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Abstract

We discuss combining sign restrictions with information in external instruments
(proxy variables) to identify structural vector autoregressive (SVAR) models. In one
setting, we assume the availability of valid external instruments. Sign restrictions
may then be used to identify further orthogonal shocks, or as an additional infor-
mation on the shocks identified by the external instruments. In the latter case, the
additional restrictions may be overidentifying and checked against the data. In a sec-
ond setting, we assume that proxy variables are only ‘plausibly exogenous’. In this
case, various inequality restrictions based e.g. on correlations or variance contribu-
tions can be used for set-identification. This can be combined with conventional sign
restrictions to further narrow down the set of admissible models. For our B-model
type Proxy SVAR setup, we develop Bayesian inference and discuss the computation
of Bayes factors to check overidentifying restrictions. We illustrate the usefulness of
our methodology in estimating the effects of oil market and monetary policy shocks.
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∗We thank participants of the Konstanz-Tübingen-Hohenheim Econometrics Seminar, the CFE-
CMStatistics 2017, the 2017 annual meeting of the German Statistical Society as well as seminar par-
ticipants at University of Melbourne, Monash University, National University of Córdoba, Universität
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1 Introduction

Structural vector autoregressive (SVAR) models have become a popular tool in applied

macroeconomics for investigating the importance of different structural shocks by impulse

responses, forecast error variance or historical decompositions. A key challenge in SVAR

analysis is the identification of structural shocks and a number of different approaches

have been used in the literature. This includes traditional short- and long-run (exclusion)

restrictions, identification by some form of heteroskedasticity, sign restrictions on impulse

responses, and the use of external instruments.1 In this paper, we discuss how to combine

the latter two, i.e. we discuss how to identify SVAR models by combining sign restrictions

with information in time series that act as proxy or external instrumental variables for the

structural shocks of interest. We argue that combining both approaches can be useful in

many situations to sharpen identification and mitigate some drawbacks that may occur

when using either sign restrictions or external instruments only.

Sign restrictions have been introduced into the SVAR literature by Faust (1998), Canova

& De Nicoló (2002) and Uhlig (2005) as an alternative to existing methods involving con-

troversial short- and long-run exclusion restrictions on the effect of structural shocks. In

their most common form, they are inequality restrictions imposed on contemporaneous or

higher horizon responses to the structural shocks of interest. More broadly, they have been

exploited to bound other (functions of) structural parameters of the model, e.g. elasticities

or variance decompositions. In the context of monetary policy shocks, for instance, sign

restrictions have been used to avoid the so-called ‘price-puzzle’ by restricting the response

of the price level to be non-positive for a certain period after a contractionary monetary

policy shock but leaving the response of interest (e.g. the response of output) unrestricted.

Employing sign restrictions leads to set identification only. An important practical problem

of sign restrictions is that they are often rather weak, resulting in a wide range of admissible

models with impulse responses that are not very informative.

Identification by external instruments provides another popular alternative method for

identifying structural shocks. While the underlying economic shock of interest is unobserv-

able to the researcher, there may be related time series (proxy variables) available that act

1See e.g. Kilian & Lütkepohl (2017) for an overview of different SVAR models and their applications.
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as instrumental variables (IV) for the unobserved structural shock. The resulting model is

often called a Proxy VAR model and many papers have successfully exploited this iden-

tification strategy, including Stock & Watson (2012), Mertens & Ravn (2012), Gertler &

Karadi (2015), Gerko & Rey (2017), Mertens & Montiel Olea (2018), Lakdawala (2019),

Känzig (2019) and Peersman (2020). While conceptually appealing, the external IV ap-

proach has also potential drawbacks. First, the exogeneity of instruments is questionable

in many applications (see e.g. the discussion in Ramey (2016) on the narrative measures

of monetary policy shocks). Furthermore, even a proxy variable that is truly exogenous

may be a weak instrument, which complicates reliable inference substantially (Montiel Olea

et al. 2020).

In this paper, we contribute to the literature by discussing how to combine the proxy

variable approach with sign restrictions. In a first setting, we assume that credibly ex-

ogenous instruments are available for some structural shocks of interest. In this case, sign

restrictions can be used for two purposes. On the one hand, sign restrictions may identify

additional shocks from the group of shocks that are orthogonal to those identified by the

external instruments. On the other hand, sign restrictions can be imposed in addition

to the IV conditions such that they are informative with respect to the shocks for which

instruments are available. For instance, sign restrictions can be helpful to disentangle mul-

tiple shocks that are to be identified by external instruments (see e.g. Piffer & Podstawski

(2017)). Moreover, if the external variables are only weakly informative, sign restrictions

may offer an extra piece of identifying information. Additional sign restrictions on these

shocks may be overidentifying. As one example, consider the case of one structural shock

identified by one valid external instrument. Then, the respective structural parameters

are point-identified by the IV conditions and additional sign restrictions on this shock are

overidentifying. In this paper, we propose to use Bayes factors as a statistical tool to check

the validity of the additional restrictions.

In a second setting, we assume the availability of relevant but not necessarily exogenous

proxy variables. In the microeconometric literature, these are known as ‘plausibly exoge-

nous’ instruments (Conley et al. 2012), a terminology which we adapt in the remainder of

this paper. Relaxing the corresponding exogeneity conditions instantly leads to a loss of
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point identification. However, as in the microeconometric literature, inequality restrictions

can be used to bound the amount of endogeneity and to obtain a set-identified model, which

may still be informative about the underlying structural relationships. In our context, the

researcher can choose different types of inequality restrictions. We propose to incorporate

various forms of prior information on the relation of the structural shock and the ‘plausibly

exogenous’ proxy variables. For example, this may come from a stance on the sign of their

correlation with the shocks or from using lower bounds on variance contributions. Further-

more, these restrictions can be easily combined with conventional sign restrictions on the

responses of variables to further reduce the set of admissible models. One key advantage of

this combination approach is that the additional information in the proxy variables helps

to avoid wide and uninformative impulse response intervals often observed from SVARs

using sign restrictions only.

To conduct inference, we rely on a unified econometric framework, a Bayesian SVAR

model augmented by equations for the proxy variables. We formulate priors and posteriors

for a B-model type SVAR, i.e. we use a model where the reduced form errors ut are mod-

eled as a linear function of the structural shocks εt, that is ut = Bεt.
2 We summarize the

posterior distribution of the structural parameters by Markov Chain Monte Carlo (MCMC)

methods. In order to sample from the conditional distribution of the structural parameters

B, we use an Accept Reject Metropolis Hastings (AR-MH) algorithm (Chib & Greenberg

1995). The AR-MH explores the set-identified posterior efficiently exploiting the impor-

tance distribution developed in Arias et al. (2018, 2019). Finally, we discuss estimation of

Bayes factors, which provides a formal statistical tool to check overidentifying restrictions

against the data.

Our paper is related to an emerging literature that has discussed some form of combining

sign restrictions with external instruments specifically, or non-model information more

broadly. Related to our first setting, Cesa-Bianchi & Sokol (2017) discuss identification

of an additional shock by sign restrictions in a Proxy SVAR. Furthermore, Jarociński &

Karadi (2020) uses sign restrictions to disentangle two shocks assumed to be correlated

2The basic structure of our Proxy SVAR is of the same form as the one used in Angelini & Fanelli
(2019). As explained in Section 2, this setup is labeled as a B-model SVAR in some parts of the literature
(see e.g. Lütkepohl (2005, Chapter 9)).
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with one external instrument. Both identification strategies can be handled within our

inference framework, which provides a coherent way to formulate priors directly on the

structural parameters of interest. Finally, Nguyen (2019) also suggests combining external

instruments with sign restrictions on the corresponding structural parameters, and further

uses Bayes factors to test these restrictions. In contrast to our paper, his approach relies

on the framework of Baumeister & Hamilton (2015), and hence the formulation of prior

distributions on structural parameters of A = B−1.

As mentioned above, our second setting is closely related to the microeconometric litera-

ture on plausibly exogenous instruments, which suggests to bound the degree of endogene-

ity to obtain a set-identified simultaneous equation model (Nevo & Rosen 2012, Conley

et al. 2012). Another closely related paper is Ludvigson et al. (2020) introducing so-called

‘external inequality constraints’. Essentially, their approach entails discarding models in

which the shocks that are not or only loosely correlated with the proxy variables.3 Our

approach is more general with respect to important modeling aspects: For instance, we

not only discuss discarding models based on correlations but also consider a variety of re-

strictions (for instance based on variance contributions) that may reflect different degrees

of confidence a researcher has about the relation of the proxy and the structural shock of

interest. Furthermore, we also propose methods that do not require the choice of a thresh-

old on the correlation between the shocks and external variables. Finally, the Bayesian

inference framework that we develop in this paper allows to properly take into account all

sources of model and estimation uncertainty. There are several other papers that are more

broadly related to the idea of exploiting non-model information to sharpen identification

in set-identified SVAR models. For instance, Kilian & Murphy (2012) and Baumeister &

Hamilton (2019) demonstrate how to incorporate microeconomic evidence on elasticities

to sharpen the set of identified SVAR models. Moreover, Antoĺın-Dı́az & Rubio-Ramı́rez

(2018) and Zeev (2018) combine sign restrictions with narrative evidence on the sign of

structural shocks and their historical decompositions.

Methodologically our paper also relates to the recent literature developing Bayesian

Proxy VARs (Caldara & Herbst 2019, Arias, Rubio-Ramı́rez & Waggoner 2019, Giacomini

3See also Uhrin & Herwartz (2016) for a similar idea.
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et al. 2019, Nguyen 2019).4 In contrast to these papers, we consider inference in the B-

model representation of the proxy-augmented SVAR model. As surveyed in Bruns & Piffer

(2019), the B-model type SVAR is the most popular among applied researchers. Further-

more, we discuss the computation of Bayes factors to test the plausibility of overidentifying

restrictions in B-models. To the best of our knowledge, both modeling aspects are new to

the literature. Finally, in contrast to the aforementioned papers, we consider independent

prior distributions on the reduced form autoregressive coefficients. While this comes with

the need to rely on Markov Chain Monte Carlo methods for efficient inference, it allows

to impose a wider spectrum of prior information including asymmetric priors across equa-

tions. This includes the original Minnesota prior of Litterman (1986) as well as a variety

of hierarchical shrinkage priors (Koop et al. 2010).

We illustrate the usefulness of our method in two empirical applications. In the first

application, we revisit a benchmark SVAR model for the global market of crude oil, which

is typically identified by a combination of sign restrictions and elasticity constraints (Kilian

& Murphy 2014, Baumeister & Hamilton 2019). We demonstrate how additional identi-

fying information from external instruments can be used to check competing oil supply

elasticity constraints from the literature against the data. In our second application, we

use a combination of sign restrictions and additional information in the Romer & Romer

(2004) narrative measure to identify the effects of monetary policy shocks in the United

States. Given that the literature has doubts about the exogeneity of this narrative shock,

we illustrate our second combination approach, which entails relaxing the exogeneity con-

dition. Using our method, we no longer find puzzling results and, at the same time, more

informative impulse response functions.

The remainder of the paper is structured as follows. Section 2 introduces the econometric

modeling framework, discusses identifying restrictions, Bayesian inference as well as the

estimation of Bayes factors. Section 3 illustrates the suggested methods in applications to

oil market shocks and US monetary policy shocks. Section 4 summarizes and concludes.

4See also Drautzburg (2016) for an earlier contribution.
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2 Methodology

In the following, we introduce the econometric framework used to identify SVARs by com-

bining information from sign restrictions and proxy variables. We start by describing a

SVAR model augmented by equations for the dynamics of the external proxy variables in

Section 2.1. Section 2.2 discusses combining sign restrictions with proxy variables when the

exogeneity restrictions of the external variables are assumed to be valid. In Section 2.3, we

discuss the setting where we exploit information from proxy variables that are just ‘plausi-

bly exogenous’, i.e. we cover proxy variables whose variation may partly reflect endogenous

components. Bayesian inference in the model is discussed in Section 2.4 and Section 2.5

discusses the estimation of Bayes Factors.

2.1 Augmented SVAR model

We consider a B-model type SVAR model (see e.g. (Lütkepohl 2005, Section 9.1)) given by

yt = ν +

p∑
i=1

Aiyt−i +Bεt, εt ∼ (0, In), (2.1)

where yt = (y1t, . . . , ynt)
′ is a n × 1 vector of endogenous time series, ν is a n × 1 vector

of intercepts, and Ai, i = 1, . . . , p are n × n matrices of autoregressive coefficients. The

dynamics of the system is assumed to be driven by n structural shocks εt, where we assume

that the elements of εt are orthogonal (contemporaneously uncorrelated) and are normalized

to have unit variances. The n × n matrix B is the contemporaneous impact matrix and

reflects the immediate responses of the variables yt to the structural shocks εt. We assume

stability of the VAR such that detA(z) = det(IK −A1z− . . .−Apzp) 6= 0 for |z| ≤ 1. This

implies that the SVAR(p) has a MA(∞) representation given by yt = µy +
∑∞

j=0 ΞjBεt−j =

µy +
∑∞

j=0 Θjεt−j, where µy = E(yt) and the n× n coefficient matrices Θj = ΞjB, are the

structural impulse response functions (IRFs). The reduced form MA(∞) matrices Ξj can

be computed recursively from Ξj =
∑j

i=1 Ξj−iAi with Ξ0 = In.

Without additional restrictions this model is not identified. To see this, denote by

ut = Bεt the VAR forecast errors with corresponding reduced form covariance matrix

E(utu
′
t) = Σu = BB′. For any matrix Q ∈ O(n) of the orthogonal group O(n) = {Q ∈
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Rn×n : QQ′ = In}, an observationally equivalent model B̄ = BQ can be obtained capable

to generate the same reduced form dynamics.5 Therefore, restrictions must be imposed on

the structural impact matrix B in order to pin down a meaningful structural model.

In this paper, we focus on identification by combining sign restrictions with information

in external variables. Let mt = (m1t, . . . ,mkt)
′ be a k × 1 vector of external variables

designed to provide identifying information about a subset of k < n structural shocks. Our

econometric methods are based on augmenting the SVAR given in (2.1) by equations for

mt: yt

mt


︸ ︷︷ ︸
ỹt

=

 ν

νm


︸ ︷︷ ︸
ν̃

+

p∑
i=1

Ai 0n×k

Γ1i Γ2i


︸ ︷︷ ︸

Ãi

 yt−i

mt−i


︸ ︷︷ ︸
ỹt−i

+

B 0n×k

Φ Σ
1/2
η


︸ ︷︷ ︸

B̃

εt
ηt


︸ ︷︷ ︸
ε̃t

,

εt
ηt

 ∼ (0, In+k).

(2.2)

As noted in Mertens & Ravn (2012), the additional equations have an intuitive measurement

error interpretation. The k variables mt are modeled as a linear function of lagged values

of ỹt, the structural errors εt, plus a zero mean measurement error ηt, which is assumed to

be orthogonal to the structural shocks εt, i.e. ηt ⊥ εt. Γ1i, Γ2i and Φ are k × n coefficient

matrices. Corresponding n× k blocks of zeros in the upper right parts of Ãi and B̃ ensure

that mt and the measurement error ηt are external to the model and have no implications

for the dynamics of yt. We also assume that B̃ has full rank, rk(B̃) = n + k, throughout

the paper. Usually, proxy variables are designed to be unpredictable by lagged values of

yt and mt, and do only contain contemporaneous information about εt. In this case, one

can set Γ1i = Γ2i = 0, and the model shares the more natural representation introduced

in Mertens & Ravn (2012). To keep notation simple, for the remainder of this section, we

assume Γ1i = Γ2i = 0 holds, implying that the model reduces to

yt = ν +

p∑
i=1

Aiyt−i +Bεt, (2.3)

mt = νm + Φεt + Σ1/2
η ηt. (2.4)

Without any further restrictions, it is straightforward to show that the augmented SVAR

5This yields the same reduced form covariance matrix Σu = (BQ)(BQ)′ = BQQ′B′ = BB′.
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model is only identified up to orthogonal rotations of the form B̄ = B̃Q, where we now

have Q = diag(Q1, Q2), Q1Q
′
1 = In and Q2Q

′
2 = Ik. The block structure of Q reflects

the fact that the measurement error ηt is assumed to be orthogonal to the dynamics in yt,

implying a n × k block of zeros in the upper right part of B̃. Through restrictions on Φ,

identifying information can be imposed to pin down values of B or equivalently, to narrow

down values of Q1.

Before discussing our proposed restrictions in more detail, we quickly relate the aug-

mented model to inference frameworks discussed in Arias, Rubio-Ramı́rez & Waggoner

(2019) and Caldara & Herbst (2019). Note that in both papers, the SVAR model is aug-

mented by equations for external variables and inference is conducted in a Bayesian way.

In the following, we will use the SVAR notation of Lütkepohl (2005). Then, our model

could be seen as an augmented B-model where, abstracting from lags, we assume that

ỹt = B̃ε̃t. In turn, Arias, Rubio-Ramı́rez & Waggoner (2019) discusses inference for a

proxy-augmented SVAR of the form Ã0ỹt = ε̃t where Ã0 =

A0 0

A02 A03

 has a lower tri-

angular block structure. Therefore, their model can be best thought of an augmented

A-model in the terminology of Lütkepohl (2005). Finally, the model of Caldara & Herbst

(2019) can be written as an AB-model, writing Ã0ỹt = B̃ε̃t and setting Ã0 =

A0 0

0 Ik


and B̃ =

In 0

Φ Σ
1
2
η

. Which model representation is more useful in practice is highly ap-

plication specific and depends on whether restrictions are more naturally imposed on B or

B−1. As surveyed by Bruns & Piffer (2019), the B-model is very popular in applied SVAR

analysis. In particular, Bruns & Piffer (2019) look at publications in the top-five journals

and the Journal of Monetary Economics. They find that out of all papers involving SVAR

models, 76% use the B-model representation.
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2.2 Combining sign restrictions with instrumental variables re-

strictions

We first discuss combining sign restrictions with instrumental variable (IV) restrictions,

assuming that the external variables mt are valid exogenous instruments. For this purpose,

partition the structural shocks εt and the matrix Φ as

εt = [ε′1t
1×q

: ε′2t
1×(n−k−q)

: ε′3t
1×k

]′ and Φ = [φ1
k×q

: φ2
k×(n−q−k)

: φ3
k×k

]. (2.5)

Without loss of generality, assume that out of all n structural shocks, the researcher iden-

tifies the last k shocks (ε3t) using k instrumental variables mt. In our model, E(mtε
′
t) = Φ

and using the partitioning in (2.5), we find

[E(mtε
′
1t) : E(mtε

′
2t) : E(mtε

′
3t)] = [φ1 : φ2 : φ3].

The assumption that mt are valid instruments for ε3t, implies that mt is correlated with ε3t

but uncorrelated with all other shocks in the system, that is E(mtε
′
1t) = 0 and E(mtε

′
2t) = 0.

Consequently, the IV conditions imply

[φ1 : φ2] = 0k×n−k, (2.6)

and

φ3 6= 0, rk(φ3) = k, (2.7)

where (2.6) and (2.7) are the exogeneity and relevance conditions, respectively. The amount

of information in mt can be conveniently quantified in terms of the reliability matrix Λ =

Σ−1
η φ3φ

′
3. For k = 1, this yields a scalar corresponding to the fraction of variance in the

instrument mt explained by ε3t. For k > 1, the eigenvalues could be used for interpretation,

yielding the corresponding fractions of variance explained by the principal components of

mt (Mertens & Ravn 2013). If k = 1, the scalar shock of interest (ε3t) is point identified

by the external instrument conditions, while for any k > 1, restrictions (2.7) and (2.6) do

only partition the structural shocks into shocks ε3t that correlate with the instruments,
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and shocks ε1t and ε2t, which are orthogonal to the instruments. Therefore, for k > 1,

additional restrictions are necessary to identify disentangle the effects of each component

in ε3t.

Next, we discuss how additional sign restrictions can be useful in this setting. First,

sign restrictions can be used to identify q additional shocks ε1t within the same model. Let

B = [B1
n×q

: B2
n×n−k−q

: B3
n×k

] be a partitioning of the impact matrix corresponding to (2.5).

Consequently, the impact effects of shocks ε1t are given in B1. In this case, sign restrictions

need to be imposed directly on B1 or on functions of B1 and Ai, i = 1, . . . , p, such as

impulse response functions, forecast error variance and historical decompositions. Within

the unified framework of this paper, the additional identified shocks ε1t are guaranteed to

be orthogonal to those shocks identified by IV restrictions. Sign restrictions may also be

imposed on ε3t, the shocks identified by external instruments. There are two reasons why

this can be useful. First, if more than one shock is to be identified by IV, sign restrictions

can be imposed to further disentangle each component within ε3t. For example, Piffer

& Podstawski (2017) use sign restrictions on φ3 when k = 2. Alternatively, they can

be imposed on the impact matrix B3 (see e.g. Bertsche (2019)). Second, if the external

variables are only weakly informative, sign restrictions may offer additional identifying

information. Then, by combing the external IV with ‘internal’ sign restrictions, the need

for non-standard inference procedures can be mitigated. One interesting sign restriction in

this direction has been proposed in Arias, Rubio-Ramı́rez & Waggoner (2019), who impose

a lower bound on the eigenvalues of Λ, ruling out instrument irrelevance a priori. As we

will demonstrate in the empirical application in Section 3.1, the combination of IV with

sign restrictions can be very useful to further sharpen identification. Note that whenever

the additional restrictions are overidentifying, they may also be checked against the data.

In our Bayesian framework this can be done in form of Bayes factors and we discuss how

to compute them in our framework in Section 2.5.
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2.3 Combining sign restrictions with information of plausibly ex-

ogenous instruments

There are many situations in which the researcher is less confident about the exogeneity

of the external variable. In the following, we discuss ways how to use these variables for

identification even if they are not convincingly exogenous. In reference to the microe-

conometric literature, we adopt the terminology and call these proxy variables ‘plausibly

exogenous’ (cf. Conley et al. (2012)). As discussed in Conley et al. (2012), relaxing the

exogeneity constraints leads to a loss of point identification. However, knowledge on the

relation between the shocks and proxy variables can still be exploited to bound the set

of admissible models via appropriate inequality restrictions. Furthermore, these can be

combined with more conventional sign restrictions on structural parameters of the SVARs

to further narrow down the set of parameters.

For ease of exposition, we discuss the typical situation where we want to identify a

single shock, say ε1t (q = 1) or equivalently B1, the first column of the impact matrix.

Furthermore, assume that we have a scalar (k = 1) proxy variable mt designed for ε1t,

which is only ‘plausibly exogenous’ such that the approach in Section 2.2 cannot be used

in a credible way. In what follows, we suggest various restrictions that bound the relation

between the proxy variable mt and the structural shock of interest ε1t. For simplicity, we

outline the restrictions for the case with one proxy and one shock, although they can easily

be adapted to more general settings. We propose the following restrictions on the relation

between mt and the structural shock ε1t:

1. Retain all models where the correlation between mt and the structural shock to be

identified ε1t is positive, i.e. keep models if

Corr(mt, ε1t) =
E(mtε1t)√

Var(mt)
> 0.

From an economic point of view, this means that we are confident that the proxy

variable mt is at least positively correlated with the structural shock it has been

designed for. Note that this restriction does little harm if the proxy is only loosely

associated with the structural shock and might be interesting for variables, which are
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assumed to be only weakly informative for ε1t.

2. Retain all models where the correlation between mt and the structural shock exceeds

a threshold c̄, i.e. keep models if

Corr(mt, ε1t) =
E(mtε1t)√

Var(mt)
> c̄1.

This restriction has been applied by Ludvigson et al. (2020). Of course, it is more

restrictive than only a sign restriction on the correlation in that it rules out more

models from the set of admissible SVARs. However, in our view, choosing c̄1 is

difficult and hard to justify in practice.

3. Retain all models for which the variance of mt explained by the structural shock ε1t

exceeds a threshold c̄2. To implement this restriction, recall that with k = 1 the

measurement error equation for mt is

mt = νm + Φεt + σηηt, ηt ∼ (0, 1),

where Φ is a 1 × n vector. Since the regressors εt are orthogonal by assumption,

the contribution of the jth structural shock to the variance of the proxy mt is ωj =

φ2
j/Var(mt), where φj is jth element of Φ. Therefore, one would keep models whenever

ω1 > c̄2. (2.8)

To circumvent the problem of choosing the threshold value c̄2, we also suggest the

following alternatives:

4. Keep only models where the identified shock of interest ε1t shows a larger correlation

with the proxy mt than any other shock in the system, i.e. keep models if

Corr(mt, ε1t) > Corr(mt, εjt), j = 2, . . . , n. (2.9)

5. Keep only models in which the identified shock of interest ε1t explains more of the
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variation in mt than any other orthogonal component of the system, i.e. keep models

if

ω1 > ωj, j = 2, . . . , n. (2.10)

In words, this discards all SVAR models where other shocks explain more variation

of mt than the one to be identified (ε1t).

6. Keep only models in which the identified shock of interest ε1t explains more of the

variation in mt than all other shock in the system together, i.e. keep models if

ω1 >
n∑
j=2

ωj. (2.11)

Note that some of the suggestions that we make require identification of the other

orthogonal components εjt, j = 2, . . . , n in the model. If they are not explicitly identified

by economic restrictions, they may be thought of as arbitrary rotations of the underlying

economic driving forces. As discussed in Section 2.4, we specify a uniform prior over the

set of admissible model, rendering all rotations of εjt, j = 2, . . . , n equally likely. Note that

restrictions 1.), 2.) and 6.) are invariant to orthogonal rotations of the remaining shocks

and therefore, their identification (and hence the prior) does not matter. To see this for

restriction 6.), consider the equation

mt = νm + φ1ε1t + φ2ε2t + σηηt,

where φ1 is 1 × 1, φ2 is 1 × n − 1 and ε2t contains the n − 1 other shocks of the system.

Also consider the alternatively identified shocks ε̄2t = Q′2ε2t with corresponding regression

coefficients φ̄2 = φ2Q2 where Q2Q
′
2 = In−1. Then, it holds

n∑
j=2

ωj =
φ2φ

′
2

φ2
1 + φ2φ′2 + σ2

η

=
φ̄2φ̄

′
2

φ2
1 + φ̄2φ̄′2 + σ2

η

.

Applied researchers need to choose one particular way of exploiting the proxy variable

from the menu above. As with the choice of alternative identification schemes in SVARs,

this choice needs to be made by the researcher against the background of the particular ap-

13



plication. For instance, in some applications, researchers may have a good understanding of

reasonable values for threshold values. If no such information is available, then researchers

may revert to methods 4.) to 6.).

We highlight that any of the restrictions outlined above may be easily combined with

conventional sign restrictions on structural parameters of the model, e.g. on the effects of

structural shocks or model implied elasticities. As we demonstrate in our empirical appli-

cations (Section 3.2), a combination with conventional sign restrictions can be a promising

identification strategy if the latter alone are not strong enough to yield informative results.

2.4 Bayesian inference

In the following, we discuss how to conduct Bayesian inference for the augmented B-

model type SVAR subject to the sign and zero restrictions discussed previously. Let

Ã = [ν̃, Ã1, . . . , Ãp], Ỹ = [ỹ1, . . . , ỹT ]′ and X = [x1, . . . , xT ]′ where xt = [1, ỹ′t−1, . . . , ỹ
′
t−p]

′.

Furthermore, let Sa and Sb be full rank selection matrices of zeros and ones such that α =

Savec(Ã) and β = Sbvec(B̃) are the nonzero free elements in Ã and B̃. We work with a stan-

dard Gaussian likelihood for the data. Given known presample values ỹ0, ỹ−1, . . . , ỹ−p+1,

the likelihood of the augmented model is:

p(Ỹ |α, β) = (2π)−
(n+k)T

2 |B̃B̃′|−
T
2 exp

(
−1

2
tr(B̃−1′B̃−1(Ỹ −XÃ)(Ỹ −XÃ)′)

)
. (2.12)

As the Gaussian likelihood is fully characterized by the first two moments, the likelihood

is invariant to certain rotations of B̃. If no exogeneity restrictions are imposed, using B̃

or B̃∗ = B̃Q with Q = diag(Q1, Q2) (see Section 2.1) gives the same likelihood value. In

case we assume valid exogeneity assumptions, any rotation needs to satisfy Φ̃ = ΦQ1 =

[0k×n−k, φ̃3] as to ensure that the zero block in Φ is maintained.

With respect to the prior, we specify independent distributions for β and α. Specifi-

cally, for the autoregressive coefficients we assume a normal prior given by p(α;α0, Vα) ∼

N (α0, Vα). While this choice allows the user to include a wide range of prior informa-

tion, normality implies conditional conjugacy and hence ensures straightforward treatment

within Markov Chain Monte Carlo (MCMC) methods. Compared to the Bayesian proxy
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SVARs of Caldara & Herbst (2019) and Arias, Rubio-Ramı́rez & Waggoner (2019), who ex-

ploit the fully conjugate prior on the A-model parameters pioneered in Sims & Zha (1998),

the independent prior allows to potentially incorporate a wider spectrum of prior informa-

tion that can be asymmetric across equations. These include the original Minnesota prior

of Litterman (1986) and various popular hierarchical shrinkage priors (Koop et al. 2010).

As discussed in Sims & Zha (1998) (Section 5.2), any asymmetric prior on the reduced

form coefficients would be very difficult to handle in their framework.

For the unique elements β of the augmented impact matrix B̃ we set the prior density

to

p(β; v0, S0) ∝ | det(B̃)|−(v0+(n+k)) exp

(
−1

2
tr

(
S0

(
B̃B̃′

)−1
))

, (2.13)

where v0 is a scalar and S0 a positive definite matrix of size n+ k × n+ k.

For k = 0, B̃ is an unrestricted full rank matrix, and the prior is equivalent to other priors

used in sign-restricted SVAR models. To see this, decompose the impact matrix as B̃ = PQ

where P is a lower triangular matrix with positive diagonal elements and Q an orthonormal

matrix (QQ′ = In+k). Then, this prior choice induces that Σ = PP ′ ∼ iW(v0, S0) follows an

inverse Wishart and a Uniform (Haar) distribution for Q (Muirhead 1982), which is exactly

the prior used in Uhlig (2005). Furthermore, our prior is equal to the prior specified in

Arias et al. (2018) when both p = 0 and k = 0. Then, a simple change of variables for

Ã = B̃−1 yields the Jacobian of transformation | det(Ã)|−2(n+k) and the prior density of

their paper p(Ã; v0, S0) ∝ | det(Ã)|v0−(n+k) exp
(
−1

2
tr
(

Ã
′
S0Ã

))
.

The conjugacy of p(β) assures that akin to the likelihood, the prior is uniform over

the set of admissible models. Hence, any identification of the model does only come from

the restrictions discussed in Section 2.3 and 2.2, rather than from an inadvertent choice

of the prior. At this point, we highlight that the algorithms considered in this paper are

general enough to handle other choices of p(β). For example, if the researcher wants to

impose additional identifying information in terms of Bayesian priors of the forms recently

discussed in Baumeister & Hamilton (2015), the density in equation (2.13) can be replaced

accordingly.

The posterior distribution of the model parameters is proportional to the product of the
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priors and the likelihood:

p(α, β|Ỹ ) =
p(Ỹ |α, β)p(α)p(β)

p(Ỹ )
, (2.14)

where the normalizing constant is p(Ỹ ) =
∫
p(Ỹ |α, β)p(α)p(β)dαdβ. Given that the pos-

terior is of no known form, we summarize posterior moments using Markov Chain Monte

Carlo (MCMC) methods. In the following we will describe the MCMC algorithm in more

detail.

We start with some notation. Denote by θ = {α, β} the set of SVAR parameters, and

by θ−x the set of parameters excluding x. Setting arbitrary initial values θ(0) = {α(0), β(0)},

the proposed MCMC generates draws θ(i), i = 1, . . . ,M from the posterior by iteratively

drawing from the following conditional distributions:

1. Draw α(i) from p
(
α|θ−α, Ỹ

)
∼ N (ᾱ, V̄α) where mean and variance are:

V̄ −1
α = V −1

α + Sa((BB
′)−1 ⊗X ′X)S ′a,

ᾱ = V̄α

(
V −1
α + Savec(X ′Ỹ (BB′)−1)

)
.

2. Draw β(i) from p
(
β|θ−β, Ỹ

)
which is proportional to:

p
(
β|θ−β, Ỹ

)
∝ |B̃B̃′|−

T+v0+(n+k)
2 exp

(
−1

2
tr(B̃−1′B̃−1(S0 + Ũ Ũ ′))

)
,

where Ũ = Ỹ − XÃ. Since the conditional distribution is of no known form, we

rely on an Accept Reject Metropolis Hastings (AR-MH) step (Tierney 1994, Chib &

Greenberg 1995). For a given proposal distribution p?
(
β|θ−β, Ỹ

)
, which we discuss

at a later point, the AR-MH algorithm involves two steps:

(a) Accept-reject step: Generate a candidate β? ∼ p?
(
β|θ−β, Ỹ

)
and accept it with

probability

αAR (β?) = min

1,
p
(
β?|θ−β, Ỹ

)
cAR × p?

(
β?|θ−β, Ỹ

)
 ,

which is repeated until a draw is accepted.
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(b) Metropolis-Hastings step: Accept the proposal β? with probability αMH(β(i−1)|β?).

Let D (β) =
{
β : p

(
β|θ−β, Ỹ

)
≤ cAR × p?

(
β|θ−β, Ỹ

)}
and DC (β) its comple-

ment. Then:

αMH(β(i−1)|β?) =



1 if β(i−1) ∈ D (β)

cAR × p?
(
β?|θ−β, Ỹ

)
p
(
β?|θ−β, Ỹ

) if β(i−1) ∈ DC (β) , β? ∈ D (β)

p
(
β?|θ−β, Ỹ

)
p?
(
β(i−1)|θ−β, Ỹ

)
p
(
β(i−1)|θ−β, Ỹ

)
p?
(
β?|θ−β, Ỹ

) if β(i−1), β? ∈ DC (β)

The constant cAR in the AR-MH step can be tuned to trade off the efficiency of the AR

step against the acceptance probability in the MH step.6 We iteratively tune this constant

over a preliminary run of the MCMC as to capture twice the average ratio between target

and proposal distribution. For the applications considered in this paper, this resulted in

a reasonable trade-off between AR and MH steps, yielding acceptance probabilities of the

latter in the range of 85%-99%.

The success of the AR-MH step depends critically on the design of the proposal distri-

bution p?
(
β|θ−β, Ỹ

)
. In Appendix A, we outline in detail a proposal distribution which

relies on the methodology developed in Arias et al. (2018, 2019) to efficiently explore the

conditional distribution of the set-identified parameters in B̃. Briefly summarized, the

proposal involves drawing a candidate β? = Sbvec(B̃?) for B̃? = chol(Σ)Q by drawing

Σ ∼ iW(v, S) from an inverse Wishart with shape parameter S and degrees of freedom

v, and Q = diag(Q1, Q2) from a uniform distribution of Q1 and Q2 subject to the zero

and sign restrictions discussed in Section 2.2 and 2.3. In order to capture the shape of the

conditional distribution, we set v = T + v0 and S = Ũ Ũ ′+S0. To evaluate the importance

density of a candidate draw β?, we use numerical derivatives which account for the change

of variables underlying the transformation of random variables Σ, Q to β.

6To see this, note that for increasing values of cAR, the MH acceptance probability eventually ap-
proaches one given that any β? ∈ D. However, at the same time the performance of the AR step deterio-
rates, as more and more draws are necessary until a draw is accepted.
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After some burn in period, the algorithm is used to generate a large number of draws

of the posterior distribution of θ. Those draws are then used in a standard fashion to

summarize posterior quantities numerically.

2.5 Bayes factors

As outlined in Section 2.2, it can be useful to impose overidentifying sign restrictions in

SVARs identified by external instruments. In this section, we discuss the use of Bayes

factors as an econometric tool that quantifies the statistical support of such overidentifying

restrictions. The use of Bayes factors as a tool to test overidentifying restrictions in SVARs

is not completely new to the literature, see e.g. Woźniak & Droumaguet (2015), Lütkepohl

& Woźniak (2018), Lanne & Luoto (2020) and Nguyen (2019). Let p(Ỹ |M1) and p(Ỹ |M2)

the marginal likelihoods for two SVAR models (M1 and M2) identified by different sets of

restrictions. Then, the Bayes factor is given by BF21 = p(Ỹ |M2)/p(Ỹ |M1) and directly

quantifies the posterior odds of model M2 over M1. We refer readers to the comprehensive

treatment in Kass & Raftery (1995) for more details on interpreting the size of Bayes

factors.

In the following, we will demonstrate how Bayes factors can be computed in a straightfor-

ward way from the MCMC output of the less restrictive model. Throughout the following,

denote by M1 the SVAR model with less restrictive identifying restrictions. In this paper,

we assume that the prior of the overidentified model M2 can be factored as:

p(θ|M2) =
p2(θ)p(θ|M1)∫
p2(θ)p(θ|M1)dθ

=
p2(θ)p(θ|M1)

cθ
. (2.15)

Therefore, p2(θ) is any additional identifying information imposed on the top of those

assumed by the less restrictive model M1. For the overidentifying sign restrictions that

we aim to test, p2(θ) simply takes the form of a uniform distribution over the restricted

parameters space S ∈ Θ, that is p2(θ) ∝ 1(θ ∈ S). But we note that more generally,

p2(θ) can be any probability density function designed to provide additional identifying

information on the structural parameters. For example, those can take the form proposed

in Baumeister & Hamilton (2019), who impose truncated t-distributions on model implied
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elasticities.

Note that for all priors of form (2.15), the posterior can be factored in an equivalent

way:

p(θ|M2, Ỹ ) ∝ p2(θ)p(θ|M1)p(Ỹ |θ),

∝ p2(θ)p(θ|M1, Ỹ ),

such that

p(θ|M2, Ỹ ) =
p2(θ)p(θ|M1, Ỹ )∫
p2(θ)p(θ|M1, Ỹ )dθ

=
p2(θ)p(θ|M1, Ỹ )

cθ|Ỹ
(2.16)

Under the prior (2.15) for M2, the Bayes factor can be simplified considerably. First, note

that using Bayes theorem and the fact that the models have the same parameters θ, we

find
p(Ỹ |M2)

p(Ỹ |M1)
=
p(Ỹ |θ)p(θ|M2)/p(θ|M2, Ỹ )

p(Ỹ |θ)p(θ|M1)/p(θ|M1, Ỹ )
=
p(θ|M2)p(θ|M1, Ỹ )

p(θ|M1)p(θ|M2, Ỹ )
.

Using expressions of equation (2.15) and (2.16) for prior and posterior of M2 respectively,

the Bayes factor simplifies to:

BF21 =
p(θ|M2)p(θ|Ỹ ,M1)

p(θ|M1)p(θ|Ỹ ,M2)
=

(
p(θ|M1)p2(θ)c−1

θ

)
p(θ|Ỹ ,M1)

p(θ|M1)
(
p(θ|M1, Ỹ )p2(θ)c−1

θ|Ỹ

) =
cθ|Ỹ
cθ

.

Furthermore, note that cθ|Ỹ and cθ can be expressed as expectations of p2(θ) over prior and

posterior distribution respectively:

cθ|Ỹ
cθ

=

∫
p2(θ)p(θ|M1, Ỹ )dθ∫
p2(θ)p(θ|M1)dθ

=
Eθ|Ỹ [p2(θ)]

Eθ[p2(θ)]
.

This makes it straightforward to estimate cθ|Ỹ and cθ using draws from the prior and

posterior respectively of the less restrictive model M1. In particular, we may use the

simulation consistent averages ĉθ|Ỹ = 1/J1

∑J1
j=1 p2(θ(j)) for θ(j) ∼ p(θ|M1, Ỹ ) and ĉθ =

1/J2

∑J2
i=1 p2(θi) for θ(i) ∼ p(θ|M1). By a standard limiting theorem, the Monte Carlo
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estimators ĉθ|Ỹ and ĉθ are asymptotically normal:

√
T

ĉθ|Ỹ − cθ|Ỹ
ĉθ − cθ

→ N
0,

σ2
θ|Ỹ 0

0 σ2
θ


and by using the ‘Delta’ method, we find

√
T

(
ĉθ|Ỹ
ĉθ
−
cθ|Ỹ
cθ

)
→ N

(
0,

σ2
θ

c2
θ|Ỹ

+
σ2
θ|Ỹ · c

2
θ

c4
θ|Ỹ

)
.

This last result can be used to obtain an approximate standard error for B̂F21 = ĉθ|Ỹ /ĉθ,

where in practice, we replace the unknown quantities in the variance by corresponding

estimates. Note that for σ2
θ|Ỹ and σ2

θ , a Newey-West estimator (Newey & West 1987) is

used in order to account for the autocorrelation inherent in simulating draws from the prior

and posterior by MCMC methods.

3 Empirical applications

We demonstrate the usefulness of our methodological framework in two empirical applica-

tions. In Section 3.1, we use a combination of sign and instrumental variables restrictions

to identify supply and demand shocks that drive oil prices. In that application, we rely

on an instrument that is credibly exogenous and therefore, we use the type of restrictions

described in Section 2.2. In Section 3.2, we analyze the effects of monetary policy shocks

on macroeconomic and financial variables. For identification, we rely on the restrictions

introduced in Section 2.3 that exploit identifying information from a ‘plausibly exogenous’

instrument in combination with conventional sign restrictions on structural parameters.

3.1 The importance of oil supply shocks for driving oil prices

Following the work of Kilian (2009), SVAR models have been extensively used to disentangle

oil price movements into supply and demand shocks (see e.g. Kilian & Murphy (2012),

Kilian & Murphy (2014), Herrera & Rangaraju (2020), Baumeister & Hamilton (2019), and

Caldara et al. (2019)). Despite the large number of studies, there is still no consensus on the
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relative importance of oil supply and demand shocks. One question debated in the literature

is how important oil supply shocks are for the determination of oil prices. In this line of

the literature, the importance of oil supply shocks is measured by a forecast error variance

decomposition (FEVD), i.e. the fraction of forecast error variance accounted for by the

supply shock. Interestingly, the literature suggests a fairly wide range of FEVD estimates.

Empirical results show a range between just above 0% to more than 40% depending on the

underlying identification strategy. What drives these remarkably different estimates? To

identify demand and supply shocks, most of the papers mentioned above use a combination

of sign restrictions together with additional restrictions on the implied short-term oil supply

elasticity. They essentially differ in how much the elasticity is restricted. In particular,

studies that have imposed very small short-term supply elasticities for identification, arrive

at estimates close to the lower bound (Kilian & Murphy 2012, 2014, Herrera & Rangaraju

2020). On the other hand, when larger supply elasticities are imposed for identification,

one may find supply shocks to be equally important as demand shocks (Baumeister &

Hamilton 2019, Caldara et al. 2019). Thus, in these models the relative importance of oil

supply shocks depends to a large extent on the elasticity restrictions imposed.

In the following, we illustrate how our proposed method from Section 2.2 can be help-

ful to revisit the importance of oil market shocks. In a first step, we avoid the use of

potentially controversial elasticity constraints by combining sign restrictions on impulse

response functions with restrictions implied by using the oil supply shock of Kilian (2008)

as an external instrument. Furthermore, as the resulting model is informative about oil

supply elasticities, we can use Bayes factors to check different elasticity constraints used in

the literature against the data.

We identify the shocks of interest in a VAR following recent specifications for the global

oil market (see e.g. Känzig (2019) and Baumeister & Hamilton (2019), henceforth: BH19).

In this model, the variables in the VAR are

yt = (prodt, reat, rpot, it)
′,

where prodt is the log of world oil production, reat is a proxy for real economic activity,

where we choose the industrial production index of Baumeister & Hamilton (2019). Fur-
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thermore, rpot is the real price of oil and it is the log of crude inventories, as computed in

Kilian & Murphy (2014) and seasonally adjusted via the X-13ARIMA-SEATS program of

the Census Bureau. We include p = 13 lags as the variables are included in levels (BH19

use p=12 but with variables in first differences).

In our analysis, we include monthly data starting in 1958M01 up to 2017M12. Here,

we use sample information until 1983M12 to train a prior distribution based on ordinary

least square quantities (OLS). Thereby, we avoid specifying a subjective prior distribution,

which may influence Bayes factors used to check the elasticity restrictions later in the

analysis. Furthermore, given that oil prices were regulated before 1974, we broadly follow

Baumeister & Hamilton (2019) in inflating the variance in the prior distribution by a factor

of ten, and thereby heavily discount the information we draw from the training sample.7

In the structural analysis, we follow Kilian & Murphy (2014) in identifying three out of

the four shocks in the SVAR. In particular, we identify an oil supply shock denoted as εst ,

and aggregated demand shock εadt and an oil-specific demand shock εodt . For details on the

economic interpretation of these shocks, we refer the reader to Kilian & Murphy (2014).

Identification is achieved by (a combination of) the following restrictions:

1. Sign restrictions (SR):


u∆prod
t

urea
t

u
rpo
t

u∆i
t

 =


− + + ∗

− + − ∗

+ + + ∗

∗ ∗ + ∗




εst

εadt

εodt

ε4t

 .

2. Instrumental variable (IV) constraints: E[εstmt] 6= 0, while E[εadt mt] = E[εodt mt] =

E[ε4
tmt] = 0.

3. Elasticity constraints. Denote the supply elasticities by η1 = B12/B32 and η2 =

B13/B33. We then use two different restrictions suggested in the literature:

7Specifically, we set α0 = α̂0 and Vα = 10 · V̂0, where α̂0 are OLS estimates of α and V̂0 is the covariance
estimate of α̂ based on OLS. Furthermore, we set v0 = T0/10 and S0 = 10T0Σ̂ where T0 is the sample
size of the training sample and Σ̂ the sample covariance matrix of the (training sample) OLS residuals
augmented by the instrument mt.
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(a) HR20: Herrera & Rangaraju (2020) set an upper bound of 0.04 that covers

all the recent micro-economic estimates computed by Anderson et al. (2018),

Bjørnland et al. (2017) and Newell & Prest (2019). Hence: p(η1/2 ≤ 0.04) = 1

and 0 else. This upper bound is therefore a little above the 0.0258 imposed in

Kilian & Murphy (2014).

(b) BH19: Baumeister & Hamilton (2019) impose identifying information on the oil

supply elasticity in form of a positively truncated t-distribution with mode at

0.1, scale parameter equal to 0.2 and 3 degrees of freedom, η1/2 ∼ t(0.1, 0.2, 3).

Compared to (a), this attaches high probability mass to much larger values.

The impact sign restrictions in 1.) are those from Kilian & Murphy (2014). The restric-

tions in 2.) reflect the relevance and exogeneity restrictions of the instrumental variable

mt, indicating that mt is correlated with the oil supply shocks εst but uncorrelated with all

other shocks in the system. As an instrument mt, we make use of the exogenous supply

shock series as proposed in Kilian (2008), which reflects unexpected oil supply disruptions

caused e.g. by geopolitical turmoils and wars. For our analysis, we have recomputed Kil-

ian’s monthly oil supply shock series from oil production data and extended it to match

our estimation sample. The extended series includes shocks related to the Libyan civil war

and militia attacks during 2011 and 2013. We give a detailed description on how we have

constructed the time series and a plot in Appendix B. Finally, the elasticity restrictions

that have been used in the literature are summarized in 3.).

We discuss the main results from our empirical analysis next. First, we illustrate in the

top row of Figure 1 that using different elasticity restrictions in conjunction with of sign re-

strictions implies fairly different results with respect to the importance of oil market shocks.

The figure contains contributions of identified supply and demand shocks to the forecast

error variance of oil prices. The solid line with the shaded area gives median estimates

with 68% posterior credibility sets for a model identified with sign restrictions together

with elasticity constraints from Baumeister & Hamilton (2019)[combining 1. + 3(b)]. The

dashed lines give corresponding estimates for a model identified by sign restriction together

with elasticity constraints in Herrera & Rangaraju (2020) [combining 1. + 3(a)]. The 68%

posterior credibility set of the former model (BH19) implies a much larger contribution of
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Figure 1: Posterior median with 68% credibility region for the forecast error variance
decomposition (FEVD) of the real price of oil. Top: sign restricted SVARs plus BH19 (solid
line with shaded area) compared to sign restricted model plus HR20 (dashed). Bottom:
sign restricted SVARs with IV restrictions (solid line with shaded area) compared to sign
restricted model with IV and HR20 restrictions.

oil supply shocks (up to 50%), while the HR20 model with much tighter elasticity bounds

yields substantially smaller contributions for the supply shock with values ranging between

just above 0% to about 20%.

Next, we consider the results of a model identified by combining the sign restrictions 1.)

with the IV restriction in 2.). This corresponds to the setting introduced in Section 2.2.

We argue that this combination is helpful because using either of the two restrictions in

isolation may not be useful in the current application. First, using only sign restrictions

would result in large and uninformative credibility sets for the variance decomposition of

the oil price (see e.g. Kilian & Murphy (2012)). Second, using solely the Kilian shock as

an instrument for identifying the oil supply shock may be problematic too as it is found

to be a weak instruments (see e.g. Montiel Olea et al. (2020)). Note that our combination

model avoids using the potentially controversial elasticity restrictions.

The solid line with the shaded area in the bottom row of Figure 1 gives median estimates

with 68% posterior credibility sets from this model. The results show that median variance
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Table 1: Posterior distribution of supply elasticities and Bayes factors for overidentifying
restrictions

Panel A: Posterior quantiles

Elasticities 16% 50% 84%

η1 0.017 0.049 0.110
η2 0.013 0.040 0.099

Panel B: Bayes factors

Restrictions Eθ|Ỹ [p2(θ)] Eθ[p2(θ)] B̂F s.e.

BH19 4.966 2.624 1.893 0.002
HR20 0.204 0.005 41.291 0.036

Bayes factors computed as described in section 2.5. For BH19, p2(θ) : η1/2 ∼ t(0.1, 0.2, 3) while for HR20

p2(θ) : p(η1/2 ≤ 0.04) = 1 and 0 else.

contributions of oil supply shocks range between 10% to 15%, with the credibility set

indicating that at most 27% of the variation in oil prices is explained by supply shocks.

Compared to the models that use elasticity restrictions above, the relatively small variance

contributions are closer to those of Herrera & Rangaraju (2020). We also note that the

instrument is quite informative with respect to the oil supply elasticities. Panel A of Table

1 shows the 16%, 50% and 84% posterior quantiles for the model (SR+IV) implied oil

supply elasticities. Median estimates of η1 and η2 are between 0.04 and 0.05. Note again,

that this model does not restrict the elasticities explicitly. We find, however, that the

median estimates are much lower than the value considered in BH19, and closer to the

upper bound of HR20. Clearly, using the instrument on top of the sign restrictions also

avoids having unreasonably large elasticities found when using sign restrictions alone (see

again Kilian & Murphy (2012)).

Using our Bayesian setup, we can now use the Bayes factors introduced in Section

2.5 in the model identified by SR+IV restrictions to check whether additional elasticity

constraints are supported by the data. Panel B of Table 1 reports the estimated Bayes

factors for different models. First, consider comparing the SR+IV model against a model

that additionally imposes the BH19 elasticity restrictions (SR+IV+BH19). The estimated

Bayes factor is about 2.6, which indicates mild support for the imposed BH19 restriction.8

8We follow the guideline for interpreting Bayes factors in Section 3.2 of Kass & Raftery (1995).
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In contrast, for the HR20 elasticity restriction (SR+IV+HR20) we find a Bayes factor of

41.3, which represents much stronger support. We may also use the information from Table

1 to compare the HR20 restrictions against the BH19 restrictions directly by simply taking

the ratio of the Bayes factors, BFHR20/BFBH10 ≈ 21.8. This indicates strong support in

favor of the restrictions in HR20 over those of BH19.9

Finally, given that the HR20 elasticity restrictions receive strong support by the data, we

report results of the corresponding model that imposes the HR20 restrictions on top of sign

and IV restrictions (SR+IV+HR20). The results are shown as dashed lines in the bottom

row of Figure 1 and indicate that supply shocks now account between 5% and 20% of oil

price variation. Compared with the SR+IV specification without elasticity constraints,

the variance contributions of this model are slightly lower. At the same time, additional

elasticity information decreases posterior uncertainty somewhat.

Our empirical results suggest that the HR20 elasticity restrictions are more strongly

supported by the data. Using them in addition to sign and IV restrictions, suggests that

oil supply shocks are less important for oil price determination than suggested in some parts

of the literature. More generally, we have illustrated how our framework of combining IV

and sign restrictions can be used to discriminate between competing additional constraints

in a data-driven way.

3.2 The effects of monetary policy

The effects of monetary policy shocks on macroeconomic aggregates have been extensively

studied using SVAR models (see Ramey (2016) for a recent review of the literature). In

the early literature, surprises to monetary policy have been identified by using a Cholesky

decomposition of the reduced form VAR covariance matrix, with the policy instrument or-

dered below the real variables, see e.g. Christiano et al. (1999). This identifying assumption

implies that the central bank can respond instantaneously to movements in the real sector

of the economy, while the real variables may only respond to the policy shock with a lag of

9We have also conducted a number of robustness checks with respect to the training sample and the
discount factor. Using a variance factor of 20 instead of 10, leads to very similar Bayes factors as those
reported in Table 1. Moreover, shortening the training sample to 1974M1-1983M12 changes the Bayes
factors somewhat but does not alter the conclusion of favoring HR20 restrictions over BH19.
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one period. Such an identification is in line with macroeconomic models subject to nominal

rigidities (Christiano et al. 2005). However, if financial variables are included in the VAR

analysis, the recursiveness assumption is unrealistic no matter of the ordering, since it can

be assumed that both, monetary policy and financial markets respond immediately to all

structural shocks in the system.

Therefore, alternative identification schemes have emerged in recent years that avoid the

recursiveness assumption. One strand of the literature uses sign restrictions, possibly com-

bined with zero restrictions to set-identify the monetary policy SVAR. These restrictions

are derived from conventional wisdom, such that a monetary policy tightening should be as-

sociated with an increase in the interest rates but not in consumer prices (Uhlig 2005, Faust

1998) or that the Fed tightens monetary policy stance in reaction to surprising increases

in output and inflation (Arias, Caldara & Rubio-Ramı́rez 2019). Unfortunately, because of

the implied set identification, this often leads to wide confidence intervals around impulse

responses such that results are often uninformative with respect to financial variables.

An alternative branch of the literature uses narrative measures of monetary policy shocks

for identification. Among the most prominent measures are shock series based on readings

of Federal Open Market Committee (FOMC) minutes cleaned by Greenbook forecasts10

for output and inflation (Romer & Romer 2004, Coibion 2012, Miranda-Agrippino et al.

2018) and factors based on changes in high frequency future prices around FOMC meetings

(Faust et al. 2004, Gertler & Karadi 2015, Nakamura & Steinsson 2018). However, it is

a very difficult task to construct convincing exogenous instruments for monetary policy.

With respect to the Romer & Romer shock (henceforth R&R), the authors themselves state

that their series is only ‘relatively free of endogenous and anticipatory movement’ (Romer

& Romer 2004). To ensure against remaining endogeneity they exclude the possibility

of a contemporaneous response of the macroeconomic variables to the narrative series.

Furthermore, as demonstrated in Caldara & Herbst (2019), the FOMC responds not only

to forecasts of output and inflation, but also responds to the information in credit spreads.

This finding directly invalidates the use of the R&R residual as an external instrument to

study the effects of monetary policy on financial markets. The exogeneity of instruments

10Greenbook forecasts are those published by the central bank in their FOMC minutes and therefore
assumed to be in the information set of the central bank.
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based on high frequency future data is also questionable. Ramey (2016), for example,

finds that the main instrument of Gertler & Karadi (2015) suffers from a nonzero mean,

significant autocorrelation and predictability by Greenbook forecasts. Furthermore, as

highlighted in Nakamura & Steinsson (2018), it is difficult to ensure that the observed

reactions in asset prices are due to news about monetary policy, and do not reflect superior

information of the FOMC about future economic conditions.

As laid out in Section 2.3, our methodology provides a simple framework to exploit

identifying information in proxy variables that are just ‘plausibly exogenous’, which we will

combine with conventional sign restrictions. We start our analysis identifying a monetary

policy shock based on Arias, Caldara & Rubio-Ramı́rez (2019) (ACR henceforth). To

further narrow down the set of admissible models, we restrict the relation between the

SVAR monetary policy shock and the R&R narrative shock. In particular, we impose

the additional restriction that the monetary policy shock explains more variance of the

narrative series than all other shocks together. As we will demonstrate, this sharpens

identification of the set identified model and leads to more informative results, while at the

same time avoids the potentially wrong assumption of exogeneity.

For our empirical study, we follow the specification of ACR and include the following

variables into a monthly SVAR model: yt = (gdpt, deft, cpt, trt, nbrt,ffrt)
′, where gdpt is the

real gross domestic product, deft is the GDP deflator, cpt is a commodity price index, trt

are total reserves, nbrt are non-borrowed reserves, and ffrt is the federal funds rate. All

variables are transformed to log times 100, except for ffrt which is included in annualized

percentages.11 To ease comparison, we stick the original sample period that starts in

1965M1 and ends in 2007M12. We use p = 12 lags to account for sufficient dynamics of the

time series vector. With respect to the narrative series, we use mt = rrt, the R&R narrative

shock series updated by Wieland & Yang (2016). Furthermore, we set Γ1i = Γ2i = 0,

excluding predictability of R&R by lagged values of ỹt and choose weakly informative prior

distributions with α0 = 0, Vα = 1e07× I, v0 = k + n+ 1 and S0 = Ik+n.

To demonstrate the merits of our approach, we will compare the following identification

schemes: a pure IV approach which assumes that the R&R shock is a valid instrument

11All time series were obtained from the replication files of Arias, Caldara & Rubio-Ramı́rez (2019).
Note that gdpt and deft were interpolated based on US industrial production and CPI prices, respectively.
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for monetary policy (R1), a combination of zero and sign restriction as considered in ACR

(R2), and a combined identification scheme that relaxes the exogeneity assumption (R3).

In the first identification scheme (R1), we treat the R&R residuals as an exogenous

instrument for the monetary policy shock (εmpt = ε1t). Therefore the identifying restrictions

for R1 are given by E[εmpt mt] 6= 0 and E[εitmt] = 0, i 6= 1, yielding the zero restrictions on

Φ discussed in Section 2.2.

With respect to the sign restrictions (R2), ACR propose to identify εmpt through a

combination of zero and sign restrictions on the monetary policy rule implicit in the SVAR

model. Rewriting the model as a simultaneous equation system, the systematic component

of monetary policy is given by:

rt = ξyu
gdp
t + ξπu

def
t + ξcpu

cp
t + ξtru

tr
t + ξnbru

nbr
t + σξε

mp
t . (3.1)

The coefficients can be backed out by ξy = −a−1
0,n1a0,11, ξπ = −a−1

0,n1a0,12 , ξcp = −a−1
0,n1a0,13,

ξtr = −a−1
0,n1a0,14, ξnbr = −a−1

0,n1a0,15, and σξ = a−1
0,n1 where aij,0 are the elements of A0 = B−1.

ACR impose the following combination of restrictions on equation (3.1): R2 : {ξy > 0, ξπ >

0, ξtr = 0, ξnbr = 0}, implying that the central bank increases the federal funds rate in

response to positive surprises of output or prices, while it does not show systematic reactions

towards surprises in monetary aggregates.12

Finally, the combined identification scheme (R3) is based on the same restrictions as

considered in ACR (R2). In addition, we impose the following restriction on the relation

between εmpt and mt: ω1 >
∑n

j=2 ωj, where ωj is the contribution of the jth structural

shock to the variance of mt (see Section 2.3). This restriction implies that the monetary

policy shock must explain more variation of mt than all other structural shocks together.

While this restriction is certainly weaker than exogeneity restrictions imposed by an IV

approach, we still extract information by discarding monetary policy shocks that are only

loosely related to the R&R narrative shock.

We start our analysis with a comparison of the posterior quantiles for the parameters

governing the monetary policy rule (see Table 2). Our findings suggest that a Proxy SVAR

12Strictly speaking, these restrictions imply a set identified model based on a combination of zero and
sign restrictions. Within our framework, this requires adjusting the proposal distribution of Appendix A
to account for the additional zero restrictions, see Arias et al. (2018) for details.

29



Table 2: Posterior distribution for parameters of the policy rule
R1 R2 R3

quantile ξy ξπ ξcp ξy ξπ ξcp ξy ξπ ξcp

5% -11.85 -38.91 -2.20 0.25 0.33 -0.61 0.15 0.07 -0.11
50% 0.99 1.56 0.03 0.84 2.44 -0.01 0.42 0.59 -0.00
95% 16.48 45.35 1.70 3.63 10.64 0.45 0.74 1.48 0.12

Posterior quantiles of the parameters governing the monetary policy rule

based on the R&R residual is very uninformative about the underlying parameters. In

particular, 90% posterior confidence sets include implausible values in terms of magnitudes

and sign, for both the reaction of the central bank towards real activity and prices. For the

second model (R2), the restrictions imply plausible values for the sign of the underlying

parameters. However, the 90% probability intervals still suggest very large values. For

example, the 95% quantile of ξπ would imply that in reaction to a 1% increase in prices,

the central bank systematic reaction is to increase the federal funds rate by as much as

10 percentage points. Adding the additional restriction on the relation between the policy

shock and the R&R residual substantially narrows down the probability intervals. Values

between 0.15 and 0.75 for ξy and between 0.07 and 1.5 for ξπ seem reasonable and are more

in line with estimates in the DSGE literature.

Figure 2 reports responses to a monetary policy shock from SVARs identified with

restrictions R1, R2 and R3. The top row shows results from the model identified by using

the R&R series as an external instrument (R1). We observe puzzling results with a short-

term increase in output together with a sharp and significant positive response in aggregate

prices (a pronounced price puzzle). These responses are considered to be unreasonable and

cast doubt on the credibility of the IV identification. In particular, these results may simply

reflect that the R&R instrument is not truly exogenous. Consequently, any results from an

analysis treating the R&R series as an exogenous IV should therefore be taken with great

caution.

In contrast, when using the ACR zero/sign restrictions only (R2, second row of Figure

2), the puzzling results disappear but apparently lead to very wide error bounds that most

often include the zero line. For most variables, model and estimation uncertainty is too

large and therefore the responses are completely uninformative. The model does, however,
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Figure 2: Impulse responses in the monetary policy SVAR obtained by using different
identifying restrictions. Posterior median (solid line), 68% and 90% posterior credibility
sets (dotted lines). Sample period: 1965M01-2007M12.

indicate a short-term drop in output. The bottom row of Figure 2 shows the results from

using R3, the combination of sign restrictions together with assuming that the identified

monetary policy shock explains more variation in the R&R series than all other shocks

together (see above). We see that the combined approach leads to tighter credibility sets

and therefore gives more informative results than using sign restrictions only (R2). In

particular, we now find a clearly significant and permanent drop in output together with

significant short-term drop in non-borrowed and total reserves.

Finally, we also demonstrate that our combination approach is particularly useful if

interest is in the response of financial variables. To this end, we add one financial variable

at a time to our monetary VAR and then compute responses to a monetary policy shock.

The financial variables we consider are real stock prices, measured as the log of consumer

price deflated S&P500 index, the mortgage spread, defined as difference between 30-year

fixed rate mortgage average and the 10-year treasury yield, the commercial paper spread,

defined as 3-month AA financial commercial paper rate minus the 3-months T-bill rate,

and the ‘excess bond premium’ measure of credit market tightness developed by Gilchrist &
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Figure 3: Impulse responses in the monetary policy SVAR augmented by one financial vari-
able at a time. Posterior median (solid line), 68% and 90% posterior credibility sets (dotted
lines). Sample periods: 1965M01-2007M12 (real stock prices, commercial paper spread),
1971M04-2007M12 (mortgage spreads), 1973M01-2007M12 (excess bond premium).

Zakraǰsek (2012). Note that the mortgage spread and the EBP are only available starting

from 1971M04 and 1973M01, respectively. Consequently, we have adjusted the sample

period of models using these variables accordingly. We compare results from using the

ACR zero/sign restrictions only (R2) against using the combination R3 and show the

results in Figure 3.

As in the monetary SVAR without financial variables, we find the general pattern that

posterior credibility sets are much tighter if we exploit information from the R&R series

in addition to the sign restrictions (R3). This, in turn, leads to more informative impulse

response patterns. For instance, using R2 (only ACR zero/sign restrictions) not much

can be said on the response of stock prices and the excess bond premium to a monetary

policy shock as the credibility sets are wide and include zero. In contrast, the picture

is clearer when we use R3. In this model, real stock prices tend to fall and the excess

bond premium responds positively, indicating tighter credit markets. The responses are

significantly different from zero, at least if judged by the 68% posterior credibility sets.
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Similarly, using R3 instead of R2 suggests a significant increase in the mortgage spread

after about 6 months. Thus, using a combination as suggested in Section 2.3 is very useful

here, since the way we exploit information from the R&R series does not require mt to be

exogenous. Instead, using the information in the R&R series only to discard models that

imply shocks which are only loosely connected to the proxy series, gives results that could

not have been obtained with the ACR zero/sign restrictions alone.

4 Conclusion

In this paper we discuss different ways of combining sign restrictions with information in

time series that act as proxy or external instrumental variables for the identification of

structural shocks in SVAR models. For this purpose, we employ a B-model type Proxy

SVAR as the econometric modeling framework. In the first combination setting, we assume

that valid instrumental variables are available for some of the shocks. Then additional sign

restrictions can either be used to identify other shocks in the system or to further disentan-

gle multiple shocks identified by valid external instruments. Furthermore, sign restrictions

used on top of the IV restrictions, may be overidentifying and checked against the data.

The second combination variant suggests ways to impose sign restrictions when the ex-

ternal proxy variables are only ‘plausibly exogenous’. Here, we suggest to use inequality

restrictions to bound the set of admissible models by discarding those that imply structural

shocks without close relation to the external proxy time series. We have discussed various

ways to characterize this relation e.g. based on correlations or variance contributions. In

contrast to similar suggestions in the literature, we also include methods that avoid choosing

thresholds, which can be advantageous in many empirical applications. These restrictions

can be combined with conventional sign restrictions to narrow down the identified set.

Methodologically, we develop a Bayesian inference approach for the B-model type Proxy

SVAR. To the best of our knowledge, this has not been discussed elsewhere in the literature.

Given that B-model type SVARs are very popular in applied work, we see our approach as a

useful addition to the Proxy VAR literature, specifically as our framework can accommodate

more flexible priors. Our Bayesian inference involves efficient Markov Chain Monte Carlo

methods, which incorporate the proposal distributions of Arias et al. (2018, 2019) via
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an Accept-Reject Metropolis Hasting (AR-MH) algorithm. Furthermore, we discuss the

estimation of Bayes factors that can be used to check overidentifying restrictions against

the data.

We also illustrate the usefulness of our method in two empirical applications. In the first

application, we revisit a benchmark SVAR model for the global market of crude oil. We

show how a model that combines IV and sign restrictions can be used to check various oil

supply elasticity constraints from the literature against the data. In the second application,

we identify the effects of monetary policy shocks in the United States by a combination of

sign restrictions and information in the Romer & Romer (2004) narrative measure of a US

monetary policy. Results based on our second combination approach, where we relax the

exogeneity assumption, avoids puzzling results and leads to more informative responses in

a number of financial variables.

Overall, the empirical illustrations provide new and useful empirical insights that could

not have been obtained without our combination approach. Thus, our paper suggests that

combining sign restrictions and external proxy variables for structural shock identification

is a promising way to sharpen results from SVAR models.
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A Proposal distribution used in the AR-MH algo-

rithms

We describe the proposal distribution p?(β; v, S) used by the AR-MH algorithm in Section

2.4 and 2.5 in more detail. We use the following notation. Let ñ = n + k, eñ,j be the

jth column of Iñ, Q = diag(Q1, Q2) be a ñ × ñ orthogonal block diagonal matrix where

Q1 is orthogonal of size n × n and Q2 orthogonal of size k × k. Furthermore, Σ is a

symmetric positive definite matrix dimension ñ. As mentioned in the main part of the

paper, the structural impact matrix of the proxy-augmented SVAR, B̃, is parameterized

as B̃ = chol(Σ)Q = PQ where chol(·) is the lower triangular Cholesky decomposition. If

the external variable is assumed to be a valid instrument, we have specified zero restriction

on B̃ as discussed in Section 2.2. We follow Arias, Rubio-Ramı́rez & Waggoner (2019) and

denote the restrictions as:

JB̃eñ,j = 0k×1 for 1 ≤ j ≤ n− k, (A.1)

JPQeñ,j = JPL′Q1en,j = 0k×1 for 1 ≤ j ≤ n− k, (A.2)

where J = [0k×n : Ik] and L = [In : 0n×k]. That is, the exogeneity restrictions can be

written as linear constraints on either B̃ or Q. Denote by z̃j the number of restrictions

on the jth column of Q1, which is k for 1 ≤ j ≤ n − k if the exogeneity constraints are

imposed and 0 otherwise. Then, the proposal distribution in the AR-MH algorithm draws

β? by the following algorithm:

1. Draw P = chol(Σ) where Σ ∼ iW(v, S).

2. Generate Q = diag(Q1, Q2) from a uniform distribution, subject to zero and sign

restrictions, as in Arias, Rubio-Ramı́rez & Waggoner (2019):

(a) For 1 ≤ j ≤ n, draw w1,j = x1,j/||x1,j|| with x1,j ∼ N (0, In+1−j−z̃j)

(b) For 1 ≤ j ≤ k, draw w2,j = x2,j/||x2,j|| with x2,j ∼ N (0, Ik+1−j)

(c) Compute Q1 = [q1,1 : · · · : q1,n] recursively by setting q1,j = K1,jw1,j, where K1,j

is such that it forms a null space of the matrix M1,j = [q1,1 : · · · : q1,j−1 : G(P )′]′
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with G(P ) := JPL′ and for 1 ≤ j ≤ n − k. For n − k + 1 ≤ j ≤ n, set

M1,j = [q1,1 : · · · : q1,j−1]′. This captures the exogeneity restrictions as in Section

2.2. If they do not hold (as discussed in Section 2.3), simply use M1,j = [q1,1 :

· · · : q1,j−1]′ for 1 ≤ j ≤ n.

(d) Compute Q2 = [q2,1 : · · · : q2,n] recursively by setting q2,j = K2,jw2,j for K2,j

such that it forms a null space of M2,j = [q1,1 : · · · : q1,j−1]′ for 1 ≤ j ≤ k.

(e) If the sign restrictions are satisfied, proceed. Otherwise, repeat step 2.

3. Set B̃? = PQ and β? = Sbvec(B̃?).

Note that by construction Σ = B̃B̃′ and furthermore, B̃ will satisfy the desired zero block

restrictions on the upper right part as well as on Φ if the exogeneity restrictions of equation

(A.2) are imposed additionally.

In the following, we give the density implied by this proposal distribution. Denote

the mapping [w′, vec(Σ)′]′
f→ β? and its inverse by β?

f−1

→ [w′, vec(Σ)′]′, where w =

[w′1,1, . . . , w
′
1,n, w

′
2,1, . . . , w

′
2,k]
′. Then, a draw from β? ∼ p?(β; v, S) has density value:

p?(β; v, S) ∝ det(B̃?B̃?′)−
v+ñ+1

2 exp

(
−1

2
tr(S(B̃?B̃?′)−1)

)
vf−1(B̃?), (A.3)

where the first part comes from the inverse Wishart density of Σ, and vf−1(B̃) is the “volume

element” as denoted in Arias et al. (2018), which accounts for the change in variables when

transforming draws from Σ, Q to B̃. In our case, we have that following Theorem 2 of Arias

et al. (2018):

vf−1(B̃) = | det(Jf−1(B̃)Jf−1(B̃)′)|
1
2 , (A.4)

where Jf−1(B̃) is the Jacobian of f−1 evaluated at B̃. Note that this holds only if Sb in

β? = Sbvec(B̃) is specified as to include all zero constraints, that is those on the upper

right block of B̃, as well as those on Φ if exogeneity restrictions are specified as in equation

(A.2).13

To ensure that the mappings f and f−1 are differentiable and one to one, we follow Ap-

pendix A.3 of Arias et al. (2018) to compute K1,j and K2,j by the QR decomposition using

13Note that otherwise, Theorem 3 of Arias et al. (2018) would apply.
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the Gram Schmidt process. In order to evaluate the Jacobian, we use numerical derivatives

of f−1. Given that the dimension of β? is usually relatively small, the computational costs

are not very high.14

B Reconstructing and extending Kilian’s oil supply

shock

In Section 3.1, we have used a monthly series of oil supply shocks as in Kilian (2008). Only

a quarterly time series for the ‘exogenous’ oil price shock from 1973Q2-2004Q3 is available

on Lutz Kilian’s homepage. A corresponding time series on the monthly frequency is not

readily available and we would also like to use a more recent sample period. Therefore,

we have reconstructed the monthly series shock series using updated oil production data

from the US Energy Information Administration (see Monthly Energy Review, Table 11.1a

and Table 11.b, https://www.eia.gov/totalenergy/data/monthly/index.php). As described

in Kilian (2008) the construction is based on computing oil supply shortfalls based on

counterfactual oil growth rates for countries that have been exposed to exogenous oil supply

disruption caused e.g. by geopolitical turmoils and wars (see the Kilian paper for a precise

description of the shock construction methodology). Reconstructing the series allows us

to extend the shock measure to the sample 1973M02-2017M12 used in our paper. For this

period, we have added to more exogenous events that affected oil production in Libya. The

first event is related to the Libyan war in 2011, which led to a sharp drop of oil production.

We start the counterfactual in March 2011 and it ends in April 2012. Since no other OPEC

country was affected by the civil war, the benchmark of all OPEC countries’ production

minus Libya. The second event was triggered in May 2013 by a series of militia attacks

that started the civil unrest. Consequently, we start a second counterfactual for Libya

starting in that period. Using the information from the oil market reports, it is clear that

Libya never managed to resolve the civil unrest with two rival governments in the country.

For this reason the counterfactual continues until the end of our sample in 2017M12. For

14This is particularly an advantage over Arias, Rubio-Ramı́rez & Waggoner (2019), given that in their
approach, the mappings underlying the Jacobian is of various magnitudes larger since they include the
whole SVAR parameters, that is also the autoregressive parameters.
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this second event, we have removed Iran from the benchmark group in the period May

2013 to December 2015, as Iran faced international sanctions that led to problems for the

oil industry. For the time between May 2016 until the end of our sample, sanctions on

Iran were less stringent due to a political deal and consequently, we have included Iran

in the benchmark during this period. Starting in January 2016, we have also removed

Venezuela from the benchmark as this country faced its own problems related to a political

and economic crisis.

The resulting shock series is shown in Figure 4. Note that transforming our shock series

to quarterly frequency and comparing it with the original Kilian quarterly shock series

shows a correlation of about 0.995.

1975 1980 1985 1990 1995 2000 2005 2010 2015
-8

-6

-4

-2

0

2

4

Figure 4: Exogenous oil production shortfall series as in Kilian (2008) (extended). Sample
period: 1973M01 - 2017M12.
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