game is the same as in zy except that
taking the outside option would now yield 1 to the agent. We assume that the
agent can search independently of the principal: If one of the players decides to
take the outside option in state z, the agent can choose search effort s € [0, 1] at
cost ¢(0, s) to increase the probability s of a state transition.!”

The principal’s min-max payoff is v; = 0 in both states. The agent’s min-max
payoff in state x; is given by v9(z1) = 1, while in state xq is given by

_ B d—(1—=9)s
Ua(0) = max g S,

which can be calculated to equal

2 — 46+ 302 — 2(1 — 8)v/1 — 20 + 202
52 ‘

1_)2($0) =

The punishment payoff v9(z¢) is increasing in d, since the same search effort creates
a larger surplus when 0 is larger. All these min-max payoffs are achieved by MPE.

To characterize the set of PPE payoffs we need to determine the largest surplus
that can be generated in a simple equilibrium. Note first that any effort level that
can be implemented in a simple equilibrium in state x; can also be implemented in
state xg. Since we are only interested in the simple equilibrium that generates the
largest possible surplus in state xg, it suffices to consider simple equilibria in which
agent and principal would take the outside option in state x1, yielding payoff vector
(0,1) in state x;. Since the agent’s marginal return to effort is constant, we only
need to consider simple strategy profiles in which the agent either concentrates
on creating surplus in the relationship (s(zg) = 0) or outside of the relationship

(e(xg) = 0).18

The maximum feasible joint surplus is achieved by work effort eZ = 1 and search
effort s¥P = 0, yielding a surplus of U°(xy) = y — 1. We first ask for conditions
on the discount factor ¢ such that U°(zg) can be attained in a simple equilibrium.
In this case, the algorithm that is outlined in Section 5.2 would terminate after
the first step. If a high return y is rewarded with maximum continuation payoff
U%(zo), and a low return 0 with minimum continuation payoff v5(zg), the return
to production effort if s = 0 is equal to 2=(U°(zq) — ¥a(x0)), while the return

to search effort if e = 0 is equal to 25(1 — ¥a(20)). Hence, first best effort is

16The assumption y > 2 guarantees that cooperation is efficient. It follows from the analysis
below that for y < 2, no cooperation at all is possible.

1"Note that this assumption implies that the discount factor in this example cannot be inter-
preted as a survival rate of the relationship.

18To see this formally, note that for any continuation payoffs given by w, the agent maximizes
—c(e+5)(1—0)+0d(s+ (1 —s)ew(y,0) + (1 —s)(1 —e)w(0,0)). The Hesse matrix has principal
determinants equal to —c” (e +s)(1—§) and (¢’(e+s)(1—10))? — (<" (e +s)(1 — ) + §(w(y, 0) —
w0(0,0)))? < 0, hence there is no interior maximum.
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enforceable with continuation payoffs between vy(zo) and U%(zo) in state zg if
and only if the following two conditions are satisfied:

y=>2

and 5

T 1 m(2) 2 (1) =2 (35)
The first condition is always satisfied. Evaluating condition (35), one can show
that it is never satisfied for y = 2, but that for y > 2 there is a cut-off 4 such that

it holds for larger 8. If § > ¢, the set of PPE payoffs is given by

U(zo) = {(u1,up) € R ug +uy =y — 1,uy > 0,uy > Ua(w0)}

In this range of discount factors, the payoff set is shrinking in ¢, since the agent
needs to receive a larger share of the surplus as the discount factor increases.

For § < ¢, the largest effort level is given by a fixed point equation (corresponding
to equation (26)). An effort level e > 0 can be implemented with continuation
payoffs between v5(zo) and U if {25(U — v2(x0)) = 2e and U > 1. The largest
possible effort level in a simple equilibrium is therefore given by the largest solution
to
— 6 N
€= m(e(y —€) — V2(z0))

that also satisfies e(y — e) > 1. If no solution exists, no cooperation is possible
and U(xy) only contains the payoff vector (0, ve(z0)).
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Appendix: Remaining Proofs

Proof of Theorem 2:

For each state x € X and regime k € K, condition (15) allows to choose a
distribution u¥(z), i = 1, ...,n, of the surplus such that
S uf(z) = (1 - §)(x,d") + §E[U|z, a"] (36)

i—1
and
uf(:v) > max(1 — §)m;(x, a;, alfl-) + dE[v;|x, a;, alii], (37)

aj
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holding with equality for i = k. A simple strategy profile with transfers p¥(x, a*, ')

achieves this distribution of payoffs if the expected transfers t¥(x) = (1—8) E[p! (95 a®, )|z, a*]
satisfy
5t (z) = (1 — §)mi(z, a*) + S E[u|x, a*] — uf (z).

If we define t¥(x) by this condition, it holds that 3", t*(x) = 0. Moreover, it
follows from condition (37) that

Eluf — v, a*] >t (x).

The intuition behind this is that it is more difficult to induce an action and a
subsequent expected payment afterward than to induce an expected payment.
We still need to show that for each & € K and state x there exist payments
ti(z') = (1—0)pk(x, a*, 2") for each state 2’ such that the following three conditions
hold:

S*E
&)
I
<
(8
&\
N~—
|
s
&)

(38)
ti(z) = 0 (39)

ZQ(x’M)ti(w’) = () (40)

We use Theorem 22.1 in Rockafellar’s “Convex Analysis” to show that such pay-
ments exist. This theorem says that the existence of a vector with entries ¢;(z’),
i =1,..,n, ' € X, that satisfies the above three conditions is equivalent to the
non-existence of real numbers X\;(z") > 0, p(2'), and n;, i = 1,..,n, ' € X, that
satisfy the following two conditions:

Ni(2") 4+ p(2’) + mig(2’|x) = 0 for all i, 2 (41)
Z Ai(2') (w5 (2") — vi(2)) + Zl it (z) < 0. (42)

We assume to the contrary that such a solution to (41) and (42) exists. These
two conditions imply that

n

—Z,u(x’)(U(x’) — > wi(a) + Zm i Eluf —v;|z]) < 0.

=1

q(z|z) (

Let & be a state with 442 < (“ﬁ for all 2/ € X. Since condition (41) holds for
all 2 € X, it also holds for 2’ = Z, i.e., n; = % Hence, it follows that

ST ) - S @) £

' q(Z|x) i=1 = a(Z|z)

This implies



By definition of Z and because of condition (14), the expression on the left-hand-
side must be non-negative. Hence, we arrived at a contradiction, which means
that the system given by (38), (39), and (40) must have a solution and we can
define payments (1 — 0)pf(x,a*, 2') = t;(2').
It remains to define the payments following a unilateral deviation. For any com-
bination of states z,z’ and signal y with y; # a¥(x) and y_; = a*,(z) we choose
payments

(1= 0)pi(z,y,2") = uf(2') — vi(2'), (43)
such that continuation payoffs after a deviation in the action stage are indeed
given by v;. Payments for players other than ¢ can be defined such that

(1-— 5)p?(x,y,x’) < uj(x') —vj(a)

and .
> Pz, y,a’) =0,
j=1

using condition (14).

Now we have to show that the so defined simple strategy profile is indeed a PPE.
The budget and payment constraints are satisfied by definition. The relevant
action constraints take the form

uf(x) > Amj}é )((1 - 6)7Ti<x7 a’iu a’liz) + (SE[’UZ‘LE7 dia alii])v
a;€EA;(x

and are therefore also satisfied (see inequality 37).

Proof of Proposition 4: For a given policy a, let C{ be an operator mapping the
set of punishment payoffs in itself defined by

Ci (0[] = ci(x, a(x), v;)

It can be easily verified that C{ is a contraction-mapping operator. It follows
from the contraction-mapping theorem that player i’s best-reply payoffs are given
by the unique fixed point of C, which we denote by v;(a). This means

vi(a) = G (vi(a)) (44)
It is a well known result that the operator C}' is monotone:
vi <0 = Cf(vi) < G (1) (45)

where v; < @; is defined as v;(z) < 9;(z)Vr € X. We denote by [C?]* the operator
that applies k& times C' and define its limit by

(71> = Jim [CF].

k—o0
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The contraction mapping theorem implies that [C#]> is well defined and trans-

forms every payoff function v into the fixed point of C¥, i.e.

(77 (v) = v(a) (46)
Furthermore, it follows from monotonicity of C¢ that
Ci(vi) < v = [CF]™(vi) <oy (47)
and
Cia(’Ui) < v, = [Cf]oo(vl) < v; (48)
where two payoff functions u; and @; satisfy u; < @; if u; < 4; and u; # ;.

We now show that for any two policies a and a the following monotonicity results

hold

@) = v(@) (49)
) > v@) (50)
Cr(v(@) £ CHv(@) (51)

We exemplify the proof for (50). It follows from (44), the left part of (50), (47)
and (46) that

v(a) = C¢(v(a) > Ci(v(a) = [CF] (v(a) = v(a).

(49) and can be proven similarly. To prove (51), assume that there is some @ with
C#(v) < C%(v) but © # v. We find

v=Ci) < Civ) < (CF) " () =0

which contradicts the assumption o # v.

Intuitively, these monotonicity properties of the cheating payoff operator are cru-
cial for why the algorithm works. If one wants to find out whether a policy a can
yield lower punishment payoffs for player ¢ than a policy a, one does not have
to solve player i’'s Markov decision process under policy a. It suffices to check
whether for some state x the cheating payoffs given policy @ and punishment pay-
offs v(a) are lower than v(a)(x). If this is not the case for any admissible policy
a then a policy a is an optimal punishment policy, in the sense that it minimizes
player ¢’s punishment payoffs in every state.
The fixed point condition (44) of the value determination step and the policy
improvement step (19) imply that v" = C¢" (v") > C* "' (v"). We first establish
that if

o =G () = T (). (52)

then we have v] = 0;. For a proof by contradiction, assume that condition holds
for some r but that there exists a policy a such that v(a") £ v(a), i.e. @ leads
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in at least some state x to a strictly lower best-reply payoff for player ¢ than a”.
By (51) this would imply C# (v") ¢ C%w"). This means that @ must also be a
solution to the policy improvement step and since (52) holds, we then must have

G (v") = CP(v")

However, (49) then implies that v(a") = v(a), which contradicts the assumption

v(a") £ v(a). Thus if the algorithm stops in a round R, we indeed have vf = 0;.
If the algorithm does not stop in round r, it must be the case that v" = C* (v") >
Ce " (v"). (50) then directly implies the monotonicity result v" > v"*!. The
algorithm always stops in a finite number of rounds since the number of policies

is finite and there a no cycles because of the monotonicity result.ll

36



	Titelblatt4
	Impressum
	Goldluecke_Kranz
	Introduction
	The game 
	Characterization with simple equilibria
	Simple strategy profiles
	Distributing with up-front transfers
	Optimal simple equilibria can implement all PPE payoffs
	Intuition: Stationarity on equilibrium path by balancing incentive constraints
	Intuition: Settlement of punishments in one period
	A brute force algorithm to find an optimal simple equilibrium

	Solving Games with Perfect Monitoring
	Characterization for a given action plan
	Finding optimal action plans
	Example: Quantity competition with stochastic reserves

	Decomposition methods
	APS
	Decomposition methods for outer and inner approximations

	Principal-agent examples
	A principal-agent game with a durable good
	A principal-agent game with an outside option

	References
	Appendix: Remaining Proofs


