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Abstract

This paper proposes a new method of forecasting realized volatilities by exploiting their

common dynamics within a latent factor model. The main idea is to use an additive com-

ponent structure to describe the long-persistence in their autocorrelation function, where the

components, extracted from high-dimensional vectors of realized volatilities, follow station-

ary autoregressive processes of order 1. The model we propose allows also for autoregressive

structures in the idiosyncratic noises and conditional hetersokedasticity. Differently from

HAR and ARFIMA, our factor model profits from the high-dimensionality of the system that

provides more information of the commonality of their dynamics with direct efficiency gains

in the estimates and forecasts. For estimation purposes, we use the indirect inference method

that is easy to implement and provides accurate estimates. We apply the new models to vec-

tors of up to 30 daily realized volatility series of stocks composing the Dow Jones Industrial

Average index and show that they outperform standard long-memory models both in-sample

and out-of-sample.
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1 Introduction

Estimating and modeling volatilities for forecasting purposes plays a central role in many financial

applications. For a very long time, the volatility of financial assets was treated to be constant in

time. However, financial returns exhibit clustering effects and there is significant autocorrelation

in their squared series. These are clear indicators that financial volatilities are time varying and it

was the seminal paper of Engle (1982) that opened a new era in researching and developing new

methods to capture such empirical features by means of Generalized Autoregressive Conditional

Heteroskedastic (GARCH) models. While these approaches use daily data to estimate and forecast

daily volatilities, the realized measures introduced by Andersen and Bollerslev (1998), Andersen,

Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen and Shephard (2002b) use intraday

information to provide consistent estimates for daily variances1 (known in the literature as realized

variances - RVar’s). However, in practice, these measures are noisy proxies of the latent variance

as they are affected by the market microstructure noise (MMN) present in the observed discrete

intraday prices. Most of the research on RVar has been focusing on providing accurate estimates

in the presence of MMN: see Zhang et al. (2005), Barndorff-Nielsen et al. (2008), among others.

The series of daily RVar’s exhibit long-persistence in their autocorrelation function (ACF) and

their log-transformation (log-RVar) is approximately normally distributed (Andersen, Bollerslev,

Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and Labys (2001)). Risk forecasts

based on RVar are mainly obtained from Autoregressive Fractional Integrated Moving Average

(ARFIMA) model (Andersen, Bollerslev, Diebold and Labys (2001), among others) or from Het-

erogenous Autoregressive (HAR) model of Corsi (2009), both capturing their long memory.

This paper introduces an alternative approach to forecast daily RVar series by means of com-

ponent aggregation techniques that aim at capturing the long dependence in their dynamics. It

uses a dynamic latent factor structure, where the factors (or components) are autoregressive (AR)

processes of order 1 and are extracted from large vectors of RVar series. This approach is parsi-

monious and flexible as it avoids the curse of dimensionality of vector autoregressive models and

it can strait-forwardly allow for complex structures in order to capture further empirical features,

such as conditional heteroskedasticity. The flexibility of the model is backed by the estimation

method we implement, namely the indirect inference (IndInf) of Gouriéroux et al. (1993), Smith
1Volatility is the square root of the variance.
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(1993) and Gallant and Tauchen (1996), which uses auxiliary specifications that are easy to esti-

mate.

The new approach is motivated by the deficiencies of ARFIMA model when applied to se-

ries of daily RVar’s. First, ARFIMA involves some artificial mixture of short- and long memory

characteristics difficult to disentangle (Comte and Renault (1998), Harvey (2013)) and, there-

fore, it is treated more like a mathematical trick and less like a model with economic meaning

(Corsi (2009)). Second, the ARFIMA representation involves an infinite-order lag polynomial

that in practice needs to be truncated, affecting, thus, the quality of estimates and forecasts (Lanne

(2006)). Third, the measurement error in the RVar estimators due to MMN requires serious atten-

tion to the MA structure, which is often neglected in ARFIMA (Hansen and Lunde (2014)). This

negligence may be due to difficulties in estimating in one step all parameters of the model and to

the poor estimation results when applying a heuristic method involving two-steps (Corsi (2009)).

They lead to parameter estimates that are very sensitive with respect to the model specification

and estimation window. This is particularly the case of the the fractional integration parameter (d)

estimates, which are unstable around the threshold 0.5 that defines the frontier between station-

arity and non-stationarity of the underlying variance process. Thus, Luciani and Veredas (2015)

estimate d to be larger (smaller) than 0.5 on samples including (excluding) the previous financial

crisis; Koopman et al. (2005) estimate d to be very close to 0.5 and the AR parameter close to

1, while Lieberman and Phillips (2008) find that estimating ARFIMA on larger samples of daily

RVar’s provides estimates of d smaller than 0.5. This creates some confusion in the literature in

what regards the stationarity of the underlying variance process. However, Wright (1999) shows

that daily variances are stationary and Hansen and Lunde (2014) reject the non-stationarity hy-

pothesis for RVar’s by using an adequate test that accounts for measurement error. Our component

approach supports these findings as the estimates of AR(1) parameters describing the dynamics

of factors and idiosyncratic noises are always smaller than 1. Nevertheless, despite its drawbacks,

ARFIMA remains a popular choice due to its parsimony in capturing the long-memory dynamics.

This advantage holds only in univariate settings and vanishes when applied to large vectors: e.g.,

applied on a panel of 30 series, ARFIMA(1,d,1) has around 1800 parameters.

The HAR model of Corsi (2009) is an attractive alternative to capture the long-memory of RVar

series as it is easy to estimate and its AR(20) representation provides a satisfactory approximation
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of their long-persistence. According to Corsi (2009), HAR model can also be interpreted as a

component model as it builds on an additive structure of volatilities computed over three different

time horizons. However, similar to ARFIMA, the model suffers from the curse of dimensionality

when applied to large vectors of RVar’s (Patton and Sheppard (2015)): e.g., applied on a vector of

30 RVar series, HAR model has 2700 parameters.

The factor model we propose profits from what the alternatives suffer: the high dimensionality

of the system. Thus, when the dimension of the RVar panel increases, the multivariate ARFIMA

and HAR models suffer from the curse of dimensionality and efficiency loss, while the factor

approach gains in efficiency. This is because the mean squared error (MSE) of vector autoregres-

sive processes depends positively on the dimension of the dependent variable (Lütkepohl (2005)),

while the MSE of a process following a dynamic factor structure is inverse proportional to it (Bai

(2003), Sentana (2004)). This might be explained by the fact that increasing the dimension, one

provides more information on the commonality of the underlying series, which further leads to

more precise factor estimates with direct positive effects on the MSE of the system and the preci-

sion of the estimates. Our empirical results confirm these findings.

The idea of capturing long persistence by the component aggregation techniques goes back

to Granger (1980). He shows that, aggregating a large number of short memory AR(1) processes

with a careful choice of the parameters, one can capture the slowly-decaying pattern of ACF’s.

More precisely, aggregating only two components of different persistence seems to be enough to

approximately capture such a pattern. This idea is exploited in the volatility literature by Ding and

Granger (1996), Engle and Lee (1999) and Meddahi and Renault (2004) in the GARCH context

and by Gallant et al. (1999) and Chernov et al. (2003) in the stochastic volatility framework. While

two components seem to be better than one (Engle and Rosenberg (2000), Alizadeh et al. (2002),

Bollerslev and Zhou (2006), Adrian and Rosenberg (2008)), in order to capture the entire persis-

tence in the volatility dynamics, Ding and Granger (1996) suggest that the number of components

should increase beyond 2.

The research on capturing the dynamics and the persistence of RVar series by means of com-

ponents has so far focused mainly on continuous univariate time models, as in Barndorff-Nielsen

and Shephard (2002a) (followed by Andersen et al. (2004), Meddahi (2003) and Bollerslev and

Zhou (2006), just to name a few) that aggregate unobserved independent Lévi driven Ornstein-
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Uhlenbeck processes within a state-space approach. Koopman et al. (2005) applies this model to

forecast daily log-RVar’s and find that two factors are sufficient to capture the persistence of the

underlying series and performs similarly to ARFIMA in terms of forecasting. Barndorff-Nielsen

and Shephard (2002a) and Koopman et al. (2005) use Quasi-Maximum Likelihood (QML) with

the Kalman Filter (KF) technique to estimate the parameters of their univariate models (Harvey

(1989)). However, this estimation technique becomes computationally intensive when the dimen-

sion of the dependent variable and the complexity in the model structure increases, which is our

case (Koopman and Durbin (2000), Kapetanios and Marcellino (2009), Jungbacker and Koopman

(2015), Dungey et al. (2000)). For this reason, we implement IndInf with a multi-step auxiliary

estimation procedure (Aielli et al. (2013)) that is easy to implement: in the first step, we extract

static factors and in the second step, we apply univariate dynamic models on each of the static fac-

tors in accordance with the dynamic structure of the model of interest. We validate the accuracy

and the efficiency of IndInf estimators by means of Monte Carlo experiments.

The high-dimensionality of the dependent variable in our model relates it to the literature on

forecasting panels of daily RVar series. The closest to our approach is the model of Luciani and

Veredas (2015), which is an approximate dynamic factor model, using the non-stationary approach

of Bai and Ng (2002) to extract the factors that follow a vector ARFIMA process. The approach

of Luciani and Veredas (2015) is different from ours in two main ways: (1) it focuses on reducing

the dimension problem of large panels of volatilities, while our focus is on using the commonality

of their dynamics to capture their long-persistence and provide accurate forecasts and (2) it faces

the estimation and specification problems of ARFIMA models mentioned above, while our model

avoids them. Alternatively to Luciani and Veredas (2015), Atak and Kapetanios (2013) allow for

the factors to follow HAR representations. A more different approach is the one of Barigozzi et al.

(2014) that applies a semiparametric model to capture the common trend of panels of RVar’s and

the class of multiplicative error models to describe the idiosyncratic part. All these approaches use

the principal component analysis (thoroughly analyzed in Ghysels (2014)) to extract the factors,

which is different from our state-space representation.

To accommodate the empirical characteristics of daily RVar’s, such as long-persistence and

conditional heteroscedasticity, we implement three different types of dynamic factor model (DFM)

specifications: (1) the standard DFM, where the factors and the idiosyncratic noises exhibit no dy-
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namics; (2) an extended DFM, where the idiosyncratic noises have AR representations, in order to

account for further serial correlation besides the one captured by the factors and (3) an extended

DFM, where the factors and the idiosyncratic noises have generalized ARCH (GARCH) represen-

tations, in order to account for the conditional heteroscedasticity in daily RVar series as found by

Corsi et al. (2008)).

We apply the three models to daily RVar series of 30 stocks composing the Dow Jones Indus-

trial Average index and compare them against ARFIMA and HAR models. The empirical results

show that our models outperform ARFIMA- and HAR-type representations in in-sample, but most

importantly, out-of-sample when forecasting one-step and multi-step ahead. In particular, we find

that, while increasing the number of factors and the structure of the model improve the goodness

of fit of DFM’s in-sample, it does not have the same effect out-of-sample: using DFM with white

noise errors and 2 factors seems to be the best choice among all DFM’s and competitive models for

both 1-step and multi-step ahead forecasts, which is in line with the findings of Engle and Rosen-

berg (2000), Alizadeh et al. (2002), Bollerslev and Zhou (2006), Adrian and Rosenberg (2008)

and Koopman et al. (2005).

The rest of the paper is organized as follows: Section 2 introduces the models of interest.

Section 3 briefly describes the IndInf estimation method and its practical implementation. Section

4 presents simulation results and Section 5 provides empirical results from applying the models to

real data. Section 6 concludes.

2 Dynamic Factor Models

Let

Yt = Bft + ut, (1)

ft = Φft−1 + vt, (2)

where Yt is a vector of dimension n × 1 composed of demeaned series of daily log-RVar’s of

n stocks.2 The reasons we choose to model the log-transformation of RVar series are to avoid
2One can instead apply the model to daily series of log-RVar’s and add a vector of intercepts in order to assure a

zero mean of the vector of idiosyncratic noises. However, this would increase the computational burden of the model
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parameter constraints to assure the positivity of the forecasts and to accommodate the empirical

fact that log-RVar’s are closer in distribution to the normal than RVar’s (Andersen, Bollerslev,

Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and Labys (2001)).

ft is a k × 1 vector of unobserved common factors, with k ≤ n and ut is the vector of

idiosyncratic noises of dimension n× 1. B is the n× k matrix of factor loadings of rank(B) = k.

We assume that ft and ut as well as the factors and the idiosyncratic noises among themselves are

orthogonal. Thus, Φ = diag(φ1, φ2, . . . , φk) is a diagonal matrix of dimension k × k and each

of the factors composing the vector ft follows a univariate AR(1) process. The stationarity of the

AR(1) processes is assured when |φj | < 1 for j = 1, . . . , k. Furthermore, given the empirical

facts mentioned above, we assume that ut and vt are jointly normally distributed:

 ut

vt

 ∼ N(0,Ω), (3)

where

Ω =

 Σ 0n×k

0k×n ∆

 (4)

is a diagonal matrix of dimension (n + k) × (n + k) with Σ = diag(σ21, σ
2
2, . . . , σ

2
n) and ∆ =

diag(δ21 , δ
2
2 , . . . , δ

2
k) being diagonal matrices of dimension n× n and, respectively, k × k, whose

diagonal elements are the variances of the idiosyncratic noises and of the noises specific to the

AR(1) processes describing the latent factors, respectively. The model defined in (1)-(2) is a

standard dynamic factor model with idiosyncratic white noises. We denote it by DFM-WN.

To eliminate the scale indeterminacy of the common factors in DFM-WN we impose that the

unconditional variances of the factors are equal to 1, i.e., δ2j = 1 − φ2j for all j = 1, . . . , k. For

further identification reasons, when the number of factors is larger or equal to two, we also impose

the zero upper-triangular parametrization of B: b12 = . . . = b1k = b23 = . . . = bk−1k = 0, for all

k ≥ 2 (Geweke and Zhou (1996) and Aguilar and West (2000)).

The DFM-WN approach exploits the co-movements in the dynamics of the daily log-RVar

series with the aim of capturing the long persistence within a parsimonious framework. The idea

is based on Granger (1980), who shows that long-memory dynamics can be approximated by the

without significant gains in the estimation results.
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aggregation of short memory processes. Engle and Lee (1999), Harvey (2013), Harvey and Lange

(2015), Engle and Rosenberg (2000), Alizadeh et al. (2002), Bollerslev and Zhou (2006), Adrian

and Rosenberg (2008), among others, find that aggregating two components (one with close to

non-stationarity and one with less persistence) is enough to mimic the slowly-decaying pattern of

the ACF of a long memory process.

Figure C.1 provides some evidence in this direction. The solid (pink) line is the ACF of a

simulated long memory process with d = 0.45, the dashed (grey) line is the ACF of an AR(1)

process X1,t with the AR parameter equal to 0.8 and the dotted (blue) line is the ACF of a process

obtained from simply aggregating two AR processes (Xt = X1,t + X2,t), with autoregressive

parameters 0.8 for X1,t and 0.995 for X2,t. As expected, the single AR(1) process has an ACF

that decays much faster (exponentially) than the one of the long memory. However the ACF of the

sum of the two AR(1)’s decays slower and it approaches the one of the long memory process.

For our purposes, we do not restrict the number of components to two. In a matter of fact, as

described in the empirical application, we choose the ”optimal” number of factors by means of

Bayesian Information Criterion (BIC).

Although aiming at capturing the same effects, our DFM-WN specification differs from the

one of Granger (1980) in two respects: (1) our model is a multivariate one, as it builds on a

vector of series and (2) each element of Yt builds on an aggregation of AR(1) components, but

it also includes an idiosyncratic white noise component. In order to show how our DFM-WN

specification given in equations (1)-(2) is related to the one of Granger (1980), we write equations

(1)-(2) for each Yi with i = 1, . . . , n:

Yi,t =

k∑
j=1

bi,jfj,t + ui,t, i = 1, . . . , n (5)

fj,t = φjfj,t−1 + vj,t, j = 1, . . . , j, (6)

where V [fj,t] = 1 and V [ui,t] = σ2i .

For comparison reasons, we also consider the approach of Granger (1980) adapted to our
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parameter specification:

Xi,t =
k∑
j=1

bi,jfj,t, i = 1, . . . , n (7)

fj,t = φjfj,t−1 + vj,t, k = 1, . . . , k. (8)

Given that the following derivations hold for all i = 1, . . . , n, for the ease of exposure, we

drop for the moment the index i. Moreover, we assume in what follows that fj,t is stationary for

all j = 1, . . . , k. The following two propositions aim at outlining the main differences between

the dynamic specifications of Yt and Xt with the focus on their autocorrelation behavior.

Proposition 2.1 Let |φj | < 1 for all j = 1, . . . , k. Then, the process Yt defined in equations

(5)-(6) is an ARMA(k,k) process of the form:

(1− θ1L− . . .− θkLk) Yt =
k∑
j=1

bj(1− θ1jL− . . .− θk−1,jLk−1) vj,t +

(1− θ1L− . . .− θkLk) ut, (9)

where θ1, . . . , θk and θ1j , . . . , θk−1,j are functions of φ1, . . . , φk (for more detail on their specifi-

cation see Appendix A).

The p-th autocorrelation of Yt is given by:

ρY,WN
p =

∑k
j=1 b

2
jφ

p
j∑k

j=1 b
2
j + σ2

, (10)

where p = ±1,±2,±3, . . ..

For the proof see Appendix A. The ARMA(k,k) process describing Yt is not a standard one (with

a single white noise), but includes k + 1 white noises: v1,t, . . . , vk,t and ut. Moreover, the roots

of the MA(k) part (1− θ1L− . . .− θkLk) ut cancel with the ones of the AR(k) part (1− θ1L−

. . .− θkLk) Yt.

Proposition 2.2 Let |φj | < 1 for all j = 1, . . . , k. Then, the process Xt defined in equations
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(7)-(8) is an ARMA(k,k-1) process of the form:

(1− θ1L− . . .− θkLk) Xt =
k∑
j=1

bj(1− θ1jL− . . .− θk−1,jLk−1) vj,t, (11)

where θ1, . . . , θk and θ1j , . . . , θk−1,j are functions of φ1, . . . , φk (for more detail on their specifi-

cation see Appendix A).

The p-th autocorrelation of Xt is given by:

ρXp =

∑k
j=1 b

2
jφ

p
j∑k

j=1 b
2
j

, (12)

where p = ±1,±2,±3, . . ..

The proof is given in Appendix A. Similar to the ARMA (k,k) describing Yt, the ARMA(k,k-1)

describing Xt is also not a standard one as it has k white noises, v1,t, . . . , vk,t. However, different

from ARMA(k,k), there is no immediate cancellation in the roots of AR and MA components,

unless the AR parameters take specific values. Thus, we expect that Yt exhibits less autocorrelation

than Xt. Comparing the autocorrelations of the two processes, one may observe that because

σ2 > 0 and assuming that φj > 0 for all j (which is empirically the case), ρY,WN
p < ρXp for all

p’s, which means that the ACF generated by DFM-WN is smaller than the one of generated by the

approach of Granger (1980). To show this, we plot in Figure C.2 the ACF of Xt and Yt for k = 2

with φ1 = 0.8, φ2 = 0.95, b1 = b2 = 1 and σ2 = 1. The ACF of Xt is always larger than the one

of Yt, however the difference between them becomes less pronounced by increasing the lags.

In order to show how DFM-WN captures the long-persistence of real data, we plot in Figure

C.3 the ACF of log-RVar for IBM over the window 01.01.2001-19.12.2016 as well as the ACF’s

resulting from DFM-WN with k = 1, 2, 3, 4. As one may observe, increasing the number of

factors increases the autocorrelation that approaches the one of the real data. Nevertheless, there

seems to be autocorrelation left in the residuals that could be captured by adding further factors,

which, however, comes at high parametrization and computational costs. Given the results above,

one could avoid such costs by transforming the DFM-WN process into one in the spirit of Granger

(1980): i.e., Yt being modeled solely by sums of AR(1) processes (without an white noise com-

ponent). This can be reached by allowing the idiosyncratic noises to follow AR(1) processes by
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themselves and define the new DFM to be given by equations (1)-(2) and the following one:

ut = Λut−1 + εt, (13)

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix of dimension n × n and εt and vt are

independent and jointly normally distributed

 εt

vt

 ∼ N(0,Ξ), (14)

where

Ξ =

 Γ 0n×k

0k×n ∆

 , (15)

and Γ is a diagonal matrix of dimension n × n such that Γ = diag(γ21 , . . . , γ
2
n) with γ2i being

the variance of εi,t, i = 1, . . . , n. The stationarity of ut is assured when |λ1|, . . . , |λn| < 1. We

impose the same scale indeterminacy and identification constraints as in DFM-WN. We denote the

model defined in equations (1), (2) and (13) to be DFM-AR.

Given Proposition 2.2, DFM-AR with a total of k AR(1) processes (k − 1 latent factors and

one noise) is an ARMA(k,k-1) process with the ACF:

ρY,ARp =

∑k−1
j=1 b

2
jφ

p
j + σ2λp∑k−1

j=1 b
2
j + σ2

, (16)

which is larger than the ACF of a DFM-WN with k latent factors for φj > 0, j = 1, . . . , k. Figure

C.3 provides evidence in this direction. Besides the ACF of DFM-WN with k = 1, 2, 3, 4, it also

depicts the ACF of DFM-AR with k = 3 (red dotted-dashed line). One may observe that, allowing

for AR(1) idiosyncratic noises seems to provide a very good fit to real data in terms of ACF and

its autocorrelation is larger than the one of DFM-WN with k = 4 (both models aggregate over

the same number of AR(1) processes). Our empirical results presented in Section 5 support these

findings as DFM-AR is preferred to DFM-WN in terms of goodness of fit criteria.

Once the parameters of DFM-WN and DFM-AR models are estimated, one can extract the

factors by implementing the standard KF and an augmented KF as described by Jungbacker et al.

10



(2011). In both cases, the filtered factors depend on their variances as well as on the ones of the

idiosyncratic noises. Corsi et al. (2008) show that daily log-RVar’s exhibit clustering effects and

conditionally heteroscedasticity, which is confirmed by our empirical results presented in Section

5. As a consequence, one should account for these effects in order to increase the accuracy of the

filtered factors from panels of log-RVar’s. For this reason, we extend the DFM-WN framework to

allow for the idiosyncratic noises and the factors to follow GARCH processes. Thus, we assume

that:  ut

vt

 |Ft−1 ∼ N(0,Ωt), (17)

where Ft−1 is the information up to time t − 1, Ωt has the same diagonal representation as in

Equation (4), where σ2i,t for i = 1, . . . , n and δ2j,t for j = 1, . . . , k follow univariate GARCH(1,1)

representations:

σ2i,t = wi + aiu
2
i,t−1 + ciσ

2
i,t−1 (18)

δ2j,t = ωj + αjvj,t−1 + βjδ
2
j,t−1, (19)

where wi, ωj , ai, αj > 0, ci, βj ≥ 0. Thus, Ft−1 includes all the observations on Yt, ut and

vt up to t − 1. The stationarity of the processes defined in equations (18)-(19) is assured by

ai + ci < 1 and αj + βj < 1. We denote the model defined in equations (1)-(2) and (17)-(19) by

DFM-GARCH.

Similarly to DFM-WN and DFM-AR, we impose that the unconditional variances of the fac-

tors are equal to 1, i.e., ωj = (1−φ2j )(1−αj −βj) for all j = 1, . . . , k (see Sentana et al. (2008),

among others) and the zero upper-triangular parametrization of B. Given estimates of the param-

eters, one can filter the factors by using the approximated KF approach described in Audrino et al.

(2013) with the correction proposed by Harvey et al. (1992).

Thus, the vector of parameters to estimate is given by:

1. DFM-WN: θ = (φ′,b′,σ′)′ with φ = (φ1, . . . , φk)
′, b = vec(B′) = (b1

′, . . . ,bn
′)′,

bi = (bi1, . . . , bik)
′ with i = 1, . . . , n, and σ = (σ21, . . . , σ

2
n)′. The total number of param-

eters to estimate is equal to p = nk − k(k−1)
2 + n+ k.

2. DFM-AR: θ = (φ′,λ′,b′,γ′)′ with λ = (λ1, . . . , λn)′ and γ = (γ21 , . . . , γ
2
n)′ while φ
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and b are defined at point 1 above. The total number of parameters to estimate is equal to

p = nk − k(k−1)
2 + 2n+ k.

3. DFM-GARCH: θ = (φ′,b′,α′,β′,a′, c′)′ with α = (α1, . . . , αk)
′, β = (β1, . . . , βk)

′,

a = (a1, . . . , an)′, c = (c1, . . . , cn)′ and φ and b are defined at point 1. The total number

of parameters to estimate is equal to p = nk − k(k−1)
2 + 3n+ 3k

While DFM-WN could be theoretically estimated by QML with a standard KF, in practice, when

applied to Yt of large dimensions it suffers from computational burden (Jungbacker and Koopman

(2015), Dungey et al. (2000)). The QML estimation of DFM-AR requires an augmentation of KF

as described in Jungbacker et al. (2011) and Banbura and Modugno (2014). Besides an adequate

augmentation of KF, the QML estimation of DFM-GARCH requires also an approximation of KF

due to the fact that Ft−1 is not available in complete form as the lagged factors and idiosyncratic

noises are unobserved (see Diebold and Nerlove (1989), Harvey et al. (1992)). This induces

inconsistencies in the estimation that are solved by Sentana et al. (2008) and Dungey et al. (2000)

by implementing IndInf. Although theoretically appealing, the approach of Sentana et al. (2008)

that uses the model of Harvey et al. (1992) as an auxiliary specification suffers from computational

burden due to the relative complex structure of the scores of the auxiliary model and ignores the

AR effects in the factors. Alternatively, Dungey et al. (2000) that include AR factors in their

model, use two types of auxiliary models: the one of Diebold and Nerlove (1989) and a dual VAR

model for levels and squares. While the implementation of the first auxiliary model suffers from

the same computational limitations as the one of Sentana et al. (2008), the second one implies

a large number of parameters to estimate. Alternatively, in this paper, we choose to implement

a multi-step auxiliary estimation procedure as described in the following section, which can be

easily applied to any dimension and structure of the model.

3 Estimation

Let yt be the vector (dimension n × 1) of realizations of Yt at time t, where t = 1, . . . , T ,

characterized by the probability density function (pdf) f0(yt,θ), where θ is the vector of unknown

parameters of dimension p× 1 describing the true model. Let θ0 be the true value of θ. f0(yt,θ)

is intractable or infeasible, such that the parameter vector θ0 cannot be estimated by ML. In order
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to apply IndInf to alleviate this problem, one important condition is that one can easily simulate

pseudo-random numbers from the model of interest.

The auxiliary model is characterized by f∗(yt,β), where β is a vector of unknown parameters

and let β0 be the pseudo-true value of β. The dimension of the vector β is q × 1 and, in order

to assure identification of the parameter vector θ, one has to impose that q ≥ p. Different from

f0(yt,θ), f∗(yt,β) is feasible and tractable, so that QML can be implemented to estimate the

parameter vector β0. The corresponding log-likelihood function for the observations yt with

t = 1, . . . , T is given by: L∗(y1,y2, . . . ,yT ;β).

The IndInf estimation procedure consists of the following steps:

Step A: Derive the QML estimator of β0 such that:

β̂ = arg max
β
L∗(y1,y2, . . . ,yT ;β). (20)

Step B: Choose a value for θ and simulateH paths of length T from the model of interest: yh,1(θ), . . . ,yh,T (θ),

with h = 1, . . . ,H .

Step C: Compute the IndInf estimator θ̂ such that (Gallant and Tauchen (1996)):

θ̂(Ξ) = arg min
θ

∂L∗H,T
∂β′

(θ, β̂)Ψ
∂L∗H,T
∂β

(θ, β̂), (21)

where L∗H,T (θ, β̂) ≡ 1
H

∑H
h=1

1
T L
∗(yh,1(θ),yh,2(θ), . . . ,yh,T (θ); β̂). Ψ is a weighting

matrix that is symmetric nonnegative definite.

The IndInf estimator is consistent and asymptotically normal distributed for fixed H (see

Gouriéroux et al. (1993)). Moreover, when p = q, the results are independent of the choice of

Ψ that can be fixed to the identity matrix. The variance-covariance matrix of the IndInf estimator

is given by:

W =
(

1 +
1

H

)[∂2L∗H,∞
∂θ∂β′

(θ0,β0) I(β0)
−1 ∂

2L∗H,∞
∂β∂θ′

(θ0,β0)
]−1

, (22)

where L∗H,∞(θ,β) = lim
T→∞

L∗H,T (θ,β) and I(β0) is the Fisher information matrix of the auxiliary

model.
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In practice, one should make a choice on H . From Equation (22) one can observe that H

plays an important role in the efficiency of the estimators and that large values should be preferred.

However, increasing H increases also the computational burden as it implies more simulations as

described in Step B above. Therefore, the common approach is to choose H to be between 1 and

10 (Monfardini (1998), Calzolari et al. (2014), among others). Calzolari and Halbleib (2016) show

in their empirical application that the results do not significantly improve ifH increases from 10 to

100. Therefore, both in our simulation and real data exercise presented below, we chooseH = 10.

For each of the three DFM specifications, we choose an adequate auxiliary model that re-

sembles the one of interest as defined in Section 2. Thus, to estimate DFM-WN we consider the

following auxiliary representation:

Yt = B∗f∗t + u∗t , (23)

f∗t = Φ∗f∗t−1 + v∗t , (24)

where B∗ is the matrix of loadings of dimension n × k, f∗t is a vector of latent factors of di-

mension k × 1, where each component is independent of each other, f∗t and u∗t are orthog-

onal, u∗t ∼ N(0,Σ∗) where Σ∗ = diag(σ∗21 , . . . , σ
∗2
n ) and v∗t ∼ N(0,∆∗), where ∆∗ =

diag(δ∗21 , . . . , δ
∗2
k ), Φ∗ = diag(φ∗1, . . . , φ

∗
k). The univariate AR(1) processes describing the dy-

namics of the components of f∗t are stationary when |φ∗j | < 1 for j = 1, . . . , k.

To estimate DFM-AR, the auxiliary specification includes besides equations (23) and (24)

also:

u∗t = Λ∗u∗t−1 + ε∗t , (25)

where ε∗t ∼ N(0,Γ∗), with Γ∗ = diag(γ∗21 , . . . , γ
∗2
n ), Λ∗ = diag(λ∗1, . . . , λ

∗
n) and ε∗t is inde-

pendent of v∗t and v∗t ∼ N(0,∆∗), where ∆∗ is defined above. The AR(1) processes of the

idiosyncratic noises are stationary when |λ∗i | < 1 for i = 1, . . . , n.

In order to estimate DFM-GARCH, we use an auxiliary specification where the factors and the

noises follow univariate GARCH(1,1) processes. Thus, we assume that u∗t |F∗t−1 ∼ N(0,Σ∗t ) and

v∗t |F∗t−1 ∼ N(0,∆∗t ), where F∗t−1 includes all the information on u∗t , f∗t and Yt up to time t− 1,

Σ∗t = diag(σ∗21,t, . . . , σ
∗2
n,t) and ∆∗t = diag(δ∗21,t, . . . , δ

∗2
k,t) and σ∗2i,t and δ∗2j,t have the following
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representations for i = 1, . . . , n and j = 1, . . . , k, respectively:

σ∗2i,t = w∗i + a∗iu
∗2
i,t−1 + c∗iσ

∗2
i,t−1 (26)

δ∗2j,t = ω∗j + α∗jv
∗
j,t−1 + β∗j δ

∗2
j,t−1, (27)

where w∗i , ω
∗
j , a
∗
i , α
∗
j > 0, c∗i , β

∗
j ≥ 0. The processes defined in equations (26) and (27) are

stationary when a∗i + c∗i < 1 and α∗j + β∗j < 1, respectively. As a results, based on equations

(23), (24), (26) and (27), Yt conditional on F∗t−1 is also normally distributed with mean zero and

time-varying variance-covariance matrix.

To eliminate the scale indeterminacy of the common factors, we impose that the unconditional

variance of each component of f∗t is equal to one, i.e. δ∗2j = 1−φ∗2j and ω∗j = (1−φ∗2j )(1−α∗j −

β∗j ). Moreover, similar to the models presented in Section 2, when k ≥ 2, we impose an upper-

triangular parametrization of B∗. The auxiliary models have the same number of parameters as

the ones in Section 2.

As already mentioned above, while the auxiliary models for DFM-WN and DFM-AR could

be estimated in one step by means of QML, the one of the DFM-GARCH model is infeasible as

F∗t−1 is not available. To solve this problem, we implement a sequential estimation procedure that

consists of several steps3. The sequential procedure is applied to all three DFM specifications and

consists of:

Step 1: Use QML on the static factor model given in Equation (23) to estimate B∗ and Σ∗.

Step 2: Extract k ”approximated” common factors f̂∗t = (f̂∗1t, . . . , f̂
∗
kt) and corresponding residuals

û∗t = (û∗1t, . . . , û
∗
nt) based on Lawley and Maxwell (1962).

Step 3: Use QML to estimate the rest of the parameter vector by imposing the adequate dynamics

on each of the factors and idiosyncratic noises extracted in Step 2 above. In particular:

Step 3.1: To estimate DFM-WN, use QML on univariate AR(1) processes for each of the com-

ponents of f̂∗t in order to get estimates of Φ∗.

Step 3.2: To estimate DFM-AR, additionally to 3.1., use QML on univariate AR(1) processes

for each of the components of û∗t in order to get estimates of Λ∗ The unconditional
3Some early experiments on this approach are undertaken by Aielli et al. (2013) and Calzolari and Halbleib (2016)
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variances of û∗t can be strait-forwardly derived from Σ∗ and Λ∗.

Step 3.3: To estimate DFM-GARCH, additionally to 3.1., use QML on univariate GARCH pro-

cesses for each component of û∗t and f̂∗t in order to estimate the parameters of equa-

tions (26) and (27).

This three-step estimation procedure provides a huge simplification in terms of computation as

it can be applied to any dimension of Yt and to any structure of the factors and idiosyncratic

noises. This shows the advantages of IndInf that consistently estimates parameters of very com-

plex models by implementing simple auxiliary specifications. Moreover, in our case, the IndInf

provides an unified estimation procedure for all three models avoiding, thus, further transforma-

tions/approximations necessary in order to implement QML.

The only additional cost involved by the three-step procedure is the unavailability of the

variance-covariance matrix of the IndInf estimators given by Equation (22) as the Fisher infor-

mation matrix of the auxiliary model cannot be estimated. We replace it by a consistent estimator

given by the sample variance-covariance matrix of 1000 independent simulated score vectors of

the auxiliary model, which are computed after the last iteration, upon convergence (see Calzolari

and Halbleib (2016)).

4 Monte Carlo Study

In this section we provide evidence on the performance of IndInf to accurately estimate the pa-

rameters of the models introduced in this paper as well as on its performance compared to the

standard ML when estimating the parameters of DFM-WN. Moreover, we provide evidence on

the advantages of using large versus small dimensions of Yt on the properties of the estimates.

To keep the computation simple, we set the maximum number of factors to 3. Because the

results between the three choices of k = 1, 2, 3 do not significantly differ, we focus here on

presenting simulation results only for the 2-factor case, while the results for k = 1 and k = 3

can be obtained from the authors upon request. We focus on simulating data that have properties

as close as possible to the real data used in the empirical application presented in the following

section. Thus, we choose the total number of observations to be given by T = 3773, the total
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number of assets to be equal to n = 30 and the parameter values to be close to the estimates

obtained from the real data (see Section 5). In all simulation experiments, we set the total number

of replications to be equal to R = 1000.

To avoid the curse of dimensionality, we implement some restricted versions of DFM-AR

and DFM-GARCH as it follow: (1) we impose that all 30 idiosyncratic noises are driven by the

same AR parameter, i.e. impose that λ1 = . . . = λn and (2) we impose that only the first

factor has a (G)ARCH representation, while the others and the idiosyncratic noises are (condi-

tional) homoskedastic. Although this might seem a restrictive assumption, the conditional het-

eroskedasticity of Yt is still captured by V (Yt|Ft−1) = BV (ft|Ft−1)B′ + V (ut|Ft−1) =

BΦ∆tΦ
′B′ + Σ, where ∆t is diagonal and ∆t = diag(δ21t, δ

2
2 , . . . , δ

2
k) where δ21t is defined

in Equation (19). Within the DFM-GARCH framework, we implement both DFM-ARCH(1) and

DFM-GARCH(1,1) models. Given that the simulation results for both models are very similar, we

focus here on presenting the ones for DFM-ARCH(1), while the ones for DFM-GARCH(1,1) can

be obtained from the authors upon request.

Tables B.1 and B.2 present the simulation results from estimating the DFM-WN by IndInf

and ML and DFM-AR and DFM-ARCH by IndInf. The estimates appear in general unbiased

(differences to the true parameter values are observable after two digits), especially in what regards

the AR and ARCH parameters and the variances of the idiosyncratic noises. This is due to the very

large number of observations used for the estimation of these parameters (30 × 3773 ≈ 110000)

as well as to the relatively high ratio between the unconditional variance of the factors (δ21 =

. . . = δ2k = 1) and the unconditional variance of the idiosyncratic noise (σ21 = . . . = σ2n = 0.2)

(for similar results, see also Sentana et al. (2008)). While the introduction of AR effects in the

idiosyncratic noises worsens in general the precision of the estimates, this is not the case of ARCH

effects, which provide in general more precise estimates.

When comparing IndInf and ML, one may observe that when estimating the AR parameters

and the variances of idiosyncratic noises, the two approaches perform equally well in terms of bias

and efficiency. The difference between them becomes obvious when estimating B: as expected,

the ML estimates are more efficient than the IndInf ones4.

To understand the effects of the dimensionality of Yt on the properties of the estimates, we
4The same pattern is observed in Table B.3, which presents results for a smaller panel of RVar series.
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run a simulation experiment on a set of 8 variables and compare the estimation results (presented

in Table B.3) to the ones from tables B.1 and B.2: as expected, the estimates stemming from the

panel of 30 series are in general more precise than the ones derived from the panel of 8 series.

Thus, increasing the dimensionality Yt one provides more information on the commonality of the

series with positive effects on the efficiency of the estimates.

5 Empirical Application

In this section we provide empirical evidence on the performance of the models described in

Section 2 when applied to real data. Because the focus of the paper is forecasting, the evidence is

mainly out-of-sample. The performance of the models is compared to existing long memory ones,

such as ARFIMA and HAR.

The data we consider are daily series of RVar’s of 30 stocks composing the Dow Jones Indus-

trial Average index5 for the period starting on 01.11.2001 and ending on 19.12.2016 (T = 3773

observations). The daily RVar’s series are computed from 5-minute returns stemming from Trade

and Quotations (TAQ) database6 by using a subsampling estimator in the spirit of Zhang et al.

(2005)(see Halbleib and Voev (2016)). Table B.4 in Appendix B reports the descriptive statistics

of the series and of their logarithm transformation. While the RVar series exhibit right skewness

and overkurtosis, the logarithm transformation smoothes these features: the empirical standard

deviation decreases, the skewness gets closer to zero and the kurtosis gets closer to the one of

the standard normal distribution (Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen,

Bollerslev, Diebold and Labys (2001)). As already pointed in Section 2, this is why we choose to

model the series of log-RVar’s instead of RVar’s.

Figure C.4 in Appendix C plots the line graphs the daily log-RVar series for the 30 stocks

and for the period under consideration. From the graphs, one may observe that the series exhibit
5The stocks are: Alcoa Inc. (AA), American Express Company (AXP), Boeing Corporation (BA), Bank of America

Corporation (BAC), Citigroup Inc. (C), Caterpillar Inc. (CAT), Chevron Corporation (CVX), Dupont (DD), Walt Dis-
ney Company (DIS), General Electric Company (GE), The Goldman Sachs Group, Inc. (GS), Home Depot Inc. (HD),
Honeywell International Inc. (HON), Hewlett-Packard Company (HPQ), International Business Machines (IBM), Inter-
national Paper Company (IP), Johnson & Johnson (JNJ), J.P. Morgan Chase & Company (JPM), Coca-Cola Company
Kraft Foods Inc. (KO), McDonald’s Corporation (MCD), 3M Company (MMM), Altria Group Inc. (MO), Merck &
Company Inc. (MRK), Nike, Inc. (NKE), Pfizer Inc. (PFE), Procter & Gamble Company (PG), United Technologies
Corporation (UTX), Verizon Communications Inc. (VZ), Wal-Mart Stores Inc. (WMT) and Exxon Mobil Corporation
(XOM).

6We acknowledge Sebastian Bayer for preparing the high-frequency data.
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common behavior, especially during turbulent financial times, such as the previous financial crises

from 2007/2008. This empirical fact motivates our choice of capturing their dynamics by means

of latent common factors. Moreover, all series have clustering effects, which indicate that they are

conditionally heteroskedastic. Applying an ARCH-LM test, we reject the H0 of homoskedasticity

for all series at all meaningful significance levels, which is in line with the findings of Corsi

et al. (2008). However, after filtering GARCH(1,1) effects from each of the series, the H0 of the

ARCH-LM tests are not rejected at 5% significance level.7 Figure C.5 plots the ACF of the 30

daily log-RVar series up to lag 200. The graphs show the long persistence in the ACF’s that decay

slowly.

The models we consider for comparison are long-memory ones, such as ARFIMA-type mod-

els (as applied by Andersen, Bollerslev, Diebold and Ebens (2001)) and HAR-type models (as

introduced by Corsi (2009)). Given the multivariate character of our approach, we implement

vector counterparts of the univariate approaches as follows:

1. The Vector ARFIMA (VARFIMA) model we consider is of the form:

Ψ(L)D(L)Yt = Π(L)ξt, (28)

where Ψ(L) = In−Ψ1L−Ψ2L
2− . . .−ΨPL

P , Π(L) = In−Π1L−Π2L
2− . . .−ΠSL

S

are matrix lag polynomials with Ψl, l = 1, . . . , P and Πs, s = 1, . . . , S being coefficient

matrices of dimension n × n and D(L) is a diagonal matrix of dimension n × n, D(L) =

diag((1−L)d1 , . . . , (1−L)dn)′, where d1, . . . , dn are the degrees of fractional integration

of each of the elements of the vector Yt. The process is stationary if the roots of Ψ(L)

and Π(L) are outside the unit circle and di < 0.5 for i = 1, . . . , n. The model given in

Equation (28) is known as the VARFIMA(P,d,S). The dimension of the parameter vector

describing the model is equal to (P + S)n2 + n. For our purposes we consider three

specifications, namely VARFIMA(0,d,0), VARFIMA(1,d,0) and VARFIMA(1,d,1). Given

the large number of parameters involved (30, 930, and 1830, respectively), we choose to

implement two restricted specifications, namely one where Ψ1 and Π1 are scalars and d1 =

. . . = dn = d (denoted by sARFIMA) and one where Ψ1 and Π1 are diagonal matrices
7The results on ARCH-LM tests can be obtained from the authors upon request.
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and the elements of ξt are orthogonal to each other (denoted by dARFIMA). This reduces

the total number of parameters to 1, 2 and 3, respectively, in the sARFIMA framework

and to 30, 60 and 90, respectively, in the dARFIMA one. The parameters of dARFIMA are

obtained from estimating univariate ARFIMA models on each of the series by means of non-

linear least squares as described in Beran (1995). While this estimation technique is also

used for sARFIMA, it becomes infeasible when applied to full matrix VARFIMA models.

To estimate such models one has to use QML on the final equation form as described in

Lütkepohl (2005). However, in practice, it becomes infeasible when the dimension of the

depended variable is large, as it is in our case.

2. The Vector HAR (VHAR) model is given by:

Yt = Γ(d)Yt−1 + Γ(w)Y
(w)
t−1 + Γ(m)Y

(m)
t−1 + ωt, (29)

where Y
(w)
t−1 and Y

(m)
t−1 average over the past 5 and 20 past values of Yt and Γ(d),Γ(w), and

Γ(m) are matrices of dimension n×n. The VHAR model is heavily parameterized as it is has

3n2 = 2700 number of parameters. For this reason, as in the VARFIMA case, we consider

two restrictive specifications: the scalar VHAR (denoted as sHAR), where the the matrices

Γ(d),Γ(w) and Γ(m) are restricted to be scalars and the diagonal VHAR (denoted as dHAR)

where the matrices Γ(d),Γ(w) and Γ(m) have a diagonal representation and the elements of

ωt are orthogonal on each other. Thus, the total number of parameters is reduced to 3 and

90, respectively. The HAR models are estimated by means of ordinary least squares (OLS).

Given the autoregressive design of HAR models and their simple estimation, as shown by

Lütkepohl (2005), the full VHAR model can also be estimated by applying OLS to each

of the 30 series composing Yt. Thus, differently from the VAFRIMA, here we implement

besides the sHAR and dHAR, also the full matrix VHAR (denoted vHAR).

The diagonal representations are a common practice in the literature on modeling multivariate

volatilities (see Chiriac and Voev (2011)) and are comparable to our DFM approaches in terms of

parametrization. Although very restrictive, the scalar representations prove to be valuable choices

in terms of forecasting as shown by Chiriac and Voev (2011).

For comparison reasons and to avoid the curse of dimensionality, in the present empirical
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exercise, we implement the three DFM approaches in the following forms: (1) DFM-WN without

any parameter constraints except for the ones for identification, (2) DFM-AR by imposing that all

30 idiosyncratic noises are driven by the same AR parameter, i.e. impose that λ1 = . . . = λn and

(3) DFM-(G)ARCH by imposing an ARCH(1) and a GARCH(1,1) structure, respectively, only to

the first factor. We impose the same structures in the corresponding auxiliary models. Moreover,

we set the maximum number of factors to three and choose the optimal one by means of BIC.

Tables B.5 and B.8 give the total number of parameters of the three representations.

Before focusing on the out-of-sample performance, we briefly outline some in-sample results.

Tables B.5, B.6 and B.7 in Appendix B report the estimation results for the DFM-WN and DFM-

AR models, while Tables B.8, B.9 and B.10 present the results for the DFM-ARCH and DFM-

GARCH representations. From the tables, one may see that almost all estimates are significantly

different from zero, except for some loading parameters for the 3-factor case. The factors of the

DFM-WN model exhibit different persistence: the additional factor in the 2-component case has

a larger persistence than the first factor that is almost equal the one of the 1-factor model. The

third factor in the 3-component case has a lower persistence than the other two, which are almost

equal to the 2-component case. This indicates that the factor of the 1-component model inherits

the ”average” persistence, while adding new factors induces some variation in their persistence,

especially within the DFM-WN and DFM-(G)ARCH representations. In DFM-(G)ARCH repre-

sentations, the estimates of the (G)ARCH parameters describing the conditional heteroskedactic

process of the first factor remain unaffected by the addition of homoskedastic factors.

The estimated values of the AR coefficients and of the (G)ARCH parameters indicate that the

underlying series are stationary. Although not necessary (see the discussion below), we impose,

in the estimation routine, stationarity constraints due to the specific implementation of IndInf. As

we usually want to avoid long estimation times and deal with bad starting values, we allow for

relatively large step changes in the parameter estimates that lead to jumps in the non-stationary

zone during the optimization routine. While this might be no problem in classical estimation

techniques (as long as this effect is short-timed), for the IndInf it might become a problem given

that for any new value of the parameter estimates, new data is simulated. Simulating data with

dynamics that are totally different (e.g., non-stationary) from the ones of the underlying series

(e.g., stationary) troubles the estimation routine so severely that in most of the cases it breaks
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down before convergence. To avoid this, we impose that AR(1), (G)ARCH parameters and the

sum of GARCH parameters are all strictly smaller than 1.

However, these constraints are not necessary if choosing an adequate estimation routine. We

prove this by starting, in two of the cases (1- and 2-factor DFM-WN), with ”risky” starting values

(at around 0.999) and imposing a very small maximum step change in the parameters during the

optimization routine (of about 0.00001). After numerous iterations, the estimates converge to the

values reported in tables B.5, B.6 and B.7. Thus, the reported AR(1) estimates, being significantly

smaller than 1, can be replicated by dropping the stationarity constraints and using a ”slower”

convergence routine.

Tables B.5 and B.8 report the BIC’s of the DFM models considered. They indicate that in-

creasing the number of components and allowing for AR in the idiosyncratic noises or GARCH

effects in the factors improves the goodness of fit. Moreover a GARCH(1,1) representation in the

factors provides lower BIC’s compared to ARCH(1). Although the GARCH(1,1) structure in the

factors improves the goodness-of-fit compared to the case of (conditional) homoskedasticity, the

highest improvement is reached by allowing for an AR structure in the idiosyncratic noises. This

is in line with the fact that the dynamics of the RVar series are mainly driven by long-persistance

and less by conditional heteroskedasticity.

When compared to ARFIMA- and HAR-type models (see Table B.11), the DFM-AR model

with three components outperforms all others, including the vHAR model, which is the most

parameterized one and, consequently, expected to capture at best the dynamics of the underlying

series. The diagonal and the scalar VARFIMA and HAR perform similarly in terms of in-sample

fit, which is in line with Chiriac and Voev (2011), but are outperformed by DFM-WM with 3

factors and all DFM-AR models. Although in some cases slightly worse, the BIC’s of DFM-WN

and DFM-GARCH with 2 factors are comparable to the ones of the diagonal and scalar ARFIMA

and HAR models. Table B.11 also reports the BIC of DFM-WN model with 2 and 3 factors

estimated by QML: compared to the IndInf counterparts, the BIC’s stemming from the QML

approach are larger, indicating a worse in-sample goodness of fit.

Estimating the DFM models on smaller panels of RVar series faces various problems. Our

Monte Carlo evidence provided in the previous section shows that estimating these models on

a panel of 8 series leads to less efficient estimates. On real data, the estimation on panels of
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dimension n = 5, n = 6 and n = 9 faces convergence problems as the AR coefficients ap-

proach the non-stationary threshold. While DFM-WN and DFM-AR work satisfactory for panels

of 7 and 8 series, we encountered difficulties to get reliable results from DFM-(G)ARCH. Tables

B.12 and B.13 present estimates and standard errors of DFM-WN and DFM-AR when applied

on panels including the first 7 and 8 RVar series, respectively, (namely of Alcoa Inc., American

Express Company, Boeing Corporation, Bank of America Corporation, Citigroup Inc., Caterpillar

Inc., Chevron Corporation and Dupont) along with the estimates and standard errors of the corre-

sponding series from applying the same models to the panel of 30 series. The results confirm the

findings of the Monte Carlo exercise: using smaller panels to extract and estimate the factors leads

in general to less precise parameter estimates than using large panels.

Summing up the in-sample results, we find that (1) the DFM models perform remarkably well

compared to the competitive ones, (2) increasing the number of factors and the structure of DFM

model improve the in-sample goodness of fit, (3) accounting for the long persistance in the series

increases the goodness-of fit more than accounting for conditional heterskedasticity, (4) the DFM-

WN with 2 components, which has been established in literature to be a good fit for univariate

conditional volatilities (Barndorff-Nielsen and Shephard (2002a), Koopman et al. (2005)), perform

similarly to the restricted HAR and VARFIMA models, (5) the mostly parameterized HAR model,

which is expected to perform best in-sample, is outperformed by the 3-factors DFM-AR model in

terms of BIC and (6) increasing the dimension of the panel improves the precision of the estimates.

The out-of-sample evaluation of the models is done by comparing their performance when

forecasting 1-, 5- and 10-step ahead during four different periods including: 1000, 750, 500 and

250 observations, respectively. For this, we divide the whole sample of 3773 observations in an

in-sample window including the first 2773 observations and out-of-sample windows including the

rest of 1000 observations, the last 750, 500 and 250 observations, respectively. The forecasts are

done by rolling-window and the multi-step ahead forecasts are computed by cumulating the 1-step

ahead ones on non-overlapping windows. Thus, the total number of 5 (10)-step ahead forecasts

is about 200 (100), 150 (75), 100 (50) and 50 (25), respectively for each of the 4 out-of-sample

windows. For the unobserved true (log-)variances, we use the (log-)RVar series we have at hand

(Patton (2011)). The reason we consider, besides 1-step ahead forecasts also multi-step ahead

ones is to exploit the ability of the models under consideration to capture the long-persistence in
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the dynamic of RVar series. As shown by Chiriac and Voev (2011), among others, these types

of models are particulary useful to forecast the risks over longer periods compared to the short-

memory approaches (such as GARCH models on daily returns or ARMA models on daily RVar

series) with practical relevance for risk management according to Basel Committee (1996) and the

follow-up accords.

Table B.14 presents the MSE for 1-step ahead forecasts averaged over the 30 stocks for both

log-RVar and RVar series. While the models implemented forecast log-RVar’s, in order to compute

the forecasts of RVar, one has to take the exponential transformation. Based on the model assump-

tions in Section 2, the forecast errors for log-RVar are normally distributed with mean zero and

variance V . Due to the log-transformation, the forecast errors for RVar are normally distributed

with the mean given by e
V
2 . Thus, the forecasts of RVar are biased and need to be corrected as de-

scribed in Bianchi and Calzolari (1980) and Oomen (2001). The entries in bold correspond to the

forecasts building the 95% Model Confidence Set (MCS) as described by Hansen et al. (2011).8

From Table B.14, one may observe that regardless of the out-of-sample window size, the

DFM models provide in almost all the cases smaller MSE’s than the competitive models. More

precisely, when forecasting log-RVar’s, while for the windows of size 1000 and 750, the 2-factor

DFM-WN has the smallest MSE among all models considered, for the other two window choices,

the best is the 1-factor DFM-WN. The 2-factor DFM-WN is part of the 95% MCS for all window

sizes. The second best models, after DFM-WN, are the DFM-(G)ARCH. Among the competitive

models, only for the evaluation window of 500 days, two out of nine models enter the 95% MCS.

In general it seems that they perform equally well among themselves as documented by Chiriac

and Voev (2011). When forecasting RVar’s, 2-factor DFM-WN is the most reliable choice as it

enters the 95% MCS for all the window sizes and it provides the smallest MSE among all models

for two out of four out-of-sample windows. For two evaluation windows, the 95% MCS includes

also DFM-(G)ARCH models. In three out of the four cases, the dARFIMA(0,d,0) seems to be

also a good choice, as it enters the 95% MCS. When forecasting RVar on the window of length

1000, dARFIMA(1,d,1) becomes part to the 95% MCS although its MSE is much larger than

the rest. These forecasts are, however, not very precise, as they have an almost double variance
8To derive the MCS’s we implement the open-source toolbox arch.bootstrap.mcs written by Kevin Sheppard and

available on http://arch.readthedocs.io/en/latest/multiple-comparison/multiple-comparison-reference.html
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compared to the others.9 As expected, due to the huge parametrization, the vHAR model is not an

attractive choice for forecasting purposes: it has in general the largest MSE for all window sizes

and forecasting objectives.

Tables B.15 and B.16 provide MSE results for 5- and 10-step ahead forecasts for log-RVar and

RVar series, respectively. The entries of both tables reveal that 2-factor DFM-WN is a good choice

for forecasting multi-step ahead variances as it always enters the 95% MCS. Allowing for AR(1)

idiosyncratic noises or (G)ARCH effects does not necessarily improve the forecasting ability of

DFM as they are inferior to DFM-WN. The ARFIMA and HAR models do not enter in general

the 95% MCS. Allowing for AR(1) idiosyncratic noises or (G)ARCH effects does not necessarily

improve the forecasting ability of DFM as they are inferior to DFM-WN. The ARFIMA and HAR

models do not enter in general the 95% MCS, with the exception of dARFIMA when forecasting

the variance over 5 periods ahead in one single choice of out-of-sample windows. However, similar

to the 1-step ahead forecasts, these forecasts are little reliable as they are very imprecise compared

to the others.

Before concluding, we present some out-of-sample forecasts from working with small panels

compared to large ones. For this reason, we run a simple forecast exercise for the first 8 series

by applying the 2-factor DFM-WN model. We compare the MSE and the variance of the corre-

sponding forecasts stemming from the panel of 30 series. The out-of-sample results confirm the

Monte Carlo and in-sample-findings: the forecasts stemming from the smaller panel have higher

average MSE’s (0.9294 and 3.6879 when forecasting log-RVar and RVar, respectively) and aver-

age variances (0.7672 and 1.4246 when forecasting log-RVar and RVar, respectively) than their

counterparts stemming from the large panel of 30 series (MSE: 0.7944 and 3.0786 , respectively

and variance: 0.6910 and 1.0819, respectively).

To sum up the out-of sample forecasts, we find that (1) DFM models provide the best forecasts

in terms of MSE compared to the standard approaches; (2) the 2-factor DFM-WN is an attrac-

tive choice in forecasting both 1-step and multi-step ahead (log-) variances as it is included in all

95% MCS’s, (3) increasing the number of factors or the structure of the model does not necessar-

ily pays off in terms of forecasting accuracy, especially multi-step ahead, as, in general, it adds

model/estimation noise to the forecasts and (4) the forecasts become more efficient if derived from
9Bias and variance values of the forecasts can be obtained from the authors upon request.
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larger panels of RVar series.

6 Conclusions

This paper introduces a new way of forecasting large panels of daily realized variance series by

using a latent dynamic factor structure. This approach is in the spirit of Granger (1980) and aims at

capturing the long-memory in the underlying series by aggregating latent components/factors with

short memory. We also allow for conditional heteroskedasticity in the factor and/or idiosyncratic

noises as well as for autoregressive structure in the idiosyncratic noises. These approaches take

advantage of the common dynamics in the series of daily realized variance series to extract the

factors within a state-space model representation and alleviate the curse of dimensionality and

other shortcomings of standard long-memory models, such as ARFIMA and HAR-type models,

when applied to large vectors of series.

Given the latent structure and the complexity of the model due to conditional heteroskedas-

ticity, we use for estimation purposes the indirect inference technique with a multi-step auxiliary

estimation procedure. This technique is very easy to implement regardless of the number of factors

or the complexity of the model and provides accurate estimates. Within a comprehensive empiri-

cal application on daily series of realized variances of 30 stocks composing Dow Jones Industrial

Average index, we show that the dynamic factor models introduced here provide better in-sample

and out-of-sample results than HAR and ARFIMA models. In particular, we show that increasing

the number of factors and the complexity of the specification, increases the in-sample goodness of

fit, while a relatively simple specification with 2 factors outperforms all models when forecasting

1-step and multi-step ahead.
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within the bwHPC framework program.

27



References

Adrian, T. and Rosenberg, J. (2008), ‘Stock returns and volatility: Pricing the short-run and long-

run components of market risk’, Journal of Finance 63, 2997–3030.

Aguilar, O. and West, M. (2000), ‘Bayesian dynamic factor models and portfolio allocation’,

Journal of Business and Economic Statistics 18, 338–357.

Aielli, G. P., Calzolari, G. and Fiorentini, G. (2013), Fast indirect estimation of latent fac-

tor models with conditional heteroskedasticity, in E. Brentari and M. Carpita, eds, ‘Ad-

vances in Latent Variables.’, Milano: Vita e Pensiero. Proceedings of the SIS2013 Statis-

tical Conference, Brescia, 19-21 June, 2013. ISBN 978-88-343-2556-8, http://meetings.sis-

statistica.org/index.php/sis2013/ALV/paper/viewFile/2579/335.

Alizadeh, S., Brandt, M. and Diebold, F. X. (2002), ‘Range-based estimation of stochastic volatil-

ity models’, Journal of Finance 57, 1047–1091.

Andersen, T., Bollerslev, T. and Meddahi, N. (2004), ‘Analytic evaluation of volatility forecasts’,

International Economic Review 45, 1079–1110.

Andersen, T. G. and Bollerslev, T. (1998), ‘Answering the skeptics: Yes, standard volatility models

do provide accurate forecasts’, International Economic Review 39, 885–905.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Ebens, H. (2001), ‘The distribution of realized

stock return volatility’, Journal of Financial Economics 61, 43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. (2001), ‘The distribution of realized

exchange rate volatility’, Journal of the American Statistical Association 96, 42–55.

Atak, A. and Kapetanios, G. (2013), ‘A factor approach to realized volatility forecasting in the

presence of finite jumps and cross-sectional correlation in pricing errors’, Economics Letters

120, 224–228.

Audrino, F., Corsi, F. and Filipova, K. (2013), ‘Bond risk premia forecasting: A simple approach

for extracting macroeconomic information from a panel of indicators’.

URL: 10.1080/07474938.2013.833809

Bai, J. (2003), ‘Inferential theory for factor models of large dimensions’, 71, 135–171.

28



Bai, J. and Ng, S. (2002), ‘Determining the number of factors in approximate factor models’,

Econometrica 70, 191–221.

Banbura, M. and Modugno, M. (2014), ‘Maximum likelihood estimation of factor models on

datasets with arbitrary pattern of missing data’, Journal of Applied Econometrics 29, 133–160.

Barigozzi, M., Brownlees, C., Gallo, G. M. and Veredas, D. (2014), ‘Disentangling systematic and

idiosyncratic dynamics in panels of volatility measures’, Journal of Econometrics 182, 364–

384.

Barndorff-Nielsen, O. E., Hansen, P., Lunde, A. and Shephard, N. (2008), ‘Designing realized

kernels to measure the ex-post variation of equity prices in the presence of noise’, Econometrica

76(6), 14811536.

Barndorff-Nielsen, O. E. and Shephard, N. (2002a), ‘Econometric analysis of realized volatility

and its use in estimating stochastic volatility models’, Journal of the Royal Statistical Society

Series B 64(2), 253–280.

Barndorff-Nielsen, O. E. and Shephard, N. (2002b), ‘Estimating quadratic variation using realized

variance’, Journal of Applied Econometrics 17, 457–477.

Basel Committee (1996), Overview over the amendment to the capital accord to incorporate mar-

ket risks, Technical report, Basel Committee on Banking Supervision.

Beran, J. (1995), ‘Maximum likelihood estimation of the differencing parameter for invertible

short and long memory autoregressive integrated moving average models’, Journal of the Royal

Statistical Society, Series B 57, 659–672.

Bianchi, C. and Calzolari, G. (1980), ‘The one-period forecast errors in nonlinear econometric

models’, 21, 201–208.

Bollerslev, T. and Zhou, H. (2006), ‘Volatility puzzles: A simple framework for gauging return

volatility regressions’, Journal of Econometrics 131, 123–150.

Calzolari, G. and Halbleib, R. (2016), ‘Estimating stable latent factor models by indirect infer-

ence’, Journal of Econometrics . forthcoming.

29



Calzolari, G., Halbleib, R. and Parrini, A. (2014), ‘Estimating garch-type models with symmetric

stable innovations: Indirect inference versus maximum likelihood’, Computational Statistics &

Data Analysis 71, 945–973.

Chernov, M., Gallant, A. R., Ghysels, E. and Tauchen, G. (2003), ‘Alternative models for stock

price dynamics’, Journal of Econometrics 116, 225–257.

Chiriac, R. and Voev, V. (2011), ‘Modelling and forecasting multivariate realized volatility’, Jour-

nal of Applied Econometrics 26, 922–947.

Comte, F. and Renault, E. (1998), ‘Long memory in continuous-time stochastic volatility models’,

Mathematical Finance 8, 291–323.

Corsi, F. (2009), ‘A simple approximate long-memory model of realized volatility’, Journal of

Financial Econometrics 7, 174–196.

Corsi, F., Kretschmer, U., Mittnik, S. and Pigorsch, C. (2008), ‘Volatility of realized volatility’,

Econometric Reviews 27, 46–78.

Diebold, F. X. and Nerlove, M. (1989), ‘The dynamics of exchange rate volatility: A multivariate

latent factor arch model’, Journal of Applied Econometrics 4, 1–21.

Ding, Z. and Granger, C. W. J. (1996), ‘Modeling volatility persistence of speculative returns: A

new approach’, Journal of Econometrics 73, 185–215.

Dungey, M., Martin, V. and Pagan, A. (2000), ‘A multivariate latent factor decomposition of inter-

national bond yield spreads’, 15, 697–715.

Engle, R. F. (1982), ‘Autoregressive conditional heteroskedasticity with estimates of the variance

of U.K. inflation’, Econometrica 50(4), 987–1008.

Engle, R. F. and Lee, G. J. (1999), A permanent and transitory component model of stock re-

turn volatility, in R. Engle and H. White, eds, ‘Cointegration, Causality, and Forecasting: A

Festschrift in Honor of Clive W.J. Granger’, Oxford: Oxford University Press, pp. 475–497.

Engle, R. and Rosenberg, J. (2000), ‘Testing the volatility term structure using option hedging

criteria’, Journal of Derivatives 8, 10–28.

30



Gallant, A. R., Hsu, C.-T. and Tauchen, G. (1999), ‘Using daily range data to calibrate volatility

diffusions and extract the forward integrated variance’, Review of Economics and Statistics

81, 617–631.

Gallant, A. R. and Tauchen, G. (1996), ‘Which moments to match?’, Econometric Theory 12, 657–

681.

Geweke, J. and Zhou, G. (1996), ‘Measuring the pricing error of the arbitrage pricing theory’, The

Review of Financial Studies 89, 557–587.

Ghysels, E. (2014), Factor analysis with large panels of volatility proxies. CEPR Discussion Paper

No. 10034.

Gouriéroux, C., Monfort, A. and Renault, E. (1993), ‘Indirect inference’, Journal of Applied

Econometrics 8, 85–118.

Granger, C. W. J. (1980), ‘Long-memory relationships and the aggregation of dynamic models’,

Journal of Econometrics 14, 227–238.

Halbleib, R. and Voev, V. (2016), ‘Forecasting covariance matrices: A mixed approach’, Journal

of Financial Econometrics 14.

Hansen, P. R. and Lunde, A. (2014), ‘Estimating the persistence and the autocorrelation function

of a time series that is measured with error’, Econometric Theory 30, 60–93.

Hansen, P. R., Lunde, A. and Nason, J. M. (2011), ‘The Model Confidence Set’, Econometrica

79(2), 453–497.

Harvey, A. (2013), Dynamic Models for Volatility and Heavy Tails, Econometric Society Mono-

graph. Cambridge University Press.

Harvey, A. C. (1989), Forecasting structural time series models and the Kalman filter, Cambridge

University Press.

Harvey, A. C., Ruiz, E. and Sentana, E. (1992), ‘Unobservable component time series models with

arch disturbances’, Journal of Econometrics 52, 129–158.

Harvey, A. and Lange, R.-J. (2015), Modeling the interactions between volatility and returns.

CWPE Discussion Paper nr. 1518.

31



Jungbacker, B. and Koopman, S. (2015), ‘Likelihood-based dynamic factor analysis for measure-

ment and forecasting’, The Econometrics Journal 18, C1–C21.

Jungbacker, B., Koopman, S. and van der Wel, M. (2011), ‘Maximum likelihood estimation for

dynamic factor models with missing data’, Journal of Economic Dynamics & Control 35, 1358–

1368.

Kapetanios, G. and Marcellino, M. (2009), ‘A parametric estimation method for dynamic factor

models of large dimensions’, Journal of Time Series Analyisis 30, 208–238.

Koopman, S. J. and Durbin, J. (2000), ‘A parametric estimation method for dynamic factor models

of large dimensions’, Journal of Time Series Analyisis 21, 281–296.

Koopman, S. J., Jungbacker, B. and Hol, E. (2005), ‘Forecasting daily variability of the s&p 100

stock index using historical, realised and implied volatility measurements’, Journal of Empirical

Finance 12, 445–475.

Lanne, M. (2006), ‘A mixture multiplicative error model for realized volatility’, Journal of Finan-

cial Econometrics 4, 594–616.

Lawley, D. N. and Maxwell, A. E. (1962), ‘Factor analysis as a statistical method’, Journal of the

Royal Statistical Society. Series D (The Statistician) 12, 209–229.

Lieberman, O. and Phillips, P. C. B. (2008), ‘Refined inference on long memory in realized volatil-

ity’, Econometric Reviews 27, 254–267.

Luciani, M. and Veredas, D. (2015), ‘Estimating and forecasting large panels of volatilities with

approximate dynamic factor models’, Journal of Forecasting 34, 163–176.

Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, Springer, Berlin.

Meddahi, N. (2003), ‘Arma representation of integrated and realized variances’, The Econometrics

Journal 6, 334–355.

Meddahi, N. and Renault, E. (2004), ‘Temporal aggregation of volatility models’, Journal of

Econometrics 119, 355–379.

Monfardini, C. (1998), ‘Estimating stochastic volatility models through indirect inference’, The

Econometrics Journal 1, 113–128.

32



Oomen, R. C. A. (2001), Using high frequency stock market index data to calculate, model

and forecast realized return variance. European University, Economics Discussion Paper No.

2001/6.

Patton, A. (2011), ‘Volatility forecast comparison using imperfect volatility proxies’, Journal of

Econometrics 160/1, 246–256.

Patton, A. and Sheppard, K. (2015), ‘Good volatility, bad volatility: Signed jumps and the persis-

tence of volatility’, 97, 683–697.

Sentana, E. (2004), ‘Factor representing portfolios in large asset markets’, 119, 257–289.

Sentana, E., Calzolari, G. and Fiorentini, G. (2008), ‘Indirect estimation of large conditionally het-

eroskedastic factor models, with an application to the dow 30 stocks’, Journal of Econometrics

146, 10–25.

Smith, A. (1993), ‘Estimating non–linear time series models using simulated vector autoregres-

sions: Two approaches’, Journal of Applied Econometrics 8, 63–84.

Wright, J. H. (1999), ‘Testing for a unit root in the volatility of asset returns’, Journal of Applied

Econometrics 14, 309–318.

Zhang, L., Mykland, P. A. and Aı̈t-Sahalia, Y. (2005), ‘A tale of two time scales: Determining

integrated volatility with noisy high frequency data’, Journal of the American Statistical Asso-

ciation 100, 1394–1411.

33



Appendix A: Mathematical Derivations

A.1. Proof of Proposition 2.1

Consider the DFM-WN model given in equations (5)-(6), where we drop the index i:

Yt =

K∑
j=1

bjfj,t + ut (A.30)

fj,t = φjfj,t−1 + vj,t, (A.31)

and V [ut] = σ2, V [fj,t] = 1 and |φj | < 1 for j = 1, . . . , k. Then, we can writte fjt =
vjt

1−φjL
. Replacing

this in Equation (A.30), one gets:

Yt =

k∑
j=1

bjvjt
1− φjL

+ ut =

∑k
j=1 bj

∏k
s6=j(1− φsL) vjt∏k

j=1(1− φjL)
+ ut. (A.32)

Rewriting Equation (A.32) yields

k∏
j=1

(1− φjL) yt =

k∑
j=1

bj

k∏
s6=j

(1− φsL) vjt +

k∏
j=1

(1− φjL) ut, (A.33)

which is the same as writing

(1− φ1L) · · · (1− φkL) yt =

k∑
j=1

bj (1− φ1L) · · · (1− φj−1L)(1− φj+1L) · · · (1− φkL) vjt +

(1− φ1L) · · · (1− φkL) ut. (A.34)

One can use the fact that:

k∏
j=1

(1− φjL) = 1−
k∑
l=1

θlL
l, (A.35)

where θl’s with l = 1, . . . , k are functions of φ1, . . . , φk. They can be obtained by multiplying (A.35) by
L−k and defining z = L−1 yielding

(z − φ1)(z − φ2) · · · (z − φk) = zk − θ1zk−1 − ...− θk. (A.36)

Setting sequentially in Equation (A.36) z = φi for i = 1, ..., k (making the left hand side of the equation
equal to zero), we obtain the system

φk1 − θ1φk−11 − ...− θk = 0 (A.37)
...

φkk − θ1φk−1k − ...− θk = 0, (A.38)

from which we derive the θl’s.

In the same manner one can write:

k∏
s 6=j

(1− φsL) = 1−
k−1∑
l=1

θljL
l, (A.39)

where θlj are functions of φ1, φ2, . . . , φj−1, φj+1, . . . , φk and that can be derived from a system of k − 1
equations similar to the one given in (A.37)-(A.38). Thus, (A.32) can be written as:
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[
1−

k∑
l=1

θlL
l

]
Yt =

k∑
j=1

bj

[
1−

k−1∑
l=1

θljL
l

]
vjt +

[
1−

k∑
l=1

θlL
l

]
ut, (A.40)

or as:

(1− θ1L− ...− θkLk) Yt =

k∑
j=1

bj(1− θ1jL− ...− θk−1,jLk−1) vjt + (1− θ1L− ...− θkLk) ut,

(A.41)

indicating that Yt is an ARMA(k, k) process composed of one AR(k), k MA(k) and one MA(k+1) compo-
nents.

In order to derive the autocorrelation function of Yt, it is more appropriate to write it as an MA(∞)
given that 1

1−φL = 1 + φL+ φ2L2 + φ3L3 + . . .. Thus,

Yt =

k∑
j=1

bj
vj,t

1− φjL
+ ut (A.42)

=

k∑
j=1

bjvj,t(1 + φjL+ φ2jL
2 + . . . ) + ut (A.43)

=

k∑
j=1

(bjvj,t + bjφjvj,t−1 + bjφ
2
jvj,t−2 + . . . ) + ut (A.44)

=

∞∑
m=0

k∑
j=1

bjφ
m
j L

mvj,t + ut (A.45)

Thus, the unconditional variance of Yt is given by:

γY0 ≡ E[Y 2
t ] =

k∑
j=1

b2j (1 + φ2j + φ4j + . . . )V [vj,t] + V [ut]

=

k∑
j=1

b2j
1

(1− φ2j )
(1− φ2j ) + σ2 =

k∑
j=1

b2j + σ2, (A.46)

as E[Yt] = 0, V [vjt ] = (1− φ2j ) and V [ut] = σ2.

The autocovariance computed at lag p is given by:

γYp ≡ E[YtYt−p] = E[(

k∑
j=1

(bjvj,t + bjφjvj,t−1 + · · ·+ bjφ
p
jvj,t−p + bjφ

p+1
j vj,t−p−1 + . . . ) + ut)

× (

k∑
j=1

(bjvj,t−p + bjφjvj,t−p−1 + . . . ) + ut−p)]

=

k∑
j=1

b2j (φ
p
j + φp+2

j + φp+4
j + . . . )V [vj,t]

=

k∑
j=1

b2jφ
p
j (1 + φ2j + φ4j + . . . )V [vj,t]

=

k∑
j=1

b2j
φpj

(1− φ2j )
(1− φ2j ) =

k∑
j=1

b2jφ
p
j (A.47)
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Thus, the autocorrelation function at lag p is given by:

ρYp ≡
γYp
γY0

=

∑k
j=1 b

2
jφ
p
j∑k

j=1 b
2
j + σ2

. (A.48)

A.2. Proof of Proposition 2.2

Xt is given by the aggregation of only AR(1) components:

Xt =

k∑
j=1

bjfj,t (A.49)

fj,t = φjfj,t−1 + vj,t (A.50)

Then,

Xt =

k∑
j=1

bjvjt
1− φjL

(A.51)

=

∑k
j=1 bj

∏k
s6=j(1− φsL) vjt∏k

j=1(1− φjL)
. (A.52)

Thus,

k∏
j=1

(1− φjL) Xt =

k∑
j=1

bj

k∏
s 6=j

(1− φsL) vjt, (A.53)

which is equivalent to:

(1−
k∑
l=1

θlL
l) Xt =

k∑
j=1

bj(1−
k−1∑
l=1

θljL
l) vjt, (A.54)

where θl and θlj are defined in the previous proof. Consequently,Xt is an ARMA(k,k-1) process composed
by one AR(k) and k MA(k-1) components.

In order to derive the ACF of Xt, we re-write it as an MA(∞) process as it follows:

Xt =

k∑
j=1

bj
vj,t

1− φjL
=

k∑
j=1

bjvj,t(1 + φjL+ φ2jL
2 + φ3jL

3 + . . . ) =

∞∑
m=0

k∑
j=1

bjφ
m
j L

mvj,t (A.55)

Thus, the variance of Xt is given by:

γX0 ≡ E[X2
t ] =

k∑
j=1

b2jV [vj,t](1 + φ2j + φ4j + . . . ) =

k∑
j=1

b2j
1

1− φ2j
(1− φ2j ) =

k∑
j=1

b2j , (A.56)

as E[Xt] = 0 and V [vj,t] = 1− φ2j .

The p-th autocovariance is given by:

γXp ≡ E[XtXt−p] = E[(

k∑
j=1

(bjvj,t + . . .+ bjφ
p
jvj,t−p + bjφ

p+1
j vj,t−p−1 + . . .)]

× [(

k∑
j=1

(bjvj,t−p + bjφjvj,t−p−1 + . . . )]
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=

k∑
j=1

b2jφ
p
j (1 + φ2j + φ4j . . . )V [vj,t]

=

k∑
j=1

b2jφ
p
j

1

1− φ2j
(1− φ2j ) =

k∑
j=1

b2jφ
p
j (A.57)

The p-th autocorrelation is given by:

ρXp ≡
γXp
γX0

=

∑k
j=1 b

2
jφ
p
j∑k

j=1 b
2
j

. (A.58)

Appendix B: Tables

Table B.1: Monte Carlo results from estimating DFM-WN with 2 factors by Indirect Infer-
ence (IndInf) and Maximum Likelihood (ML) and DFM-AR and DFM-ARCH by Indirect
Inference: n = 30 series, T = 3773 observations, R = 1000 replications.

DFM-WN DFM-AR DFM-ARCH
ML IndInf IndInf IndInf

True Mean Std. dev Mean Std. dev True Mean Std. dev True Mean Std. dev

Φ
φ1 0.920 0.919 0.007 0.920 0.007 0.920 0.920 0.007 0.930 0.929 0.006
φ2 0.970 0.969 0.004 0.969 0.004 0.920 0.919 0.007 0.980 0.978 0.006

Λ λ 0.500 0.499 0.003
α α 0.160 0.157 0.031

Σ

σ2
1 0.200 0.200 0.005 0.200 0.005 0.200 0.199 0.007 0.180 0.180 0.004
σ2
2 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
3 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
4 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
5 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
6 0.200 0.199 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
7 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
8 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
9 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005

σ2
10 0.200 0.199 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
11 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
12 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
13 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
14 0.200 0.200 0.005 0.200 0.005 0.200 0.199 0.006 0.180 0.180 0.005
σ2
15 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
16 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
17 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
18 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
19 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.006 0.180 0.180 0.004
σ2
20 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
21 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
22 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
23 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
24 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
25 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.004
σ2
26 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
27 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
28 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
29 0.200 0.200 0.005 0.200 0.005 0.200 0.200 0.007 0.180 0.180 0.005
σ2
30 0.200 0.200 0.005 0.200 0.005 0.200 0.199 0.007 0.180 0.180 0.005
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Table B.2: Cnt’d Monte Carlo results from estimating DFM-WN with 2 factors by Indirect
Inference (IndInf) and Maximum Likelihood (ML) and DFM-AR and DFM-ARCH by Indi-
rect Inference: n = 30 series, T = 3773 observations, R = 1000 replications.

DFM-WN DFM-AR DFM-ARCH
ML IndInf IndInf IndInf

True Mean Std. dev Mean Std. dev Mean Std. dev True Mean Std. dev

B

b1,1 1.000 0.996 0.040 0.999 0.043 0.999 0.044 0.740 0.738 0.035
b1,2 1.000 0.995 0.043 1.002 0.082 0.998 0.074 0.740 0.739 0.039
b1,3 1.000 0.996 0.042 0.996 0.083 1.001 0.076 0.740 0.739 0.039
b1,4 1.000 0.995 0.043 1.002 0.082 0.997 0.074 0.740 0.739 0.039
b1,5 1.000 0.996 0.042 0.996 0.083 1.001 0.076 0.740 0.738 0.039
b1,6 1.000 0.995 0.042 1.002 0.083 0.997 0.075 0.740 0.738 0.039
b1,7 1.000 0.996 0.041 0.996 0.083 1.001 0.075 0.740 0.738 0.039
b1,8 1.000 0.995 0.042 1.002 0.083 0.996 0.074 0.740 0.738 0.038
b1,9 1.000 0.996 0.042 0.996 0.083 1.001 0.075 0.740 0.738 0.039
b1,10 1.000 0.995 0.042 1.002 0.082 0.997 0.075 0.740 0.738 0.039
b1,11 1.000 0.996 0.041 0.996 0.083 1.000 0.075 0.740 0.738 0.038
b1,12 1.000 0.995 0.042 1.002 0.083 0.996 0.075 0.740 0.738 0.039
b1,13 1.000 0.996 0.041 0.996 0.083 1.001 0.075 0.740 0.738 0.039
b1,14 1.000 0.995 0.042 1.002 0.083 0.997 0.075 0.740 0.739 0.039
b1,15 1.000 0.996 0.042 0.996 0.083 1.001 0.075 0.740 0.738 0.039
b1,16 1.000 0.995 0.043 1.002 0.082 0.997 0.074 0.740 0.738 0.039
b1,17 1.000 0.996 0.042 0.996 0.083 1.001 0.075 0.740 0.738 0.039
b1,18 1.000 0.995 0.042 1.002 0.082 0.998 0.074 0.740 0.739 0.039
b1,19 1.000 0.997 0.042 0.997 0.083 1.002 0.074 0.740 0.739 0.039
b1,20 1.000 0.995 0.043 1.002 0.083 0.997 0.075 0.740 0.738 0.039
b1,21 1.000 0.996 0.041 0.996 0.083 1.002 0.075 0.740 0.739 0.039
b1,22 1.000 0.995 0.043 1.002 0.082 0.997 0.074 0.740 0.738 0.039
b1,23 1.000 0.996 0.041 0.996 0.083 1.001 0.074 0.740 0.738 0.038
b1,24 1.000 0.995 0.042 1.002 0.083 0.996 0.075 0.740 0.738 0.039
b1,25 1.000 0.996 0.041 0.996 0.083 1.000 0.075 0.740 0.738 0.039
b1,26 1.000 0.995 0.042 1.002 0.082 0.997 0.073 0.740 0.738 0.039
b1,27 1.000 0.995 0.042 0.997 0.083 1.002 0.076 0.740 0.739 0.039
b1,28 1.000 0.995 0.043 1.002 0.082 0.998 0.075 0.740 0.739 0.039
b1,29 1.000 0.996 0.042 0.996 0.083 1.002 0.075 0.740 0.739 0.038
b1,30 1.000 0.995 0.042 1.002 0.083 0.998 0.075 0.740 0.739 0.039
b2,2 -1.000 -0.996 0.065 -0.997 0.070 -1.000 0.044 0.220 0.218 0.022
b2,3 1.000 0.996 0.065 0.997 0.070 0.999 0.044 -0.220 -0.218 0.022
b2,4 -1.000 -0.996 0.065 -0.997 0.070 -1.000 0.045 -0.220 -0.219 0.022
b2,5 1.000 0.996 0.065 0.996 0.070 0.998 0.044 0.220 0.218 0.021
b2,6 -1.000 -0.996 0.065 -0.997 0.070 -0.999 0.045 -0.220 -0.219 0.022
b2,7 1.000 0.995 0.065 0.997 0.070 0.999 0.043 -0.220 -0.219 0.022
b2,8 -1.000 -0.996 0.065 -0.997 0.070 -1.000 0.045 0.220 0.219 0.022
b2,9 1.000 0.996 0.065 0.997 0.070 0.999 0.044 -0.220 -0.219 0.022
b2,10 -1.000 -0.996 0.065 -0.997 0.070 -0.999 0.046 -0.220 -0.219 0.022
b2,11 1.000 0.996 0.065 0.997 0.069 0.999 0.043 0.220 0.218 0.021
b2,12 -1.000 -0.996 0.065 0.997 0.070 -0.999 0.045 -0.220 -0.219 0.022
b2,13 1.000 0.996 0.064 0.997 0.070 0.998 0.044 -0.220 -0.219 0.022
b2,14 -1.000 -0.996 0.065 0.997 0.070 -1.001 0.045 0.220 0.218 0.022
b2,15 1.000 0.995 0.065 0.997 0.070 0.999 0.044 -0.220 -0.219 0.022
b2,16 -1.000 -0.996 0.065 0.997 0.071 -0.999 0.045 -0.220 -0.219 0.022
b2,17 1.000 0.995 0.065 0.997 0.069 0.998 0.044 0.220 0.218 0.021
b2,18 -1.000 -0.996 0.065 0.997 0.070 -0.999 0.045 -0.220 -0.219 0.022
b2,19 1.000 0.995 0.065 0.997 0.070 0.998 0.044 -0.220 -0.219 0.022
b2,20 -1.000 -0.996 0.065 0.997 0.070 -1.000 0.045 0.220 0.219 0.021
b2,21 1.000 0.996 0.065 0.997 0.070 0.999 0.044 -0.220 -0.219 0.022
b2,22 -1.000 -0.995 0.064 0.997 0.070 -1.000 0.045 -0.220 -0.219 0.022
b2,23 1.000 0.996 0.065 0.997 0.070 0.998 0.045 0.220 0.218 0.022
b2,24 -1.000 -0.996 0.065 0.997 0.070 -1.000 0.044 -0.220 -0.219 0.022
b2,25 1.000 0.996 0.065 0.997 0.070 0.999 0.044 -0.220 -0.219 0.022
b2,26 -1.000 -0.995 0.065 0.997 0.070 -1.000 0.045 0.220 0.218 0.022
b2,27 1.000 0.995 0.065 0.996 0.069 0.999 0.044 -0.220 -0.219 0.022
b2,28 -1.000 -0.996 0.065 0.997 0.070 -0.999 0.045 -0.220 -0.219 0.022
b2,29 1.000 0.996 0.065 0.997 0.070 0.999 0.043 0.220 0.218 0.022
b2,30 -1.000 -0.996 0.064 -0.997 0.070 -1.000 0.045 -0.220 -0.219 0.022
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Table B.3: Monte Carlo results from estimating DFM-WN with 2 factors by Indirect In-
ference (IndInf) and Maximum Likelihood (ML) : n = 8 series, T = 3773 observations,
R = 1000 replications.

Estimation ML IndInf
Parameters True Mean Std. dev Mean Std. dev

Φ
φ1 0.920 0.920 0.007 0.919 0.007
φ2 0.970 0.970 0.004 0.969 0.004

Σ

σ2
1 0.200 0.200 0.005 0.200 0.006
σ2
2 0.200 0.200 0.005 0.200 0.006
σ2
3 0.200 0.200 0.006 0.200 0.007
σ2
4 0.200 0.200 0.006 0.200 0.007
σ2
5 0.200 0.200 0.006 0.200 0.007
σ2
6 0.200 0.200 0.006 0.200 0.006
σ2
7 0.200 0.200 0.006 0.200 0.008
σ2
8 0.200 0.200 0.006 0.200 0.006

B

b1,1 1.000 1.000 0.041 0.999 0.043
b1,2 1.000 1.000 0.044 1.000 0.085
b1,3 1.000 1.000 0.044 1.000 0.083
b1,4 1.000 1.000 0.043 0.999 0.085
b1,5 1.000 1.000 0.043 1.000 0.083
b1,6 1.000 1.000 0.044 0.999 0.084
b1,7 1.000 1.000 0.044 1.000 0.083
b1,8 1.000 1.000 0.044 0.999 0.085
b2,2 1.000 1.002 0.065 0.998 0.070
b2,3 -1.000 -1.001 0.064 0.998 0.070
b2,4 1.000 1.002 0.064 0.998 0.070
b2,5 -1.000 -1.001 0.065 0.999 0.070
b2,6 1.000 1.002 0.064 0.998 0.070
b2,7 -1.000 -1.001 0.064 0.998 0.070
b2,8 1.000 1.002 0.064 0.998 0.070
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Table B.4: Descriptive statistics of daily RVar’s and log-RVar’s: from 01.11.2001 until
19.12.2016, T = 3773 observations. The daily RVar’s are upscaled by 104.

Stock
RVar log-RVar

Mean Std. dev Skewness Kurtosis Mean Std. dev Skewness Kurtosis
AA 4.709 9.039 12.059 257.669 1.059 0.854 0.899 4.365
AXP 3.392 8.505 11.752 262.116 0.358 1.138 0.870 3.603
BA 2.309 3.546 6.888 74.425 0.386 0.857 0.660 3.661
BAC 5.104 17.677 11.367 206.801 0.514 1.215 1.003 4.430
C 6.231 27.222 16.425 394.282 0.666 1.203 1.070 4.677
CAT 2.807 4.810 9.086 147.407 0.572 0.843 0.783 4.184
CV X 1.974 4.639 20.068 649.448 0.187 0.851 0.795 4.531
DD 2.217 3.859 10.416 203.740 0.321 0.864 0.760 3.908
DIS 2.328 4.466 14.565 425.553 0.295 0.930 0.775 3.629
GE 2.623 6.953 10.117 152.161 0.183 1.050 0.922 4.222
GS 3.521 12.342 19.801 537.667 0.557 0.927 1.244 5.645
HD 2.512 5.243 16.881 516.306 0.379 0.911 0.812 3.870
HON 2.458 5.494 25.150 1038.538 0.348 0.951 0.524 3.515
HPQ 3.183 5.587 11.182 201.656 0.703 0.849 0.683 3.975
IBM 1.509 2.911 10.171 173.764 -0.079 0.843 0.986 4.612
IP 3.566 6.882 7.159 82.480 0.683 0.931 0.944 4.214
JNJ 1.076 2.336 15.259 407.614 -0.451 0.874 0.928 4.422
JPM 4.109 11.080 10.675 170.016 0.549 1.119 0.905 3.846
KO 1.142 2.185 15.254 427.196 -0.309 0.813 0.850 4.562
MCD 1.599 3.347 22.978 904.561 -0.050 0.920 0.592 3.474
MMM 1.481 4.708 36.617 1762.923 -0.107 0.844 0.770 4.749
MO 1.479 2.804 8.542 106.393 -0.097 0.840 0.970 4.774
MRK 2.064 4.616 15.134 370.526 0.207 0.867 0.875 4.534
NKE 2.066 3.214 8.966 160.169 0.291 0.825 0.859 3.868
PFE 1.824 2.908 10.101 195.893 0.184 0.812 0.744 4.066
PG 1.074 2.919 25.163 840.958 -0.371 0.776 0.964 5.459
UTX 1.751 3.396 12.816 275.795 0.095 0.838 0.790 4.407
V Z 1.890 3.926 13.817 360.298 0.076 0.914 0.894 4.084
WMT 1.409 2.946 20.122 687.566 -0.122 0.836 0.830 4.266
XOM 1.798 4.484 23.189 851.313 0.085 0.852 0.833 4.637

40



Table B.5: Estimation results for DFM-WN and DFM-AR models: n = 30 series of demeaned
daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations.

XXXXXXXXXXParameters
Model DFM-WN DFM-AR

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

Φ
φ1 0.9202 0.9253 0.9155 0.9135 0.9200 0.9109
φ2 0.9757 0.8610 0.9287 0.8217
φ3 0.9794 0.9340

Λ ρ 0.5670 0.4960 0.4579

Σ

σ2
1 0.2666 0.2492 0.2237 0.2660 0.2485 0.2239
σ2
2 0.2783 0.1771 0.1743 0.2774 0.1763 0.1761
σ2
3 0.1701 0.1662 0.1624 0.1690 0.1657 0.1630
σ2
4 0.6684 0.1268 0.1269 0.6683 0.1268 0.1260
σ2
5 0.4644 0.1135 0.1067 0.4645 0.1135 0.1059
σ2
6 0.1720 0.1704 0.1631 0.1727 0.1723 0.1609
σ2
7 0.2517 0.2576 0.0234 0.2552 0.2591 0.0234
σ2
8 0.1459 0.1484 0.1437 0.1468 0.1493 0.1438
σ2
9 0.1836 0.1617 0.1514 0.1850 0.1602 0.1530

σ2
10 0.2119 0.1829 0.1713 0.2091 0.1842 0.1724
σ2
11 0.2271 0.1698 0.1633 0.2290 0.1714 0.1629
σ2
12 0.1699 0.1658 0.1663 0.1720 0.1666 0.1662
σ2
13 0.1809 0.1551 0.1420 0.1823 0.1563 0.1418
σ2
14 0.3371 0.3246 0.3195 0.3400 0.3249 0.3212
σ2
15 0.1520 0.1468 0.1459 0.1522 0.1456 0.1451
σ2
16 0.3077 0.2364 0.2413 0.3050 0.2329 0.2410
σ2
17 0.2561 0.2174 0.2061 0.2509 0.2176 0.2070
σ2
18 0.2361 0.1146 0.1018 0.2367 0.1139 0.1013
σ2
19 0.1789 0.1561 0.1483 0.1783 0.1559 0.1485
σ2
20 0.3174 0.2080 0.2049 0.3162 0.2073 0.2053
σ2
21 0.1432 0.1443 0.1425 0.1432 0.1440 0.1428
σ2
22 0.2772 0.2546 0.2550 0.2769 0.2541 0.2538
σ2
23 0.2410 0.2246 0.2270 0.2407 0.2234 0.2272
σ2
24 0.1715 0.1710 0.1694 0.1703 0.1704 0.1693
σ2
25 0.1972 0.1904 0.1921 0.1962 0.1914 0.1900
σ2
26 0.1679 0.1545 0.1583 0.1687 0.1550 0.1582
σ2
27 0.1261 0.1193 0.1190 0.1267 0.1188 0.1196
σ2
28 0.2403 0.2045 0.1895 0.2387 0.2051 0.1889
σ2
29 0.2089 0.1755 0.1761 0.2097 0.1761 0.1750
σ2
30 0.1932 0.1870 0.0645 0.1939 0.1872 0.0645

Total nr. of parameters 61 91 121 62 92 122
BIC -55.45 -58.99 -63.66 -62.44 -65.80 -69.90
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Table B.6: Cont’d estimation results for DFM-WN and DFM-AR models: n = 30 series of
demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations.

XXXXXXXXXXParameters
Model DFM-WN DFM-AR

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

B

b1,1 0.6673 0.6740 0.7097 0.6709 0.6726 0.7081
b1,2 0.9827 1.0312 1.0107 0.9813 1.0356 1.0095
b1,3 0.7370 0.7046 0.6916 0.7397 0.7000 0.6895
b1,4 0.8828 1.0077 1.0077 0.8840 1.0192 1.0190
b1,5 0.9611 1.0689 1.0513 0.9602 1.0775 1.0584
b1,6 0.7154 0.7176 0.7411 0.7160 0.7191 0.7412
b1,7 0.6750 0.6412 0.7662 0.6796 0.6387 0.7643
b1,8 0.7550 0.7474 0.7699 0.7570 0.7450 0.7689
b1,9 0.8063 0.7689 0.7436 0.8067 0.7645 0.7374
b1,10 0.9230 0.9360 0.9052 0.9259 0.9382 0.9020
b1,11 0.7764 0.8052 0.8213 0.7803 0.8063 0.8215
b1,12 0.7917 0.7664 0.7706 0.7912 0.7598 0.7669
b1,13 0.8297 0.7780 0.7621 0.8276 0.7694 0.7544
b1,14 0.5999 0.5767 0.5714 0.5976 0.5731 0.5677
b1,15 0.7297 0.6957 0.7078 0.7312 0.6903 0.7030
b1,16 0.7265 0.7642 0.7645 0.7262 0.7673 0.7660
b1,17 0.6919 0.6465 0.6307 0.6932 0.6407 0.6235
b1,18 0.9882 1.0355 1.0116 0.9911 1.0396 1.0136
b1,19 0.6779 0.6400 0.6296 0.6803 0.6367 0.6260
b1,20 0.7170 0.6375 0.6393 0.7222 0.6278 0.6327
b1,21 0.7375 0.7047 0.7185 0.7386 0.6997 0.7145
b1,22 0.6379 0.5989 0.6084 0.6376 0.5940 0.6017
b1,23 0.6965 0.6606 0.6740 0.6984 0.6572 0.6675
b1,24 0.6974 0.6899 0.6997 0.7003 0.6878 0.6980
b1,25 0.6623 0.6286 0.6355 0.6623 0.6231 0.6320
b1,26 0.6414 0.6118 0.6187 0.6412 0.6096 0.6140
b1,27 0.7438 0.7064 0.7031 0.7476 0.7025 0.6966
b1,28 0.7553 0.7083 0.6843 0.7580 0.7024 0.6756
b1,29 0.6898 0.6389 0.6518 0.6919 0.6335 0.6452
b1,30 0.7138 0.6681 0.7603 0.7156 0.6612 0.7554
b2,2 0.0793 -0.2999 0.0808 -0.3012
b2,3 -0.2298 -0.1766 -0.2307 -0.1759
b2,4 0.5049 -0.3137 0.5096 -0.3190
b2,5 0.3457 -0.3724 0.3493 -0.3776
b2,6 -0.0745 -0.0421 -0.0754 -0.0414
b2,7 -0.1837 0.3482 -0.1866 0.3476
b2,8 -0.1123 -0.0647 -0.1135 -0.0661
b2,9 -0.2952 -0.1978 -0.2953 -0.1966
b2,10 -0.0377 -0.2946 -0.0383 -0.2938
b2,11 0.0629 -0.1250 0.0652 -0.1248
b2,12 -0.2195 -0.1233 -0.2209 -0.1240
b2,13 -0.3302 -0.1910 -0.3317 -0.1909
b2,14 -0.2184 -0.1202 -0.2231 -0.1178
b2,15 -0.2316 -0.0750 -0.2355 -0.0728
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Table B.7: Cont’d estimation results for DFM-WN and DFM-AR models: n = 30 series of
demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations. The entries
without any font correspond to p-values smaller than 0.01, the ones in italics to p-values between
0.01 and 0.05, the ones in bold to p-values between 0.05 and 0.10 and the ones in italics and bold
to p-values larger than 0.10.

XXXXXXXXXXParameters
Model DFM-WN DFM-AR

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

B

b2,16 0.1017 -0.1777 0.1031 -0.1822
b2,17 -0.3332 -0.1381 -0.3341 -0.1383
b2,18 0.0940 -0.3407 0.0969 -0.3418
b2,19 -0.2886 -0.1446 -0.2912 -0.1444
b2,20 -0.4601 -0.0658 -0.4678 -0.0636
b2,21 -0.2161 -0.0797 -0.2178 -0.0799
b2,22 -0.2692 -0.0468 -0.2726 -0.0447
b2,23 -0.2674 -0.0258 -0.2691 -0.0243
b2,24 -0.0955 -0.1054 -0.0933 -0.1074
b2,25 -0.2301 -0.0899 -0.2323 -0.0890
b2,26 -0.2411 -0.0430 -0.2426 -0.0428
b2,27 -0.2498 -0.1121 -0.2517 -0.1131
b2,28 -0.3406 -0.1691 -0.3427 -0.1700
b2,29 -0.3114 -0.0348 -0.3146 -0.0342
b2,30 -0.2613 0.2307 -0.2638 0.2302
b3,3 -0.2993 -0.2958
b3,4 0.4452 0.4419
b3,5 0.2669 0.2643
b3,6 -0.0906 -0.0909
b3,7 -0.1115 -0.1084
b3,8 -0.1399 -0.1406
b3,9 -0.3734 -0.3710
b3,10 -0.1248 -0.1241
b3,11 0.0290 0.0275
b3,12 -0.2667 -0.2640
b3,13 -0.4117 -0.4074
b3,14 -0.2745 -0.2727
b3,15 -0.2680 -0.2643
b3,16 0.0608 0.0617
b3,17 -0.3980 -0.3925
b3,18 0.0057 0.0066
b3,19 -0.3485 -0.3426
b3,20 -0.5063 -0.4995
b3,21 -0.2568 -0.2562
b3,22 -0.3020 -0.2984
b3,23 -0.2936 -0.2902
b3,24 -0.1315 -0.1274
b3,25 -0.2684 -0.2611
b3,26 -0.2724 -0.2708
b3,27 -0.3033 -0.3006
b3,28 -0.4068 -0.3988
b3,29 -0.3471 -0.3440
b3,30 -0.2280 -0.2263
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Table B.8: Estimation results for DFM-ARCH and DFM-GARCH models: n = 30 series of
demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations.

XXXXXXXXXXParameters
Model DFM-ARCH DFM-GARCH

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

Φ
φ1 0.9220 0.9267 0.9168 0.9188 0.9241 0.9130
φ2 0.9757 0.9794 0.9757 0.9794
φ3 0.8610 0.8610

α α 0.1806 0.1637 0.1245 0.1079 0.0803 0.0799
β β 0.8141 0.8576 0.8481

Σ

σ2
1 0.2666 0.2492 0.2237 0.2666 0.2492 0.2237
σ2
2 0.2783 0.1771 0.1743 0.2783 0.1771 0.1743
σ2
3 0.1701 0.1662 0.1624 0.1701 0.1662 0.1624
σ2
4 0.6684 0.1268 0.1269 0.6684 0.1268 0.1269
σ2
5 0.4644 0.1135 0.1067 0.4644 0.1135 0.1067
σ2
6 0.1720 0.1704 0.1631 0.1720 0.1704 0.1631
σ2
7 0.2517 0.2577 0.0234 0.2517 0.2577 0.0234
σ2
8 0.1459 0.1484 0.1437 0.1459 0.1484 0.1437
σ2
9 0.1836 0.1617 0.1514 0.1836 0.1617 0.1514

σ2
10 0.2119 0.1829 0.1713 0.2119 0.1829 0.1713
σ2
11 0.2271 0.1698 0.1633 0.2272 0.1698 0.1633
σ2
12 0.1699 0.1658 0.1663 0.1699 0.1658 0.1663
σ2
13 0.1809 0.1551 0.1420 0.1809 0.1551 0.1420
σ2
14 0.3371 0.3246 0.3195 0.3371 0.3246 0.3195
σ2
15 0.1520 0.1468 0.1459 0.1520 0.1468 0.1459
σ2
16 0.3077 0.2364 0.2413 0.3077 0.2364 0.2413
σ2
17 0.2561 0.2174 0.2061 0.2561 0.2174 0.2061
σ2
18 0.2361 0.1146 0.1018 0.2361 0.1146 0.1018
σ2
19 0.1789 0.1561 0.1483 0.1789 0.1561 0.1483
σ2
20 0.3174 0.2080 0.2049 0.3174 0.2080 0.2049
σ2
21 0.1432 0.1443 0.1425 0.1432 0.1443 0.1425
σ2
22 0.2772 0.2546 0.2550 0.2772 0.2546 0.2550
σ2
23 0.2410 0.2246 0.2270 0.2410 0.2246 0.2270
σ2
24 0.1715 0.1710 0.1694 0.1715 0.1710 0.1694
σ2
25 0.1972 0.1904 0.1921 0.1972 0.1904 0.1921
σ2
26 0.1679 0.1545 0.1583 0.1679 0.1545 0.1583
σ2
27 0.1261 0.1193 0.1190 0.1261 0.1193 0.1190
σ2
28 0.2403 0.2045 0.1895 0.2403 0.2045 0.1895
σ2
29 0.2089 0.1755 0.1761 0.2089 0.1755 0.1761
σ2
30 0.1932 0.1870 0.0645 0.1932 0.1870 0.0645

Total nr. of parameters 62 92 121 63 93 122
BIC -55.38 -58.92 -63.60 -56.31 -60.00 -64.40

44



Table B.9: Cont’d estimation results for DFM-ARCH and DFM-GARCH models: n = 30
series of demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations.

XXXXXXXXXXParameters
Model DFM-ARCH DFM-GARCH

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

B

b1,1 0.6679 0.6749 0.7104 0.6700 0.6759 0.7125
b1,2 0.9843 1.0330 1.0115 0.9856 1.0353 1.0150
b1,3 0.7385 0.7061 0.6926 0.7400 0.7062 0.6947
b1,4 0.8843 1.0087 1.0070 0.8853 1.0122 1.0118
b1,5 0.9634 1.0698 1.0510 0.9643 1.0736 1.0560
b1,6 0.7164 0.7185 0.7419 0.7182 0.7194 0.7444
b1,7 0.6758 0.6422 0.7669 0.6767 0.6424 0.7683
b1,8 0.7560 0.7488 0.7705 0.7571 0.7499 0.7727
b1,9 0.8077 0.7707 0.7450 0.8093 0.7712 0.7468
b1,10 0.9246 0.9376 0.9062 0.9264 0.9394 0.9093
b1,11 0.7778 0.8063 0.8218 0.7794 0.8082 0.8251
b1,12 0.7930 0.7679 0.7717 0.7946 0.7689 0.7741
b1,13 0.8310 0.7798 0.7639 0.8329 0.7796 0.7658
b1,14 0.6008 0.5778 0.5725 0.6014 0.5776 0.5746
b1,15 0.7308 0.6968 0.7091 0.7318 0.6975 0.7109
b1,16 0.7270 0.7655 0.7651 0.7287 0.7670 0.7686
b1,17 0.6934 0.6483 0.6322 0.6943 0.6483 0.6342
b1,18 0.9902 1.0371 1.0119 0.9921 1.0396 1.0161
b1,19 0.6792 0.6416 0.6309 0.6807 0.6417 0.6322
b1,20 0.7184 0.6391 0.6411 0.7198 0.6393 0.6423
b1,21 0.7385 0.7062 0.7199 0.7406 0.7068 0.7219
b1,22 0.6389 0.6004 0.6096 0.6401 0.6008 0.6106
b1,23 0.6978 0.6626 0.6754 0.6994 0.6630 0.6774
b1,24 0.6991 0.6915 0.7005 0.7006 0.6923 0.7025
b1,25 0.6638 0.6304 0.6363 0.6649 0.6305 0.6378
b1,26 0.6430 0.6136 0.6197 0.6439 0.6135 0.6213
b1,27 0.7455 0.7078 0.7044 0.7465 0.7087 0.7060
b1,28 0.7564 0.7104 0.6861 0.7585 0.7101 0.6882
b1,29 0.6914 0.6401 0.6529 0.6922 0.6403 0.6547
b1,30 0.7147 0.6695 0.7614 0.7161 0.6702 0.7628
b2,2 0.0793 -0.2999 0.0793 -0.2999
b2,3 -0.2298 -0.1766 -0.2298 -0.1767
b2,4 0.5049 -0.3137 0.5049 -0.3137
b2,5 0.3457 -0.3725 0.3456 -0.3724
b2,6 -0.0745 -0.0421 -0.0745 -0.0421
b2,7 -0.1837 0.3482 -0.1837 0.3481
b2,8 -0.1123 -0.0647 -0.1123 -0.0647
b2,9 -0.2952 -0.1978 -0.2952 -0.1978
b2,10 -0.0378 -0.2946 -0.0377 -0.2946
b2,11 0.0629 -0.1250 0.0629 -0.1250
b2,12 -0.2195 -0.1233 -0.2195 -0.1233
b2,13 -0.3302 -0.1910 -0.3302 -0.1910
b2,14 -0.2184 -0.1202 -0.2184 -0.1202
b2,15 -0.2316 -0.0750 -0.2316 -0.0750
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Table B.10: Cont’d estimation results for DFM-ARCH and DFM-GARCH models: n = 30
series of demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T = 3773 observations.
The entries without any font correspond to p-values smaller than 0.01, the ones in italics to p-
values between 0.01 and 0.05 and the ones in bold to p-values between 0.05 and 0.10.

XXXXXXXXXXParameters
Model DFM-ARCH DFM-GARCH

1 Factors 2 Factors 3 Factors 1 Factors 2 Factors 3 Factors

B

b2,16 0.1017 -0.1777 0.1017 -0.1777
b2,17 -0.3332 -0.1381 -0.3332 -0.1381
b2,18 0.0940 -0.3407 0.0940 -0.3407
b2,19 -0.2886 -0.1446 -0.2886 -0.1446
b2,20 -0.4601 -0.0657 -0.4601 -0.0658
b2,21 -0.2161 -0.0797 -0.2161 -0.0797
b2,22 -0.2692 -0.0468 -0.2692 -0.0468
b2,23 -0.2674 -0.0258 -0.2674 -0.0258
b2,24 -0.0955 -0.1054 -0.0955 -0.1054
b2,25 -0.2301 -0.0899 -0.2301 -0.0899
b2,26 -0.2411 -0.0430 -0.2411 -0.0430
b2,27 -0.2498 -0.1121 -0.2498 -0.1121
b2,28 -0.3406 -0.1690 -0.3405 -0.1690
b2,29 -0.3115 -0.0348 -0.3114 -0.0348
b2,30 -0.2613 0.2307 -0.2613 0.2307
b3,3 -0.2993 -0.2993
b3,4 0.4453 0.4452
b3,5 0.2669 0.2669
b3,6 -0.0906 -0.0906
b3,7 -0.1115 -0.1115
b3,8 -0.1399 -0.1399
b3,9 -0.3734 -0.3734
b3,10 -0.1248 -0.1248
b3,11 0.0290 0.0290
b3,12 -0.2667 -0.2667
b3,13 -0.4117 -0.4117
b3,14 -0.2745 -0.2745
b3,15 -0.2680 -0.2680
b3,16 0.0608 0.0608
b3,17 -0.3981 -0.3981
b3,18 0.0057 0.0057
b3,19 -0.3485 -0.3485
b3,20 -0.5064 -0.5064
b3,21 -0.2568 -0.2568
b3,22 -0.3020 -0.3020
b3,23 -0.2936 -0.2936
b3,24 -0.1315 -0.1315
b3,25 -0.2684 -0.2684
b3,26 -0.2725 -0.2724
b3,27 -0.3034 -0.3033
b3,28 -0.4068 -0.4068
b3,29 -0.3472 -0.3471
b3,30 -0.2281 -0.2280
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Table B.11: BIC values and total number of parameters of alternative models and estimation
technique: n = 30 series of demeaned daily log-RVar’s from 01.11.2001 until 19.12.2016, T =
3773 observations.

Model BIC Total number of parameters
QML DFM-WN 2 factors -58.79 91
QML DFM-WN 3 factors -61.60 120

sARFIMA(1,d,0) -60.04 2
sARFIMA(0,d,0) -60.05 1
sARFIMA(1,d,1) -60.30 3
dARFIMA(1,d,0) -59.77 60
dARFIMA(0,d,0) -59.86 30
dARFIMA(1,d,1) -59.67 90

sHAR -60.30 3
dHAR -60.12 90
vHAR -68.94 2700

Table B.12: Estimates and standard errors for the parameters corresponding to the first 7 and 8
series (Alcoa Inc., American Express Company, Boeing Corporation, Bank of America Corpora-
tion, Citigroup Inc., Caterpillar Inc., Chevron Corporation and Dupont) when applying DFM-WN
on panels including the first n = 7, n = 8 and all n = 30 series of demeaned daily log-RVar’s
from 01.11.2001 until 19.12.2016, T = 3773 observations and k = 2.

n = 7 n = 8 n = 30
Parameters Estimate Std. dev Estimate Std. dev Estimate Std. dev

Φ
φ1 0.9444 0.0057 0.9366 0.0059 0.9253 0.0060
φ2 0.9762 0.0164 0.9593 0.0138 0.9757 0.0047

Σ

σ2
1 0.2033 0.0059 0.2148 0.0059 0.2492 0.0060
σ2
2 0.2114 0.0058 0.1976 0.0053 0.1771 0.0046
σ2
3 0.2315 0.0070 0.2163 0.0063 0.1662 0.0042
σ2
4 0.2143 0.0090 0.2031 0.0092 0.1268 0.0050
σ2
5 0.0459 0.0083 0.0566 0.0080 0.1135 0.0040
σ2
6 0.1167 0.0048 0.1253 0.0040 0.1704 0.0043
σ2
7 0.2103 0.0072 0.2171 0.0064 0.2576 0.0063
σ2
8 0.1049 0.0038 0.1484 0.0037

B

b1,1 0.7302 0.0354 0.7231 0.0331 0.6740 0.0280
b1,2 1.0101 0.0530 1.0313 0.0489 1.0312 0.0422
b1,3 0.7124 0.0346 0.7189 0.0331 0.7046 0.0328
b1,4 0.9856 0.0680 1.0019 0.0625 1.0077 0.0553
b1,5 1.0389 0.0708 1.0606 0.0637 1.0689 0.0503
b1,6 0.7732 0.0366 0.7669 0.0342 0.7176 0.0300
b1,7 0.6988 0.0358 0.6902 0.0334 0.6412 0.0294
b1,8 0.7993 0.0359 0.7474 0.0312
b2,2 -0.2529 0.0229 0.2150 0.0194 0.0793 0.0159
b2,3 0.0579 0.0133 -0.0904 0.0133 -0.2298 0.0192
b2,4 -0.5387 0.0396 0.5413 0.0337 0.5049 0.0376
b2,5 -0.5664 0.0426 0.5360 0.0341 0.3457 0.0282
b2,6 0.0617 0.0122 -0.0661 0.0119 -0.0745 0.0125
b2,7 0.1498 0.0162 -0.1562 0.0150 -0.1837 0.0169
b2,8 -0.0872 0.0125 -0.1123 0.0137
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Table B.13: Estimates and standard errors for the parameters corresponding to the first 7 and 8
series (Alcoa Inc., American Express Company, Boeing Corporation, Bank of America Corpora-
tion, Citigroup Inc., Caterpillar Inc., Chevron Corporation and Dupont) when applying DFM-AR
on panels including the first n = 7, n = 8 and all n = 30 series of demeaned daily log-RVar’s
from 01.11.2001 until 19.12.2016, T = 3773 observations and k = 2.

n = 7 n = 8 n = 30
Parameters Estimate Std. dev Estimate Std. dev Estimate Std. dev

Φ
φ1 0.9230 0.0064 0.9217 0.0064 0.9200 0.0062
φ2 0.8313 0.0129 0.8390 0.0123 0.9287 0.0063

Λ λ 0.5404 0.0061 0.5105 0.0057 0.4960 0.0028

Σ

σ2
1 0.2002 0.0080 0.2132 0.0077 0.2485 0.0078
σ2
2 0.2097 0.0076 0.1963 0.0067 0.1763 0.0058
σ2
3 0.2321 0.0092 0.2166 0.0082 0.1657 0.0054
σ2
4 0.2138 0.0121 0.2021 0.0120 0.1268 0.0065
σ2
5 0.0465 0.0109 0.0577 0.0102 0.1135 0.0053
σ2
6 0.1174 0.0061 0.1254 0.0052 0.1723 0.0056
σ2
7 0.2113 0.0097 0.2178 0.0084 0.2591 0.0084
σ2
8 0.1054 0.0048 0.1493 0.0047

B

b1,1 0.7352 0.0329 0.7264 0.0323 0.6726 0.0289
b1,2 1.0178 0.0447 1.0343 0.0442 1.0356 0.0418
b1,3 0.7143 0.0324 0.7209 0.0321 0.7000 0.0313
b1,4 0.9965 0.0517 1.0046 0.0515 1.0192 0.0510
b1,5 1.0494 0.0530 1.0634 0.0522 1.0775 0.0479
b1,6 0.7761 0.0327 0.7699 0.0323 0.7191 0.0305
b1,7 0.6969 0.0322 0.6897 0.0318 0.6387 0.0309
b1,8 0.8000 0.0334 0.7450 0.0351
b2,2 0.2624 0.0254 0.2198 0.0248 0.0808 0.0237
b2,3 -0.0545 0.0198 -0.0923 0.0190 -0.2307 0.0208
b2,4 0.5535 0.0289 0.5489 0.0289 0.5096 0.0313
b2,5 0.5777 0.0283 0.5417 0.0279 0.3493 0.0278
b2,6 -0.0543 0.0186 -0.0642 0.0178 -0.0754 0.0191
b2,7 -0.1449 0.0206 -0.1558 0.0198 -0.1866 0.0210
b2,8 -0.0875 0.0181 -0.1135 0.0190
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Table B.14: 1-step ahead out of sample mean squared errors: averaged over the 30 assets.
’Window’ gives the number of out of sample (daily) observations. The entries in bold stand for
the forecasts composing the 95% MCS. KF-DFM-WN stands for DFM-WN estimated by QML.

forecasting log-Rvar forecasting RVar
XXXXXXXXXModel

Window
1000 750 500 250 1000 750 500 250

KF-DFM-WN 2 factors 1.4657 1.0072 0.6738 0.7381 21.5418 8.6486 5.5578 5.3217

DFM-WN
1 factor 1.4296 0.9673 0.6370 0.6562 21.7777 8.8556 5.8694 5.2920
2 factors 1.3359 0.9298 0.6601 0.7141 20.8604 8.3141 5.5483 4.9955
3 factors 1.4644 1.0166 0.6990 0.7534 21.3972 8.7523 5.5482 5.4122

DFM-AR
1 factor 1.4784 1.0342 0.7189 0.7648 21.6196 8.8588 5.8913 5.5968
2 factors 1.4847 1.0384 0.7186 0.7806 21.5449 8.7699 5.7573 5.5300
3 factors 1.4847 1.0425 0.7305 0.7898 21.5380 8.7663 5.7721 5.6013

DFM-ARCH
1 factor 1.4316 0.9687 0.6371 0.6562 21.8451 8.9398 5.9921 5.2938
2 factors 1.4574 0.9993 0.6670 0.7306 21.5136 8.6385 5.5652 5.2998
3 factors 1.4651 1.0168 0.6988 0.7535 21.4125 8.5930 5.5738 5.4159

DFM-GARCH
1 factor 1.4330 0.9703 0.6396 0.6584 21.8826 8.9888 6.0624 5.3048
2 factors 1.4592 1.0011 0.6693 0.7327 21.5455 8.6775 5.6191 5.3134

sARFIMA(1,d,0) 1.5140 1.0479 0.7048 0.7920 21.1739 8.3368 5.1401 5.6718
dARFIMA(1,d,0) 1.5069 1.0411 0.6996 0.7864 21.1349 8.3016 5.1072 5.6297
sARFIMA(0,d,0) 1.5072 1.0408 0.6993 0.7862 21.1380 8.3065 5.1115 5.6382
dARFIMA(0,d,0) 1.5010 1.0355 0.6952 0.7815 21.1105 8.2817 5.0886 5.6107
sARFIMA(1,d,1) 1.5322 1.0588 0.7097 0.8026 21.2775 8.3970 5.1726 5.7392
dARFIMA(1,d,1) 1.5262 1.0536 0.7072 0.7966 23.4628 8.3908 5.1758 5.7355

sHAR(1,5,20) 1.5199 1.0539 0.7156 0.8073 21.2718 8.3992 5.1923 5.7957
dHAR(1,5,20) 1.5164 1.0515 0.7133 0.8043 21.2657 8.3909 5.1861 5.7856
vHAR(1,5,20) 1.6191 1.1434 0.7855 0.8807 21.7520 8.8006 5.5761 6.2321

Table B.15: 5- and 10-step ahead out of sample mean squared errors: averaged over the 30
assets and over the number of steps ahead. The forecasts are for the log-RVar series. ’Window’
gives the number of out of sample (daily) observations. The entries in bold stand for the forecasts
composing the 95% MCS. KF-DFM-WN stands for DFM-WN estimated by QML.

5-step ahead 10-step ahead
XXXXXXXXXModel

Window
1000 750 500 250 1000 750 500 250

KF-DFM-WN 2 factors 3.6734 3.3718 2.5258 2.7980 5.2992 5.0967 3.9465 4.6005

DFM-WN
1 factor 3.4852 3.1942 2.3467 2.4489 4.9453 4.7849 3.6222 3.9511
2 factors 3.1264 2.8946 2.1779 2.3742 4.5474 4.4372 3.4603 3.9285
3 factors 3.6651 3.3869 2.5992 2.8768 5.3044 5.1462 4.1041 4.7827

DFM-AR
1 factor 3.5619 3.2970 2.5036 2.7431 5.0884 4.9577 3.9060 4.5233
2 factors 3.6278 3.3495 2.5448 2.8359 5.2148 5.0521 3.9829 4.6971
3 factors 3.6236 3.3549 2.5739 2.8678 5.2198 5.0790 4.0570 4.7828

DFM-ARCH
1 factor 3.4958 3.2043 2.3533 2.4566 4.9636 4.8027 3.6346 3.9649
2 factors 3.6447 3.3399 2.4982 2.7650 5.2532 5.0433 3.9001 4.5404
3 factors 3.6704 3.3919 2.6038 2.8841 5.3132 5.1553 4.1132 4.7961

DFM-GARCH
1 factor 3.4900 3.1980 2.3490 2.4531 4.9525 4.7905 3.6265 3.9573
2 factors 3.6422 3.3364 2.4955 2.7632 5.2478 5.0360 3.8950 4.5360

sARFIMA(1,d,0) 3.9059 3.5757 2.7511 3.1144 5.8000 5.5994 4.5683 5.3868
dARFIMA(1,d,0) 3.8815 3.5519 2.7320 3.0907 5.7600 5.5602 4.5360 5.3453
sARFIMA(0,d,0) 3.8828 3.5505 2.7312 3.0911 5.7629 5.5581 4.5352 5.3469
dARFIMA(0,d,0) 3.8625 3.5325 2.7168 3.0724 5.7303 5.5292 4.5119 5.3151
sARFIMA(1,d,1) 3.9973 3.6543 2.8051 3.2101 5.9700 5.7569 4.6904 5.5858
dARFIMA(1,d,1) 3.9609 3.6263 2.7909 3.1721 5.8976 5.7020 4.6586 5.5090

sHAR(1,5,20) 3.9301 3.6001 2.7845 3.1944 5.8625 5.6703 4.6646 5.5674
dHAR(1,5,20) 3.9129 3.5877 2.7747 3.1807 5.8310 5.6479 4.6469 5.5421
vHAR(1,5,20) 4.4316 4.1191 3.2678 3.7051 6.6148 6.4595 5.4091 6.3771
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Table B.16: 5- and 10-step ahead out of sample mean squared errors: averaged over the 30
assets and over the number of steps ahead. The forecasts are for the RVar series. ’Window’ gives
the number of out of sample (daily) observations. The entries in bold stand for the forecasts
composing the 95% MCS. KF-DFM-WN stands for DFM-WN estimated by QML.

5-step ahead 10-step ahead
XXXXXXXXXModel

Window
1000 750 500 250 1000 750 500 250

KF-DFM-WN 2 factors 89.8835 35.3152 20.4462 19.7320 165.3026 67.1811 37.2264 36.9659

DFM-WN
1 factor 90.5201 35.6117 20.9046 19.6241 166.3041 67.4075 37.5916 36.8373
2 factors 85.8771 32.8043 19.1051 18.1535 1597.1810 61.9942 34.2132 33.9450
3 factors 89.1610 34.9550 20.4153 20.0295 163.8360 66.4397 37.1454 37.5090

DFM-AR
1 factor 89.5982 35.5412 20.9698 20.4522 164.5118 67.3545 37.8953 38.0541
2 factors 89.4839 35.4171 20.7519 20.2778 164.3753 67.2334 37.6385 37.7418
3 factors 89.4769 35.4229 20.8560 20.5746 164.3437 67.2188 37.8142 38.3377

DFM-ARCH
1 factor 90.6150 35.7097 21.0289 19.6452 166.4308 67.5190 37.7102 36.8831
2 factors 89.6748 35.1783 20.3528 19.6251 164.8920 66.9191 37.0538 36.7484
3 factors 89.1864 34.9764 20.4415 20.0476 163.8789 66.4727 37.1827 37.5449

DFM-GARCH
1 factor 90.6464 35.7506 21.0883 19.6589 166.4596 67.5519 37.7618 36.9040
2 factors 89.7160 35.2199 20.4054 19.6468 164.9451 66.9607 37.1030 36.7823

sARFIMA(1,d,0) 89.2690 35.3187 20.6044 21.3548 165.0264 68.4330 39.2269 40.2531
dARFIMA(1,d,0) 89.1013 35.1752 20.4806 21.1853 164.7047 68.1610 38.9984 39.9245
sARFIMA(0,d,0) 89.1145 35.1991 20.5033 21.2241 164.7317 68.2111 39.0463 40.0087
dARFIMA(0,d,0) 89.0008 35.1014 20.4225 21.1210 164.5163 68.0279 38.8997 39.8106
sARFIMA(1,d,1) 89.8747 35.7221 20.9003 21.7933 166.2719 69.2752 39.8637 41.1525
dARFIMA(1,d,1) 93.9817 35.6875 20.9105 21.7877 169.9623 69.1874 39.8639 41.1151

sHAR(1,5,20) 89.8238 35.7053 20.9624 22.0265 166.1373 69.2011 39.9595 41.6208
dHAR(1,5,20) 89.7938 35.6650 20.9314 21.9863 166.0766 69.1173 39.8925 41.5265
vHAR(1,5,20) 92.2547 37.7609 22.9585 24.3275 170.4402 72.6568 43.1927 45.5970

Appendix C: Figures

Figure C.1: ACF’s of a simulated long memory process with d = 0.45 (solid pink), of an AR(1) process
with AR parameter equal to 0.8 (dashed grey) and of the sum of two AR(1) processes with AR parameters
0.8 and 0.995, respectively (dotted blue). The length of the simulated series is 100000. The red dotted lines
give the 95% confidence interval. The dotted and dashed lines are drawn in such a way that AR(1) and the
sum of the AR(1)’s have the same first autocorrelation as the long memory.
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Figure C.2: ACF’s of simulated Yt (dotted-dashed green) and Xt (dotted blue) with φ1 = 0.8, φ2 = 0.95,
b1 = b2 = 1 and σ2 = 1. The length of the simulated series is 100000. The red dotted lines give the 95%
confidence interval.

Figure C.3: ACF’s of daily log-RVar series of IBM over the period 01.11.2001-19.12.2016 and of simulated
DFM-WN processes with k = 1, 2, 3, 4 and DFM-AR with k = 3. The length of the simulated series is
100000. The red dotted lines give the 95% confidence interval of the ACF of the real data. The non-solid
lines are drawn in such a way that the corresponding simulated processes have the same first autocorrelation
as the log-RVar of IBM.
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Figure C.4: Line graph of daily log-RVar’s over the period 01.11.2001 – 19.12.2016 (T = 3773 trading
days). The log-RVar’s are scaled up by 104. On X-axis we plot the years.

Figure C.5: ACF of daily log-RVar’s up to 200 lags over the period 01.11.2001 – 19.12.2016 (T = 3773
trading days). The log-RVar’s are scaled up by 104. On X-axis we plot the lags. The dotted-line is the 95%
confidence interval.
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