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Abstract

Elastic net penalized quantile regression is proposed for the combination of Value-at-Risk forecasts. The
main reason for this regularization is the multicollinearity among the standalone forecasts, which leads to
a poor forecast performance of the unpenalized quantile regression estimator due to unstable combination
weights. The new approach is applied to combining the Value-at-Risk forecasts of 17 frequently used
standalone models for 30 stocks comprising the Dow Jones Industrial Average Index. Within a thorough
comparison analysis, the elastic net quantile regression performs better in terms of backtesting than the
standalone models and several competing combination approaches. This is particularly the case during the
global financial crisis from 2007 / 2008.
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1. Introduction

It is both difficult and relevant to decide between alternative Value-at-Risk (VaR) modeling and forecast-
ing strategies. A poorly selected risk model may have drastic effects on banks and the economy as a whole,
as it could be seen, for example, during the previous financial crisis when many of the standard approaches
predicted too low levels of risk. Einhorn (2008, p. 12) compares the VaR to “an airbag that works all the
time, except when you have a car accident”. The VaR is defined to be the worst possible loss over a target
horizon that will not be exceeded with a given probability (Jorion, 2006). VaR is, thus, a quantile of the
distribution of returns over a horizon (usually one or ten days) for a given probability level (usually 1%).
A major reason for its popularity is that the Basel Committee on Banking Supervision (1996, 2006, 2011)
uses the VaR for the calculation of the minimum capital requirements which banks need to keep as reserves
to cover the market risk of their investments.

There is an extensive literature on how to estimate and predict VaR (see Kuester et al. (2006), Komunjer
(2013) and Nieto and Ruiz (2016) for overviews). The major problem of VaR forecasting, however, is that
the models’ performance and reliability to accurately predict the risk highly depends on the data at hand.
While a parsimonious model might perform well in calm times, it can fail tremendously in a volatile period.
Likewise, highly parametrized models might be adequate during periods of high volatility, but can be easily
outperformed by simpler approaches in less turbulent times. So far, no unique model or approach dominates
throughout the existing VaR forecasting comparisons (see e.g. Kuester et al., 2006; Marinelli et al., 2007;
Halbleib and Pohlmeier, 2012; Abad and Benito, 2013; Boucher et al., 2014; Louzis et al., 2014; Ergen, 2015;
Nieto and Ruiz, 2016; Bernardi and Catania, 2016). The key reasons for this finding is that the applied
models are prone to suffer from model misspecification (e.g. through the application of a too simple model)
and estimation uncertainty (e.g. they imply a complicated estimation procedure). For a much more detailed
discussion of the risks and uncertainties involved in VaR forecasting, we refer to Boucher et al. (2014).

If the best model is unknown or likely to change over time, a promising alternative to deciding on
a single risk model is to combine the predictions stemming from several approaches. In an overview on
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forecasting combinations, Timmermann (2006) provides three explanations in favour of combining forecasts
in order to stabilize and improve the predictive performance upon the standalone models. First, there
are diversification gains coming from the combination of forecasts computed from different assumptions,
specifications or information sets. Second, combined forecasts tend to be robust against structural breaks.
Third, the influence of potential misspecification of the individual models is reduced due to averaging over
a set of forecasts stemming from several models.

Halbleib and Pohlmeier (2012) propose to combine VaR forecasts using quantile regression (QR), intro-
duced by Koenker and Bassett (1978), as the QR estimator minimizes the tick loss function. This asymmetric
and piecewise linear loss function is consistent for quantiles, which means that the true quantile prediction
minimizes the expected tick loss (Gneiting, 2011a). Thus, it is reasonable to incorporate the tick loss func-
tion for estimation and evaluation of VaR forecasts. QR is further applied by Fuertes and Olmo (2013),
who use it for the combination of VaR forecasts from intra- and inter-day models and for a conditional QR
forecast encompassing test. QR forecast combination under a variety of restrictions is also explored by Jeon
and Taylor (2013), who combine forecasts stemming from the CAViaR class (Engle and Manganelli, 2004)
with the forecasts from an option implied volatility model.

If someone aims at combining a possibly large number of VaR forecasts, she likely faces the problem
of multicollinearity among them, as they stem from the same data and similar mathematical approaches.
This is the case in our empirical application: we observe high pairwise correlations among the forecasts
(sometimes larger than 99%), which indicates he presence of severe multicollinearity. In this situation, the
standard QR estimator is unstable: small variations in the data can lead to large changes in the estimated
parameters. Moreover, it can overfit the data such that, for two highly correlated forecasts we obtain a
large positive weight on the one, and a large negative weight on the other. From an in-sample point of view
this is not problematic as the estimated coefficients still minimize the tick loss function. For out-of-sample
purposes, however, such imprecisely estimated parameters can be harmful as the model fails to generalize
well to new data (e.g. Hastie et al., 2011, p. 38). An obvious solution is to only combine forecasts with small
to moderate cross-correlations. However, our aim is to avoid manually selecting the models over whose
forecasts we average, and instead consider combination techniques that can cope with high correlations
among the predictions.

In this paper we propose penalized QR as a novel VaR combination technique. In particular, we consider
the regularization with the elastic net penalty of Zou and Hastie (2005), which is a convex combination of
the well known least shrinkage and selection operator (lasso) of Tibshirani (1996) and the ridge penalization
of Hoerl and Kennard (1970a,b). Due to the geometry of the penalty function, the elastic net restriction
simultaneously induces coefficient shrinkage and variable selection. These two properties allow for the
combination of a large number of possibly highly correlated VaR forecasts, since the parameter estimates
are stable, overfitting is reduced and variables are automatically selected.

Elastic net (elanet) QR features a number of advantages over alternative combination techniques: (1)
It performs a data-driven selection of forecasts: the coefficients of uninformative standalone models can
be set to zero. This may help to improve the predictability, as only a subset of the models enters the
combination. We explore this by comparing elanet QR with ridge QR, which shrinks the coefficients but
selects no variables. (2) It can cope with almost collinear forecasts by the regularization of the estimated
weights. (3) The elanet QR includes an intercept term with the purpose of bias correction (Halbleib and
Pohlmeier, 2012). This is important when all standalone predictions systematically over- or underestimate
the VaR: an intercept can shift the combined forecast outside the range of the standalone predictions. Simple
averaging techniques do not include such an intercept term and are bound between the minimum and the
maximum of the standalone forecasts. (4) The elanet QR minimizes the (penalized) tick loss function.

In the literature, a range of other quantile combination techniques is proposed. Giacomini and Komunjer
(2005) introduce a generalized method of moments (GMM) estimator aiming at the minimization of the tick
loss function, with the purpose of forecasting combination and encompassing tests. In a similar spirit, Hal-
bleib and Pohlmeier (2012), in addition to QR, introduce a GMM estimator to find the optimal combination
weights by minimizing the conditional coverage test (Christoffersen, 1998). The mean and median over the
standalone forecasts is considered by Huang and Lee (2013), who combine VaR predictions from models
using high frequency information. McAleer et al. (2013a,b) combine VaR forecasts by the percentiles of the
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predictions with the goal of minimizing capital charges imposed by the Basel Accord. Shan and Yang (2009)
and Casarin et al. (2013) introduce sequential combination approaches, where the weights of in the past
well performing models are increased and vice versa. While Shan and Yang (2009) assess the performance
of the standalone models using the tick loss, Casarin et al. (2013) evaluate the models with respect to the
capital requirements imposed by the Basel Accords. A different route is followed by Hamidi et al. (2015),
who average the VaR forecasts stemming from conditional autoregressive expectile models and estimate
the combination weights by optimizing the squared difference between the nominal probability and the hit
rate, i.e. the share of times a VaR prediction is smaller than the realized return. This approach is closely
linked to the unconditional coverage test (Kupiec, 1995) which is standard in VaR evaluation. Recently,
Bernardi et al. (2017) suggest filtering the standalone models with the model confidence set (MCS) approach
of Hansen et al. (2011) prior to averaging the forecasts.

In the empirical part, we assess the performance of the proposed penalized QR combination method for
a data set comprising 30 constituents of the Dow Jones Industrial Average Index (DJIA) over a horizon of
8 years. We compare the performance of the elanet QR combined forecasts to a large variety of competing
approaches. For the forecast evaluation, we use backtesting via the dynamic quantile backtest of Engle and
Manganelli (2004) and the unconditional coverage backtest of Kupiec (1995). We furthermore compare the
forecasts with the MCS of Hansen et al. (2011) to find the approach producing the most precise predictions.
Apart from the general elastic net, our comparison includes two special cases, namely the ridge and the
lasso QR. It turns out, that the penalized QR combined forecasts exhibit the lowest number of backtest
rejections and realize comparably low tick losses. By splitting the evaluation sample into two subperiods, we
furthermore find that during volatile times, lasso and elanet perform better than ridge QR. This relationship
reverses during the calm period. Additionally, we do not face the “forecast combination puzzle” (Stock and
Watson, 2004), which states that simple approaches are hard to beat: in the combination of VaR forecasts,
complexity pays off.

The remainder of this paper is organized as follows. Section 2 introduces the methodology and provides
details on elastic net penalized QR. Section 3 introduces the data set, evaluation horizons, the forecast
evaluation method and the standalone models. Section 4 presents the results of the empirical application.
Section 5 concludes and gives an outlook on potential future research.

2. Methodology

Let the price of a financial asset or a portfolio at time t be Pt such that the logarithmic return from time
t to t+ h is rt+h = log (Pt+h/Pt). We denote the VaR forecast from t to t+ h, conditional on all available
information up to time t, Ft, as qt+h|t(α). Formally, the VaR is defined to be,

α = Pr
(
rt+h ≤ qt+h|t(α)|Ft

)
, (1)

where α ∈ (0, 1) is the probability level. Throughout the paper we focus on the probability α = 1% and the
forecast horizon h = 1 day.

In the following, q̂m,t+1|t(α) is the VaR forecast for the day t + 1 of model m = 1, . . . ,M based on the
information available up to time t and q̂t+1|t(α) = (q̂1,t+1|t(α), . . . , q̂M,t+1|t(α))′ is the vector of all forecasts.
The linear combination of the M forecasts including an intercept term is given by,

qct+1|t(α) = β0,t(α) + β1,t(α)q̂1,t+1|t(α) + . . .+ βM,t(α)q̂M,t+1|t(α)

= β0,t(α) + q̂′t+1|t(α)βt(α),
(2)

where βt(α) is the quantile-specific vector of slope coefficients, which we loosely call the combination weights,
even though the sum of the coefficients is not necessarily one. We explicitly incorporate an intercept term
β0,t(α) to bias correct misspecified standalone forecasts: if all standalone predictions systematically over-
or underestimate the VaR, an intercept can shift the combined forecast outside the range of the standalone
predictions (Halbleib and Pohlmeier, 2012). The time index of the coefficients indicates that the weights are
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time-varying: in order to incorporate the most recent information into the model parameters, we re-estimate
the combination weights every day.

For quantiles, a consistent loss function is the tick loss function (Giacomini and Komunjer, 2005; Gneiting,
2011a) given by,

ρα(u) =
(
α− 1{u≤0}

)
u. (3)

Consistency of the tick loss implies that the true quantile prediction minimizes the expected tick loss, a
concept directly linked to the fact that the VaR is elicitable (Gneiting, 2011a). More generally, a class of
consistent loss functions for quantiles is the generalized piecewise linear (GPL) family (Gneiting, 2011b)
which is of the form Lα(r, q) = (α − 1{r≤q}) (g(r)− g(q)) for a non-decreasing function g. The tick loss
given in eq. (3) is a special case when g is the identity function, by far the most widely used specification of
the GPL family.

Equipped with a consistent loss function, the optimal forecast combination weights consequently minimize
the expected loss of the forecast error,(

β∗0,t(α), β∗t (α)
)

= arg min
β0,t(α),βt(α)

E
[
ρα

(
rt+1 − β0,t(α)− q̂′t+1|t (α)βt(α)

)
| Ft

]
, (4)

which can be estimated by performing a linear QR of the standalone forecasts on the returns, as the tick loss
given in eq. (3) lies at the heart of quantile regression (Koenker and Bassett, 1978; Halbleib and Pohlmeier,
2012). We therefore obtain a consistent and asymptotically normal estimator of the combination weights by
minimizing the average tick loss (Koenker and Bassett, 1978),

(
β̂0,t(α), β̂t(α)

)
= arg min
β0,t(α),βt(α)

1

t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t(α)− q̂′τ+1|τ (α)βt(α)

)
, (5)

which can then be used to form the combined forecast for the next day via q̂ct+1|t(α) = β̂0,t(α)+ q̂′t+1|tβ̂t(α).

2.1. The Effect of Multicollinearity on Forecast Combinations

Although combination weights estimated via QR are optimal for an in-sample combination of the stan-
dalone forecasts (they minimize the tick loss), they might be not optimal for out-of-sample purposes. This is
due to the multicollinearity among the forecasts, which increases the variance of the estimated parameters
and through that increases the expected tick loss of the prediction error.

To see why multicollinearity among the forecasts increases the variance of the combination weights

estimated by QR, note that the asymptotic distribution of the QR estimator is given by
√
n(β̂(α)−β(α))

d→
N
(
0, α(1− α)G−1MG−1

)
with M = E [XX ′] and G = E

[
XX ′fu|X(0)

]
where X are the covariates, i.e.

here the standalone forecasts. We can see that the term G−1 depends on the inverse of the XX ′ matrix,
which gets very large when the data is highly correlated. Consequently, the variance of β̂(α) increases with
the degree of correlation among the covariates.

In order to understand why a high variance of the combination weights can be problematic when combin-
ing forecasts, assume for the moment that we forecast the mean instead of quantiles. Consider an additive
model of the form Y = f(X) + ε with E [ε] = 0 and V [ε] = σ2, where X are the covariates, Y is the

dependent variable, f is an unknown function of the data and f̂ is an estimate of f . Then, the expected
prediction error (under squared error loss) on data not used for the estimation of f , can be expressed as,

E
[
(Y − f̂(X))2

]
= E

[
f(X)− f̂(X)

]2
+ E

[
(f(X)− f̂(X))2

]
+ σ2, (6)

which is the usual bias-variance trade off (e.g. Hastie et al., 2011, p. 223). Thus, we see that an increase in

the variance of f̂ (e.g. through multicollinearity of the covariates) increases the expected squared prediction
error.
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Such straightforward and general calculations in terms of mean and variance are available only for the
mean squared error, but not for the tick loss function. James (2003) generalizes the bias-variance trade off
to general symmetric loss functions, but the case of asymmetric loss functions, such as the tick loss, is to the
best of our knowledge unexplored. Nonetheless, the same logic intuitively carries over to the tick loss: an
increase of the variance the estimated model parameters increases the expected tick loss of the prediction
error, although the exact relation is unknown and is likely not so simple as in eq. (6).

We thus conclude that forecast combination is mainly beneficial if we can estimate the combination
weights with a reasonable precision, which is, however, negatively correlated with the degree of multi-
collinearity among the forecasts. Consequently, reducing the estimation error of the combination weights
can help to improve the forecasts.

2.2. Elastic Net Penalized Quantile Regression

In this paper we suggest the penalization of the QR estimator with the elastic net of Zou and Hastie
(2005) for the combination of VaR forecasts. The elastic net is a linear combination of the well known ridge
penalty of Hoerl and Kennard (1970a,b) and the lasso of Tibshirani (1996). While the ridge term shrinks
the coefficients towards zero, the lasso shrinks the coefficients and additionally selects variables. Automatic
variable selection through the lasso is attractive as the weights of uninformative models can be set to zero.
With highly correlated variables, however, the lasso tends to select one of the coefficients of the correlated
variables randomly, whereas the ridge shrinks them towards each other (Zou and Hastie, 2005). Under such
a scenario, the elastic net offers a compromise between group wise shrinkage with no selection and random
selection of variables: similar to ridge, the elastic net shrinks the variables in groups and similar to lasso,
it sets some coefficients to zero. The elastic net, thus, combines the strengths of both approaches so that
Zou and Hastie (2005) interpret the elastic net as a stabilized version of the lasso penalization. The QR
estimator under elastic net penalization is given by

(
β̂0,t(λ, δ), β̂t(λ, δ)

)
= arg min

β0,t,βt

1

t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t − q̂′τ+1|τβt

)
+

+ λ
(
δ||βt||1 + (1− δ)||βt||22/2

)
,

(7)

where λ is the regularization parameter and δ ∈ [0, 1] balances the ridge and the lasso term, given by the
sum of the absolute, respectively the sum of the squared parameters. Note that to simplify notation, we
mostly suppress the quantile level α in what follows.

If λ→∞, eq. (7) simplifies to the intercept as it remains unpenalized. In this case, we simply estimate
the empirical quantile of the returns. For λ = 0, eq. (7) reduces to unpenalized QR. The value of λ, thus,
determines the influence of the standalone predictions on the combined forecast. Considering the parameter
δ, we obtain lasso QR for δ = 1 and a pure ridge penalization for δ = 0. It is common in the literature (Hastie
et al., 2015, p. 57), to only estimate the λ parameter and consider preselected values of δ. In particular, we
consider the three cases of δ = 0 (ridge), δ = 1 (lasso) and δ = 0.5 (elanet). This choice allows to identify
if improvements in the predictions come from the shrinkage part alone or whether the variable selection is
also essential in terms of predictive performance.

We estimate the elastic net penalized QR with the semismooth Newton coordinate descent algorithm
proposed by Yi and Huang (2017). An implementation for R (R Core Team, 2016) is available in the hqreg
library of Yi (2017).

Relation to Convex Weights

In the forecast combination literature, convexity is frequently imposed on the combination weights which
typically improves the predictive performance (see e.g. Timmermann, 2006; Hansen, 2008). Convex weights

are non-negative and they sum to one, i.e. 0 ≤ βm ≤ 1, for m = 1, . . . ,M and
∑M
m=1 βm = 1. This

particular restriction bears an interesting similarity to the elastic net penalty, which we can see by writing
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the Lagrangian form in eq. (7) as a restricted estimator,

(
β̃0,t(ξ, δ), β̃t(ξ, δ)

)
= arg min

β0,t,βt

1

t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t − q̂′τ+1|τβt

)
s.t.

(
δ||βt||1 + (1− δ)||βt||22/2

)
≤ ξ.

(8)

As usual, there is a one-to-one mapping between λ in eq. (7) and ξ in eq. (8). If we consider the case of
lasso QR (δ = 1) and assume all slope coefficients to be non-negative, then eq. (8) collapses to convex QR
for ξ = 1. As a result, we interpret the convexity constraint as a heavily restricted version of the elastic net
penalty, which is more general due to many reasons: (1) the combination weights are allowed to be negative;
(2) the weights must not sum to one, as on can choose the regularization parameter λ (or ξ) and (3) one
can select the degree of sparsity that the model is enforcing by varying the δ parameter.

2.3. Selection of the Regularization Parameter

The optimal shrinkage parameter for forecasting purposes is the value that minimizes the expected predic-
tion error over the out-of-sample data. The in-sample tick loss, 1

t

∑t−1
τ=0 ρα(rτ+1−β̂0,t(λ, δ)−q̂′τ+1|τ β̂t(λ, δ)),

can not be used as the loss decreases in λ. Standard ways of estimating the parameter λ include information
criteria and cross validation, which we discuss below. In addition, we propose a computationally convenient
heuristic rule based on the sum of absolute combination weights.

Bayesian Information Criterion

The simplest approach for estimating the regularization parameter λ is via the Bayesian Information
Criterion (BIC), which penalizes the in-sample loss. For the application of the BIC, we require a measure
of the effective degrees of freedom of the model. In the case of lasso QR, Li and Zhu (2008) show that
the effective degrees of freedom can be estimated by the number of non-zero coefficients, i.e. by df =∑M
m=1 1{β̂m,t(λ,δ=1)6=0}. Consequently, the BIC for lasso QR regression is given by (Li and Zhu, 2008),

BIC(λ) = ln

(
1

t

t−1∑
τ=0

ρα

(
rτ+1 − β̂0,t(λ, δ = 1)− q̂′τ+1|τ β̂t(λ, δ = 1)

))
+

ln t

2t
df, (9)

and we find λ̂ as the value that minimizes the BIC. This approach is implemented only for lasso QR, given
that there is no similar approach available for elanet and ridge QR.

Time Series Cross Validation

More appropriate for out-of-sample purpose is the cross validation (CV) as it aims at minimizing the
out-of-sample prediction error by evaluating a model on data that was not part of the estimation process.
The two most common approaches, leave-v-out and K-fold CV, are, however, not applicable in the present
context. The reason is a violation of the fundamental assumption of CV that the estimation and evaluation
samples are independent (Arlot and Celisse, 2010). Financial returns may be assumed to be at least uncor-
related, but they are neither independent nor identically distributed. VaR predictions exhibit high positive
autocorrelation: in our application the autocorrelations decrease only slowly, i.e. even after 250 days several
autocorrelations are well above 50%.

To account for the dependence in the data, we therefore employ a time series CV method described in
Hart (1994) which takes the form,

CV(λ, δ) =
1

t− nmin

t−1∑
τ=nmin

ρα

(
rτ+1 − q̂cτ+1|τ (λ, δ)

)
, (10)

where q̂cτ+1|τ (λ, δ) = β̂0,τ (λ, δ) + q̂′τ+1|τ β̂τ (λ, δ) is the combined VaR prediction for τ + 1 based on the
information available up to τ and nmin is the minimum number of observations required to initially fit the
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model, which we set to four years in the empirical application. In contrast to leave-v-out or K-fold CV, this
approach only employs past information to predict future values and is more robust towards autocorrelation
in the data (Hart and Lee, 2005). Eventually, for a given value of δ, we select λ by the value that minimizes
the CV loss given in eq. (10).

Heuristic Rule

Apart from the BIC for lasso QR and time series CV for the more general elastic net penalty, we propose
an heuristic rule for selecting the regularization parameter λ. In particular, we suggest to choose the most
restricted model such that for a given value of δ, the sum of the absolute estimated weights (i.e. the L1-norm)
is smaller than some value s,

λ̂ = maxλ, s.t.

M∑
m=1

|β̂m,t(λ, δ)| ≤ s. (11)

The intuition and origin for this rule stems from the fact that the elastic net penalty generalizes the convexity
restriction, for which s = 1, given that βm,t ≥ 0 for m = 1, . . . ,M . The suggestion above therefore connects
a generalized variant of the convexity constraint (the L1-norm) with the regularization parameter λ.

To find reasonable values of s, we compute
∑M
m=1 |β̂m,t(λ, δ)| when λ is estimated with the time series

CV procedure. It turns out that while the estimates of λ vary greatly depending on δ and the data, the
values of

∑M
m=1 |β̂m,t(λ, δ)| are remarkably stable across the time, the asset space and even across the

different values of δ. We find that most of the values are in the range (0.7, 1.1) with the majority of values
around 0.8. Consequently, in the empirical application, we include predictions formed with the above rule
and set s = 0.8. We also provide a robustness check on the choice of s, where we show that a range of values
of s yields precise predictions. This rule for selecting λ might not be optimal from a theoretical point of
view, but on the practical side, it performs well empirically, it is robust, easy to implement and requires no
computationally expensive CV procedure.

3. Empirical Application: Setup

In the empirical application, we compare the predictions of the penalized QR with forecasts of the
standalone models and some competing combination approaches. This section outlines the data, the models
to be combined, some competing combination techniques and the forecast evaluation methodology. The
presentation of the results is deferred to Section 4.

3.1. Data and Evaluation Horizon

The dataset under consideration are the daily closing (dividend and split adjusted) prices of 30 con-
stituents of the DJIA for a time horizon from January 2, 1996 to December 31, 2014, a total of 4784 days,
which we obtained from Thomson Reuters Eikon. Note that the DJIA composition as of March 19, 2015
includes Goldman Sachs (GS) and Visa (V), which were only listed after 1996. Consequently, we replace
these two stocks with two immediate predecessors, AT&T (T) and Hewlett Packard (HPQ). The symbols
of the assets are thus: AAPL, AXP, BA, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM, INTC, JNJ,
JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, XOM.

Figure A.5 in the appendix shows the log return series of the stocks and Table A.2 presents the corre-
sponding summary statistics, together with the ticker symbols and company names. The return series show
volatility clustering, especially in the time around the dot-com bubble and in the time of the previous global
financial crisis. Moreover, the returns exhibit excess kurtosis and non-zero skewness, the Jarque-Bera test
strongly rejects normality of the log returns.

As we require data to estimate the standalone models, to combine the forecasts with penalized QR and
to estimate the regularization parameter, λ, our evaluation horizon spans the time from January 3, 2007
to December 31, 2014 (2014 days). Besides the full 8 years of data, we split the sample into two equally
sized windows of 4 years as the first half of the overall sample is mainly driven by the financial crisis and is,

7



thus, much more volatile compared to the second subperiod. The goal of this split is to evaluate the models
under different volatility regimes, which we term the crisis and calm period. For an illustration of the data
and sample split, consider Figure 1, which shows the log returns of the equally weighted portfolio of the 30
returns series. Whereas the two gray areas together represent the overall evaluation sample, the light and
dark gray areas depict the subperiods from January 3, 2007 to December 31, 2010 (1008 days), respectively
from January 3, 2011 to December 31, 2014 (1006 days).
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Figure 1: Equally weighted portfolio of the 30 assets considered in the empirical comparison. The two gray shaded areas
indicate the forecast evaluation horizons January 3, 2007 to December 31, 2010 (1008 days) and January 3, 2011 to December
31, 2014 (1006 days). In addition, we consider the overall period from January 3, 2007 to December 31, 2014 (2014 days).

3.2. Standalone Models

Our pool of models, which we use to form the combined forecasts, contains a total of 17 approaches. The
selected models cover a wide range of frequently applied parametric, semi-parametric and non-parametric
techniques. While some of them are parsimonious, others are highly parametrized and can account for rich
dynamics in the data.

Static Normal Distribution

This approach assumes that the returns are normally distributed with mean µ and variance σ2, which
we estimate based on a rolling window of 250 observations. For this technique, the quantile prediction for
the next day is q̂t+1|t(α) = µ̂+ σ̂Φ(α)−1 where Φ(·)−1 is the inverse of the standard Normal distribution.

Weighted Historical Simulation

The popular historical simulation (HS) approach predicts the next day’s VaR by the empirical α-quantile
of the past returns. While the standard HS weights all past days equally, the weighted HS technique of
Boudoukh et al. (1998) uses a geometrically declining weighting scheme: more recent data points receive
a higher weight and, consequently, become more relevant for the prediction. The weight of the day τ =
t − w + 1, . . . , t is ητ = ητ−1(1 − η)/(1 − ηw), where w is the window length and we set η = 0.99. Similar
to the Normal Distribution, we estimate the empirical quantile of the HS, respectively the weighted HS
approach using a rolling window of 250 observations.

RiskMetrics

The popular exponential smoothing RiskMetrics method (RiskMetrics Group, 1996) assumes the VaR of
day t+ 1 to be q̂t+1|t(α) = σt+1Φ−1(α), where σ2

t = (1− ν)r2
t−1 + νσ2

t−1 with ν = 0.94 for daily data. For
RiskMetrics no parameters need be estimated.

CAViaR Models

The CAViaR class introduced by Engle and Manganelli (2004) assumes the VaR forecast to be a function
of lagged VaR predictions and other explanatory variables. They propose the following four specifications,
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Symmetric absolute value (SAV) qt+1|t(α) = β0 + β1qt|t−1(α) + β2|rt|,
Asymmetric slope (AS) qt+1|t(α) = β0 + β1qt|t−1(α) + β2(rt)

+ + β3(rt)
−,

Indirect GARCH(1, 1) (IG) qt+1|t(α) = (β0 + β1q
2
t|t−1(α) + β2r

2
t )

1/2,

Adaptive (AD) qt+1|t(α) = qt|t−1(α) + β1{[1 + exp(G[rt − qt|t−1(α)])]−1 − α},

where (x)+ = max(x, 0), (x)− = −min(x, 0) and we set G = 10 as in Engle and Manganelli (2004). The
estimation of the CAViaR models follows the procedure described in Engle and Manganelli (2004) using a
rolling window of 1000 days.

Location-Scale Models

The remaining 9 methods all assume the location-scale family for the return process such that returns
can be decomposed into rt = µt + σtzt. The component µt is the conditional mean of the distribution of rt,
σt is a volatility process and the innovation term zt is independent and identically distributed with mean
zero and unit variance. VaR forecasts are obtained via q̂t+1|t(α) = µ̂t+1|t + σ̂t+1|tQα(zt) where µ̂t+1|t is a
one-step-ahead forecasts of the mean, σ̂t+1|t is a one-step-ahead forecast of the volatility and Qα(zt) is the
unconditional α quantile of the innovations.

We assume that returns are not predictable and consequently set the conditional mean to zero. For
the volatility process, we assume either the standard GARCH(1, 1) of Bollerslev (1986), the exponential
GARCH(1, 1) of Nelson (1991) or the asymmetric power ARCH(1, 1) of Ding et al. (1993), subsequently
denoted by GARCH, EGARCH and APARCH. They are given by:

GARCH(1, 1) σ2
t = ω + αε2

t−1 + βσ2
t−1,

EGARCH(1, 1) log
(
σ2
t

)
= ω + αzt−1 + γ (|zt−1| − E [|zt−1|]) + β log

(
σ2
t−1

)
,

APARCH(1, 1) σδt = ω + α (|εt−1| − γεt−1)
δ

+ βσδt−1.

In contrast to the standard GARCH, the EGARCH and APARCH specifications can respond asymmetrically
with respect to positive and negative returns. The APARCH additionally accounts for the Taylor effect:
the finding that the autocorrelation of absolute returns is often larger than that of squared returns (Taylor,
1986), which might improve the predictive power of the model. For the innovations zt we assume the
Normal distribution (N), the Student-t distribution (t) to account for fat tails and the filtered historical
simulation (FHS) method of Barone-Adesi et al. (1999), which estimates Qα(zt) by the empirical quantile
of the standardized returns. Combining the three variance processes with the three assumptions on the
innovations, we obtain a total of 9 additional models. For estimation of the GARCH models we employ the
rugarch library for R by Ghalanos (2015) and a rolling window of 1000 days.

3.3. Competing Combination Approaches

This section introduces a collection of 9 competing quantile combination approaches.

Unpenalized Quantile Regression

For a comparison with its penalized variants, we include the unpenalized QR estimator given by,

β̂t = arg min
β0,t,βt

1

t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t − q̂′τ+1|τβt

)
. (12)

Convex Quantile Regression

Given that we interpret the convexity constraint as a heavily restricted version of the elastic net penalty,
we include convex QR defined as,

β̂t = arg min
β0,t,βt

1

t

t−1∑
τ=0

ρα

(
rτ+1 − β0,t − q̂′τ+1|τβt

)
, s.t. βm,t ≥ 0 for m = 1, . . . ,M and

M∑
m=1

βm,t = 1.

(13)

For the estimation of the unpenalized and convex QR, we employ the quantreg package for R by Koenker
(2016).
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Simple Mean

Due to simplicity and empirical success in the mean forecasting literature (Timmermann, 2006), we also
consider the simple average over all forecasts,

β̂m,t =
1

M
, for all m = 1, . . . ,M. (14)

Note that the simple mean, and all following combination approaches, do not include an intercept term,
such that β0,t = 0.

Trimmed Mean

A trimmed version of the simple mean combination is proposed by Timmermann (2006), which uses the
relative rankings of the models to set the weight of some models to zero. This method is supposed to be
more robust than the simple mean, as only the forecasts of the best models enter the combination. The
weights are given by

β̂m,t =

{
1

bηMc , if Rmt ≤ ηM
0, else,

for all m = 1, . . . ,M, (15)

where Rmt is the rank of model m at time t with respect to the average tick losses up to time t, Lmt . As we
set η = 0.25 and our pool of standalone models includes 17 approaches, we average over the forecasts of the
four best models.

Single Best

This approach assigns all weight to the in the past best performing standalone forecast, so that this
method is rather a forecast selection than forecast combination,

β̂m,t =

{
1, if Rmt = 1

0, else.
for all m = 1, . . . ,M. (16)

Inverse Loss

Also common in the mean forecasting literature is to weight the forecasts inversely proportional with
respect to their historical performance measured by the loss (Timmermann, 2006),

β̂m,t =
(Lmt )

−1∑M
n=1 (Lnt )

−1
for all m = 1, . . . ,M. (17)

Inverse Rank

Timmermann (2006) suggests to weight the forecasts inversely proportional to their rank instead of the
losses directly, as ranks are less sensitive to outliers than ranking by losses directly,

β̂m,t =
(Rmt )

−1∑M
n=1 (Rnt )

−1
for all m = 1, . . . ,M. (18)

Optimizing the Hit Rate

Hamidi et al. (2015) propose to estimate the combination weights by minimizing Mallows’s Cp (Mallows,
1973) on the squared difference between the nominal and empirical hit rates subject to convexity of the
weights, i.e.

β̂t = arg minC(βt), s.t. βm,t ≥ 0 for m = 1, . . . ,M and

M∑
m=1

βm,t = 1, (19)

where C(βt) = (α− α̂t(βt))
2

+ 2M
∑M
m=1 βm,ts

2
m. The term α̂t(βt) is the in-sample hit rate of the combi-

nation when using the weight βt, α̂m,t is the hit rate of the mth model and s2
m = (α− α̂m,t)2/(t−M) is an

estimate of the error variance.
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Sequential Relative Performance Approach

Shan and Yang (2009) propose a sequential method that is based on the relative historical performance
of the standalone forecasts. Their approach takes the form,

β̂m,t =
β̂m,t−1 exp

(
−φρα

(
rt − q̂mt|t−1

))
M∑
n=1

β̂n,t−1 exp
(
−φρα

(
rt − q̂nt|t−1

)) for m = 1, . . . ,M, (20)

where the initial weights are βm,0 = 1/M for all m = 1, . . . ,M . Each period, this technique increases the
weight of the models that produced low losses in the past and vice versa. We set the tuning parameter φ = 1
as this value performs best in the empirical application of Shan and Yang (2009).

3.4. Forecast Evaluation

We evaluate the VaR forecasts via backtesting and by comparing the realized tick losses. While back-
testing allows us to individually assess whether a VaR forecast is valid or not, a comparison of the tick losses
allows us to find the statistically most precise predictions.

Christoffersen (1998) terms a VaR forecast efficient with respect to the information set Ft if the hit
variable

Ht+1(α) =

{
1, if rt+1 ≤ q̂t+1|t(α),

0, else,
(21)

satisfies the property of correct conditional coverage given by E [Ht+1(α)|Ft] = α. Similarly, the criterion
of unconditional coverage is satisfied if E [Ht+1(α)] = α.

As the likelihood ratio test of Christoffersen (1998) shows inferior size and power properties compared to
more recent alternatives (e.g. Berkowitz et al., 2011), we test the hypothesis of correct conditional coverage
of a VaR forecast with the dynamic quantile (DQ) backtest of Engle and Manganelli (2004). For application
of the DQ backtest we estimate the equation

Ht+1(α)− α = γ0 + γ1Ht(α) + γ2q̂t+1|t(α) + ut+1, (22)

with least squares, where the specification of the regressors follows Berkowitz et al. (2011). The actual
backtest is a Wald test for the hypothesis γ0 = γ1 = γ2 = 0, which is asymptotically χ2

3 distributed.
In addition to the DQ test, we also provide results for the unconditional coverage hypothesis using the
likelihood ratio test of Kupiec (1995), which tests whether Ht+1(α) is unconditionally Bernoulli distributed
with probability α.

As McAleer et al. (2013a) and Bernardi and Catania (2016), we formally compare the realized tick losses
by applying the MCS procedure of Hansen et al. (2011). The MCS repeatedly evaluates the hypothesis
E [dij ] = 0 for all i, j = 1, . . . ,M , where dij is the loss differential between the predictions of model i and
model j. Whenever it is possible to reject the hypothesis of equal predictive ability among all forecasts, the
worst performing model (with respect to the losses) is eliminated and the procedure starts anew. Eventually,
this technique produces a set of models that can statistically not be further distinguished at a certain
significance level. Thus, the more often a model is included within this superior set of models (SSM), the
better is its predictive power.

For computation of the MCS we use the ARCH package for Python by Sheppard (2017). We report results
for the TR statistic of Hansen et al. (2011), based on 100,000 repetitions of the moving block bootstrap with
a block size of 10 days to account for the possibility of clustered VaR hits. We also check the results for
block sizes of 5 and 20 days and find the results to be robust with respect to the choice of the block length.
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4. Empirical Results

4.1. Estimation Window of Elastic Net Quantile Regression

Apart from the regularization parameter, λ, and the balance between lasso and ridge, δ, we need to decide
on the length of the estimation window. To determine the optimal estimation window for lasso, elanet and
ridge QR, we compare the out-of-sample predictive performance depending on the window length used for
the estimation of the parameters when we hold the regularization level λ fixed. For each stock i = 1, . . . , N ,
rolling window sizes w = 250, 500, 1000, 1500 and a recursively extending window starting in January 3
2000, we compute the average tick loss,

TLi,w(λ, δ) = 1/R

T+R−1∑
t=T

ρα

(
rit+1 − q̂it+1|w(λ, δ)

)
, (23)

where rit+1 is the return of stock i at time t+ 1 and q̂it+1|w(λ, δ) is the elastic net combined VaR forecast of
stock i for day t+ 1 based on a window w. Here, we compute the tick loss for the overall evaluation horizon
spanning 8 years. For an easy interpretation of eq. (23), we average over the assets to get a single number
per shrinkage value and window length,

TLw(λ, δ) =
1

N

N∑
i=1

TLi,w(λ, δ), (24)

and thereby obtain a measure for the average precision. Figure 2 shows the average tick loss for ridge
(δ = 0), the elastic net (δ = 0.5) and lasso (δ = 1) QR for fixed regularization levels between 10−5 and 102.
We can see that all loss curves reach their minimum within the considered grid of shrinkage values, which
implies that neither the empirical quantile of the data (λ → ∞) nor the unpenalized quantile regression
estimator (λ→ 0) is optimal. Considering these two extreme cases, we see that the empirical quantile is best
estimated with short windows, while less penalized models profit from longer estimation samples. When we
consider the minimum of the respective loss curves, we see that the average loss is decreasing in the length
of the estimation window: if we obtain a good estimate of λ it is beneficial to use all available data for the
estimation of the parameters. Consequently, in what follows we estimate the elastic net penalized QR with
the recursively extending window approach. For a fair comparison, we apply the competing combination
approaches based on the same window of data.
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Figure 2: Average tick loss x 1e5 over all 30 assets for ridge, elanet and lasso QR for a grid values of the regularization
parameter, λ, between 10−5 and 102. Each of the three panels shows the tick losses for a variety of rolling window sizes and a
recursively extending window.
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4.2. Conditional Coverage Backtesting

We start the discussion of the forecast comparison results by evaluating the standalone and the combined
predictions via conditional coverage backtesting. As presenting tables with detailed results for all 30 assets
is not feasible, we instead discuss the DQ backtest results based on stacked bar plots with the number of
backtest rejections at two different significance levels. The results for all horizons are presented in Figure 3;
one panel for each of the three evaluation horizons. In this figure, the red bars indicate the number of times
(out of a maximum of 30) a VaR forecast is rejected at the 1% significance level, which indicates severe
evidence against the validity of the forecast. Similarly, the orange bar denotes a p-value of the DQ backtest
between 1% and 10%, which can indicate both, a valid or a non-valid prediction.

Figure 3a shows the backtest results for the predictions during the overall evaluation sample from January
2007 to December 2014. In this figure, we can see that the standalone models are often and highly rejected.
Especially the HS and RiskMetrics, which are particularly popular in practice, are among the models with
the most rejections of the conditional coverage hypothesis. The best performing standalone models are the
GARCH specifications using the t-distribution, FHS and the CAViaR-SAV model.

Considering the combination approaches, we note that with the exception of the unpenalized QR and
lasso QR with BIC estimated regularization parameters, the combined forecasts are less often rejected than
the standalone predictions. Thus, implementing forecast combination is generally beneficial for the VaR
prediction and it is a great improvement on the standalone models.

Evaluating the different combination approaches, we find that the unpenalized QR fails to produce
valid VaR forecasts as it is the most often rejected technique. The reason for its poor performance is the
previously discussed multicollinearity among the forecasts: the unpenalized QR overfits the data. From the
figure, we can see that imposing the convexity restriction improves the predictions and as a matter of fact,
the convex QR is among the least often rejected models. We furthermore note that trimming the models
before averaging them leads to more backtest rejections than the simple mean, even though the trimming
is supposed to improve on its simpler variant. Also averaging over the inverse of the ranks of the models, in
contrast to the inverse of the tick losses directly, does not improve the predictive performance. Thus, two
conclusions from the mean forecasting literature (Timmermann, 2006), namely that trimming and averaging
based on ranks improves upon the simpler variants, do not apply in our comparison. Moreover, selecting
a single model on a day-by-day basis performs worse than the averaging techniques and even worse than
many of the standalone models, which is in line with Aiolfi and Timmermann (2006). The quantile-specific
suggestions of Shan and Yang (2009) and Hamidi et al. (2015) exhibit roughly the same number of rejections
as the other competing combination approaches. A potential reason why these techniques are not able to
improve on the simpler averaging approaches is the lack of an intercept term, which corrects the biased
standalone predictions.

Considering the penalized QR, we find that the forecasts of lasso with BIC selected shrinkage values are
nearly as often rejected as the unpenalized QR. The reason is that the BIC induces an insufficient amount of
shrinkage such that the predictions are too similar with those of the unpenalized QR, which is in line with
the findings in Koenker (2011). We furthermore find that lasso and elanet QR are less often rejected than
ridged QR, independent of the approach of selecting the shrinkage parameter. Thus, the sparsity enforcing
property of the lasso operator is crucial for good predictions. When we compare the proposed heuristic rule
(denoted by fix) and the time series CV, we see that the heuristic rule leads to less rejections. In fact, lasso
and elanet QR with the heuristic rule are just once rejected with a DQ backtest p-value between 1% and
10%, which is only very weak evidence against the validity of this strategy, in particular in comparison to
the rejection rates of the alternatives.

Next, we split the overall evaluation sample into two equally sized windows of 4 years. Considering
the first half of the evaluation sample in Figure 3b, which represents a period of high volatility around the
2007 / 2008 global financial crisis, we find that the number of rejections generally increases, in comparison
to the overall horizon. The number of backtest rejections raises especially for the standalone models and
with the exception of the best performing approach (GARCH with t distributed innovations), the forecasts
of all standalone models are now at least 5 times rejected at the 1% level. Also among the combination
approaches, the number of rejections is larger than during the overall evaluation period. Nevertheless, lasso
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and elanet QR, with the amount of regularization estimated by the heuristic rule, are never rejected at the
1% level and only a few times we find a p-value between 1% and 10%.

Last, we evaluate the VaR forecasts during the calm time from January 2011 to December 2014. During
this time, the volatility is lower and, thus, the VaR is easier to predict. We can see this in Figure 3c, which
shows that several standalone models are now hardly rejected, and the CAViaR-AS is never rejected at
the 1% level. Nevertheless, the techniques involving the Normal distribution are still often rejected, raising
doubt against the validity of this assumption. Regarding the combination approaches, we note that the
penalized QR performs quite well: with the exception of lasso QR (BIC) and ridge QR with CV selected
shrinkage values, there is no single violation of the conditional coverage hypothesis at the 1% level. We also
observe that this does not apply for the competing combination approaches, which are all at least twice
rejected at the 10% level.

4.3. Hit Ratios: Unconditional Coverage

In addition to the conditional coverage tests, we also provide details on the unconditional coverage
properties of the predictions. Thus, in Figure 4 we provide the empirical hit rates, which should be close
to the nominal value. The figure is split into three panels for the evaluation horizons. In each panel, the
gray dots represent the empirical hit rates in percentage points. The gray line shows the 1% value and
the two black lines depict the 99% confidence interval for the unconditional coverage backtest of Kupiec
(1995). Note that the hit rates beyond 4%, which are occasionally produced by the CAViaR-AD model, are
not shown to improve presentation of the figure. In comparison to many other approaches, penalized QR
performs well with respect to the unconditional coverage test: almost always the hit ratios are within the
99% confidence interval. We also note that there is a tendency of the combination approaches not involving
a bias correcting intercept term to produce hit rates larger than 1%, whereas the penalized QR through an
intercept correction are more centered around the 1% value.

4.4. Relative Evaluation of all Forecast Approaches

Besides the individual evaluation via backtesting we now present the result of the MCS procedure by
Hansen et al. (2011). The application of the MCS on the tick losses yields a p-value for each of the models,
which can be used to decide whether some model is in or out of the superior set of models (SSM). Note
that Hansen et al. (2011) express concerns about the validity of the crucial assumption of stationarity loss
differentials dij when the model parameters are recursively estimated. In order to account for this concern,
we perform unit-root tests on the loss differentials and do not find evidence against stationarity.

The results for all three evaluation horizons are presented in Table 1; one panel for each of the three
horizons. In each, the first and second column are the number of times a model is included in the 90%,
respectively 75% SSM. In the third column, similar to Grigoryeva et al. (2017), we present the average of
the 30 MCS p-values per model: the larger the average p-value, the higher a model is ranked by the MCS
procedure.

Overall, the results are less decisive than the backtesting, as typically a larger number of models is
included in the 90% and 75% SSM. This is similar to the findings of Bernardi and Catania (2016) who can
only eliminate a small number of models from the full set of models using the MCS. During the crisis time,
the forecasts of lasso and elanet QR are more often included in the 75% and 90% SSM than the predictions
of ridged QR and their average p-values are larger. That indicates again that penalized QR performs better
when the model is allowed to set some coefficients to zero. During the calm time, this relation reverses:
ridging performs slightly better as its forecasts are more often included in the MCS. We can conclude that
the variable selection property of the elastic net and lasso penalization is especially important in volatile
times when many of the standalone models fail. When all models perform well (e.g. during the calm time),
this property is less relevant and simply shrinking the coefficients suffices to obtain precise predictions.
Comparing the heuristic rule and the cross validation, we find that the number of times the models are
within the SSM are comparable. Nonetheless, the average p-values are larger for the heuristic rule and,
thus, the forecasts are more precise.

Regarding the competing combination approaches, we find that during the calm period, many approaches
(e.g. the simple mean or the inverse ranking approach) perform well. The reason is that during the calm time,
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Figure 4: Empirical hit rates. The figure is split into panels for the the overall / crisis / calm period. In each, every dot
represents the empirical hit rate in percentage points for one of the assets. The gray line denotes the nominal value of 1% and
the black lines indicate the 99% confidence interval for the unconditional coverage test.

almost all standalone approaches exhibit a good performance and, thus, also simple averaging techniques
perform well as they average over the forecasts of reasonable models only. When we consider the crisis
and the overall period, however, none of these approaches can outperform the lasso and elanet QR as these
two techniques can set the weight of poorly performing models to zero and thereby increase the predictive
performance.

Summing up the results, we find that: (1) The conditional coverage hypothesis is less often rejected for
the penalized QR than for the standalone models and the competing combination forecasts and the hit rates
are close to the nominal value of 1%. (2) The penalized QR is often included in SSM, which indicates a
good relative performance. (3) The proposed heuristic rule performs well and even better than the time
series CV. (4) The differences between lasso, elastic net and ridge QR are rather small, yet the former two
perform slightly better during the crisis time and the overall period as they are able to set the coefficients of
poorly performing models to zero. (5) Contradictory to the fact that elanet QR should be superior to ridge
and lasso QR as it combines the strengths from both, we do not find that the elastic net performs better
than lasso QR on its own.

4.5. Robustness Check: The Heuristic Rule

The empirical comparison reveals that the proposed heuristic rule performs well with respect to back-
testing and tick losses. In order to demonstrate that the results are not simply due to a lucky choice of the
maximum allowed absolute sum of the weights s, Figure B.6 in the appendix shows the number of dynamic
quantile backtest rejections at the 1% level and the average tick loss over all assets for 0.5 ≤ s ≤ 1.5. For
s in (0.75, 1.0), we find just up to two rejections at the 1% significance level and relatively flat tick loss
curves. Throughout the overall and calm period, i.e. excluding the crisis time, this range is even consider-
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Table 1: Relative Comparison of all forecasting approaches

Overall Period Crisis Period Calm Period

Approach #90% #75% pMCS #90% #75% pMCS #90% #75% pMCS

Normal Distr 25 17 0.32 24 19 0.34 30 30 0.77
HS 20 9 0.27 24 12 0.31 29 27 0.63
Weighted HS 16 13 0.31 18 15 0.42 17 13 0.30
RiskMetrics 30 28 0.72 30 30 0.82 30 29 0.64
GARCH-N 30 27 0.68 30 26 0.70 30 29 0.75
GARCH-t 28 26 0.74 30 26 0.75 27 24 0.66
GARCH-FHS 28 25 0.62 26 25 0.63 27 23 0.61
EGARCH-N 30 30 0.83 30 29 0.76 30 30 0.92
EGARCH-t 30 30 0.90 30 30 0.87 30 29 0.88
EGARCH-FHS 29 28 0.77 29 28 0.73 29 29 0.81
APARCH-N 30 29 0.72 30 29 0.76 30 30 0.78
APARCH-t 30 29 0.85 29 29 0.84 29 29 0.79
APARCH-FHS 26 23 0.60 25 23 0.57 29 27 0.69
CAViaR-SAV 29 27 0.64 29 25 0.67 28 26 0.69
CAViaR-AS 30 29 0.67 30 27 0.62 29 29 0.84
CAViaR-IG 28 26 0.65 29 25 0.67 27 23 0.66
CAViaR-AD 9 4 0.10 11 4 0.12 30 29 0.71

Lasso QR (BIC) 27 24 0.54 27 24 0.60 28 23 0.59
Ridge QR (CV) 29 29 0.76 29 28 0.76 30 27 0.67
ElaNet QR (CV) 30 30 0.77 30 30 0.80 29 23 0.62
Lasso QR (CV) 30 30 0.79 30 30 0.80 27 23 0.63
Ridge QR (fix) 30 30 0.84 30 29 0.82 29 28 0.70
ElaNet QR (fix) 30 30 0.85 30 30 0.85 29 26 0.72
Lasso QR (fix) 30 30 0.86 30 30 0.88 27 25 0.68

Unpenalized QR 24 19 0.37 28 22 0.46 26 24 0.55
Convex QR 30 29 0.78 30 28 0.77 27 24 0.65
Simple Mean 30 29 0.84 29 27 0.75 30 29 0.84
Trimmed Mean 30 29 0.79 29 28 0.75 29 27 0.75
Inverse Loss 29 29 0.77 27 25 0.63 30 29 0.81
Inverse Rank 30 30 0.83 30 28 0.76 30 30 0.82
Single Best 30 27 0.71 30 29 0.69 29 28 0.76
Hamidi et al 24 22 0.58 25 22 0.65 26 25 0.59
Shan and Yang 30 30 0.84 29 27 0.74 30 29 0.83

This table presents the results of the model confidence set procedure across all 30 assets. #90% and #75% are
the number of times a model is included in the 90%, respectively 75% superior set of models and pMCS is the
average over the 30 individual MCS p-values based on the TR statistics using 100,000 iterations of the moving
block bootstrap with a block length of ten days.

ably larger. These findings thus confirm the robustness and performance of the proposed way of selecting
the regularization parameter λ.

4.6. Combination Weights and Relative Importance of the Predictors

To get some insight into how the penalized QR estimates the weights and selects the models, Figure C.7
in the appendix shows the estimated combination weights for the VaR forecasts of the AT&T stock as an
illustration. The three panels show the estimated weights and intercepts for lasso, elastic net and ridge QR
over the time from January 2007 to December 2014. For that particular stock, the models RiskMetrics and
APARCH-N dominate the estimated weights of lasso and elanet QR, the weights of the other standalone
models are comparably small. The lasso and the elastic net penalty, thus, efficiently set the coefficients of 15
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out of 17 variables to zero. When we look at the estimated weights of ridge QR, we find that the weights are
very similar across the models, which underlines the grouping effect of the ridge penalty: the coefficients of
highly correlated variables are shrunk towards each other. The combination weights are moreover relatively
stable over time, there is not much variation in neither the choice of models nor in the value of the weights.

To conserve some space, in Figure D.8 we report the median of the estimated weights and intercepts over
the time for each combination of asset and standalone model. Each cell entry contains the median estimated
weight (over the time) for all standalone models and assets. A blank entry indicates that a coefficient is on
average zero. We find that for lasso and elanet QR, the most important predictors are the GARCH models
and RiskMetrics. Even though RiskMetrics is individually not a satisfactory predictor, the lasso and elastic
net strongly opt for its inclusion in the combinations. A potential reason is that RiskMetrics’ estimation
error is zero as it is a calibrated model, i.e. it may serve as stabilizing component. From the median weights
of ridge QR, we can again observe the strong grouping effect as almost all weights are between 0 and 0.1.

Regarding the number of active predictors, i.e. the number of non zero coefficients, we find that on
average the lasso and elanet QR combine the predictions of up to 6 models. We can also see that there is
often just one dominating approach, for example the GARCH-FHS model for the DD stock or RiskMetrics
for WMT.

5. Conclusion

In this paper we propose the combination of VaR forecasts via elastic net penalized QR. The advantage
of this technique is that it reduces overfitting due to the high multicollinearity of the standalone forecasts.
Through the shrinkage and variable selection properties of the elastic net penalty, regularized QR stabilizes
the estimates of the combination weights and thereby improves the predictions.

In the empirical application, we combine the VaR forecasts of 17 standalone models for 30 constituents
of the DJIA and consider three evaluation horizons. We compare the penalized QR combined predictions
with the standalone forecasts and a large variety of competing approaches. Apart from the elastic net QR,
we consider the two corner cases, namely lasso and ridge QR. The penalized QR combined forecasts are
less often rejected by backtests than the individual models and competing combination approaches and are
most of the time included in the MCS proposed by Hansen et al. (2011). We find that in volatile times, the
lasso and elanet QR perform better than the ridge QR, i.e. in times when many standalone models fail, so
that the variable selection property is very relevant. We also observe that the elanet QR does not perform
better than pure lasso QR, even though the elastic net is supposed to stabilize the lasso in case of highly
correlated covariates (Zou and Hastie, 2005). The results of this paper also suggest that some approaches
often working well in mean forecasting, like trimming the models prior to averaging or using ranks instead
of losses, do not perform well for VaR combination.

For future research, a comparison between the elastic net and quantile regression boosting (Zheng, 2012)
would be interesting. One could furthermore consider nonlinear forecast combination via quantile random
forests introduced by Meinshausen (2006) or the post-lasso quantile regression estimator by Belloni and
Chernozhukov (2011).
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Appendix A. Plots and Summary Statistics of the Return Series
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Figure A.5: Log return series from January 2, 1996 to December 31, 2014. The two gray shaded areas indicate the forecast
evaluation horizons January 3, 2007 to December 31, 2010 (1008 days) and January 3, 2011 to December 31, 2014 (1006 days).
In addition, we consider the overall period from January 3, 2007 to December 31, 2014 (2014 days).

Table A.2: Ticker symbols, company names and summary statistics of the log returns x 100.

Symbol Name Min Max Mean Var. Kurt. Skew. JB JB-p

AAPL Apple −73.12 28.69 0.10 9.54 73.62 −2.56 1.0e6 0.00
AXP American Express Company −19.35 18.77 0.04 5.66 10.97 0.01 1.3e4 0.00
BA The Boeing Company −19.39 14.38 0.02 4.07 9.78 −0.37 9.3e3 0.00
CAT Caterpillar Inc. −15.69 13.73 0.04 4.55 7.17 −0.09 3.5e3 0.00
CSCO Cisco Systems, Inc. −17.69 21.82 0.04 7.21 9.38 0.05 8.1e3 0.00
CVX Chevron Corporation −13.34 18.94 0.03 2.71 12.40 0.08 1.8e4 0.00
DD E. I. du Pont de Nemours and Company −12.03 10.86 0.02 3.51 7.17 −0.15 3.5e3 0.00
DIS The Walt Disney Company −20.29 14.82 0.03 4.07 10.69 −0.07 1.2e4 0.00
GE General Electric Company −13.68 17.98 0.02 3.79 10.52 0.01 1.1e4 0.00
HD The Home Depot, Inc. −33.88 13.16 0.05 4.47 20.33 −0.79 6.0e4 0.00
HPQ Hewlett-Packard Company −22.35 15.95 0.01 6.53 10.08 −0.30 1.0e4 0.00
IBM International Business Machines −16.89 12.37 0.04 3.36 10.50 −0.03 1.1e4 0.00
INTC Intel Corporation −24.89 18.33 0.03 6.41 9.79 −0.37 9.3e3 0.00
JNJ Johnson & Johnson −17.25 11.54 0.03 1.82 13.00 −0.22 2.0e4 0.00
JPM JPMorgan Chase & Co. −23.23 22.39 0.02 6.74 14.26 0.23 2.5e4 0.00
KO The Coca-Cola Company −11.07 13.00 0.02 2.20 9.57 0.00 8.6e3 0.00
MCD McDonald’s Corporation −13.72 10.31 0.03 2.52 8.47 −0.04 6.0e3 0.00
MMM 3M Co −10.08 10.50 0.03 2.41 7.30 −0.02 3.7e3 0.00
MRK Merck & Co., Inc. −31.17 12.25 0.01 3.37 25.90 −1.26 1.1e5 0.00
MSFT Microsoft Corporation −16.96 17.87 0.04 4.25 10.11 −0.07 1.0e4 0.00
NKE Nike −21.65 13.78 0.05 4.45 11.84 −0.15 1.6e4 0.00
PFE Pfizer, Inc. −11.82 9.69 0.02 3.17 6.84 −0.19 3.0e3 0.00
PG Procter & Gamble −36.01 9.73 0.03 2.31 73.03 −2.96 9.8e5 0.00
T AT&T Inc. −13.54 15.08 0.00 3.14 8.26 0.06 5.5e3 0.00
TRV The Travelers Companies, Inc. −20.07 22.76 0.03 3.70 16.55 0.35 3.7e4 0.00
UNH UnitedHealth Group −35.59 29.83 0.05 5.61 34.18 −1.36 2.0e5 0.00
UTX United Technologies Corporation −33.20 12.79 0.05 3.21 30.93 −1.30 1.6e5 0.00
VZ Verizon Communications Inc. −12.61 13.66 0.01 2.91 7.97 0.14 4.9e3 0.00
WMT Wal-Mart Stores, Inc. −10.26 10.50 0.04 2.87 7.14 0.08 3.4e3 0.00
XOM Exxon Mobil Corporation −15.03 15.86 0.03 2.53 11.61 0.02 1.5e4 0.00
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Appendix B. Robustness Check
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(a) Number of dynamic quantile backtest rejections at the 1% level.
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Figure B.6: Robustness check: in each of the two figures, the three panels depict all three evaluation horizons and all three
varieties of the balance between lasso and ridge. For the quantities shown in the subfigures, see the subcaptions. The horizontal
axis is the maximum allowed sum of the absolute weights for the heuristic rule in eq. (11).
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Appendix C. Estimated Combination Weights for AT&T
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(a) Lasso Quantile Regression
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(b) Elastic Net Quantile Regression
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(c) Ridge Quantile Regression

Figure C.7: Values of the estimated combination weights and intercepts for the AT&T stock over the time from January 2007
to December 2014 for lasso, elastic net and ridge quantile regression.
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Appendix D. Median Estimated Combination Weights
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(b) Elastic Net Quantile Regression
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(c) Ridge Quantile Regression

Figure D.8: Median of the estimated combination weights and intercepts for lasso, elastic net and ridge quantile regression
over the time from January 2007 to December 2014; for all assets and standalone models. The values of the median weights
are given in the cells, a blank entry indicates that a weight is on average zero. The cells are furthermore colored: the darker
the cell, the larger is the coefficient. The bars show the value of the median intercepts.
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