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We study if and how differences in firm policies have an impact on differ-
ences in return on assets of foundation owned firms (FoFs) and other firms
(Nons) in Germany. We perform the analysis for return differences at the
mean and at several quantiles. We document that for high-performing FoFs
and Nons the return on asset difference is more pronounced in favor of Nons,
for low-performing firms the difference vanishes. Performance differences are
substantially driven by differences in firm policies. We find that (1) lower risk
in FoFs increases FoF underperformance at high quantiles, but offsets it at
low quantiles, (2) a lower leverage of FoFs offsets FoF underperformance at
low quantiles and the median, (3) higher labor intensity in FoFs offsets their
underperformance at low quantiles, (4) the larger size of FoFs increases FoF un-
derperformance for the mean and all quantiles, (5) lower growth rates of FoFs
increase FoF underperformance at high quantiles, and (6) residual differences
beyond firm policies tend to be insignificant.
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1. Introduction

In Germany, Denmark, and Sweden big firms like Aldi, Bosch, Carlsberg, IKEA, and

ThyssenKrupp are important players. They have in common that they are owned by

a foundation. Foundations are legal entities without owners. They act and operate in

line with the charter set up by the founder. For example, profit payments of foundation

owned firms (FoFs) to the owner foundation have to be spent for purposes defined in the

charter. The beneficiaries of charitable foundations are charitable projects and programs,

those of family foundations are members of the founder’s family. Hence, in contrast to

other profit-oriented firms, there are fewer or no natural persons being residual claimants

in FoFs. Traditional agency theory suggests that strong corporate governance of residual

claimants is required for a firm to be viable in the long run; natural persons as own-

ers with a strong profit motive are likely to push the management for high profits. If

they are absent, other stakeholders might exploit the firm for their own benefits which

could weaken financial performance and endanger the existence of the firm in the long run.

Interestingly, many examples and several studies of FoFs show that they are clearly viable.

This study investigates how FoFs and firms that are not owned by a foundation (Nons)

differ in terms of their financial performance, measured by returns on assets. We use

accounting information of German firms to decompose the return distributions for 109

FoFs and about 11000 Nons. For a meaningful analysis, Nons are selected such that their

firm policies are similar to those of FoFs; in our case, we remove firms having at least

one firm policy variable being smaller than the FoFs’ minimum or larger than the FoFs’

maximum for that variable. In addition, we account for industry fixed effects in most of

our models. Using the method of Rothe (2015), we isolate the impact of relevant firm

policies on the difference in returns. In contrast to established decomposition methods

by Blinder (1973) and Oaxaca (1973)1, the method allows for analyzing return differences

at different quantiles and not only at the mean and is robust with respect to nonlinear

data generating processes and hence able to capture more observable heterogeneity than

a simple linear mean model. In contrast to quantile regression methods or sequential

decompositions, the effects of the analyzed variables add up to the overall return differ-

1The decomposition of Blinder (1973) and Oaxaca (1973) is a special case of the method of Rothe (2015),
see Section 2.
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ence of FoFs and Nons when using the Rothe (2015) method. In addition, we address

the problem of a potential simultaneity bias that is adherent when using accounting data.

We give a detailed discussion on how parameter estimates in a linear framework can be

misleading if contemporaneous accounting information is used for estimation. Our identi-

fication approach exploits persistence of firm variables to obtain the actual determinants

of return differences or at least absolutely lower bounds depending on the type of vari-

able considered and degree of persistence over time. In addition to prior studies such as

Draheim and Franke (2015), the paper contains a fully conditional analysis that considers

all potential firm policy variables that affect returns simultaneously which goes beyond

simple component-wise group comparisons.

Comparing the mean and quantiles of returns, we find pronounced return differences for

the mean and high quantiles, where the returns of FoFs are significantly lower. A substan-

tial proportion of the observed return differences at several quantiles can be attributed

to differences in firm policies. We find that (1) lower risk in FoFs, as measured by the

standard deviation of return on assets, increases FoF underperformance at high quantiles,

but offsets it at low quantiles, (2) a lower leverage of FoFs offsets FoF underperformance

at low quantiles and the median, (3) higher labor intensity in FoFs offsets FoF underper-

formance at low quantiles, (4) the larger size of FoFs increases FoF underperformance for

the mean and all quantiles, (5) lower operating revenue growth rates of FoFs increase FoF

underperformance at high quantiles, and (6) residual differences beyond firm policies tend

to be insignificant.

Reasons for differences in firm policies and financial performance of FoFs and Nons are

manifold. One important driver may be the profit motive that appears to be weaker in

FoFs due to the lack of natural persons as residual claimants. In addition, most foun-

dation charters support a stable development of the foundation’s wealth and long-term

orientation in FoFs. Therefore, managers may be less incentivized to generate profits by

taking higher risks, but to pursue stable firm policies. This might explain lower returns

of FoFs at a lower return volatility. In particular, this seems to hold for high quantiles of

return on assets, see (1). A high equity buffer might serve as protection against economic

downturns; FoFs tend to have a lower leverage. Apparently, a lower leverage in FoFs
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might translate into more freedom of action with respect to investments, in contrast to a

potential shortage of funds in Nons due to high leverage (Myers (1977)). In line with that,

we find that a lower leverage is beneficial for FoFs, in particular at lower return quantiles,

see (2). Labor intensity appears to be higher in FoFs. We find pronounced substitution

of raw material by labor in FoFs. Surprisingly, this seems to be beneficial for FoFs at

low return quantiles, see (3). Only successful entrepreneurs usually transform their firms

into an FoF. Thus, FoFs tend to be large, already when they are set up. We find that

they are much larger than Nons. Small firms are usually more dynamic and react faster

to changes in the market environment. Consistently, we find that the bigger size of FoFs

contributes to underperformance over the whole return distribution, see (4). Possibly due

to more long-term orientation that favors more conservative strategies, operating revenue

growth rates in FoFs tend to be lower. This seems to explain underperformance of FoFs, in

particular at high quantiles, see (5). We find that differences in these policies can explain

a substantial proportion of return differences over the whole distribution, see (6).

Several studies compare the financial performance of Danish FoFs to different control

samples. Thomsen (1996) uses the largest 150 Danish Nons, Thomsen (1999) uses Nons

listed at the Copenhagen Stock Exchange, and Thomsen and Rose (2004) use Danish

Nons with dispersed ownership or family control as benchmarks. All studies find that the

financial performance of Danish FoFs is not inferior. Thomsen and Hansmann (2013) find

that financial performance of FoFs improves if there is less personal overlap between the

boards of the foundations and those of the corresponding FoFs, more outside ownership,

and more administrative independence of foundations and FoFs. For Germany, Herrmann

and Franke (2002) compare FoFs to German firms being listed at a stock exchange. They

find that FoFs perform even slightly better. In addition, labor intensity is higher in FoFs.

Draheim and Franke (2015) analyze a larger sample of German FoFs. Additionally, they

control for different institutional setups of FoFs. They find that, relative to control firms,

FoFs are more conservative in terms of financing policy, they are more labor-intensive,

their financial performance, measured by return on assets, is lower; their risk, measured

by the standard deviation of returns on assets, is also lower. As a consequence, risk-

adjusted financial performance of FoFs is not significantly different from Nons. We add to

the literature by decomposing the return differences of FoFs and Nons at several quantiles.
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We attribute a substantial proportion of these differences to differences in firm policies

that Draheim and Franke (2015) identify. It turns out that the impact of these policies

varies when comparing top-, average- and low-performers.

The paper is structured as follows. In the next section, there is an overview over the

relevant decomposition methods. Then, we discuss identification and simultaneity issues.

Estimation and inference are addressed in the subsequent section. Then, the following

section describes the data. Observational findings are shown in the subsequent section.

After reporting and discussing decomposition results, the paper concludes.

2. Decomposition Methods

Since the seminal work of Blinder (1973) and Oaxaca (1973) decomposition methods of

distributional features from non-overlapping groups have been heavily used in economics.

The literature on labor market or education outcomes decomposes differences in wages or

test scores between two groups such as genders, time periods, or migrants and natives.

It is the objective to investigate whether differences of an outcome variable are due to

differences of explanatory variables, such as the level of education in the context of wage

analyses, and the magnitude of these variables. Here, we are particularly interested in

differences in the financial performance measured by the return on assets between FoFs

and Nons.

For two groups g = 0, 1, a simple linear mean model for the return on assets, denoted

by Y
g

i , within groups is given by

Y
g

i = X
g
i

′βg + ε
g
i (2.1)

assuming an error orthogonal to the regressors, Y
g

i being the return of firm i belonging

to group g and X
g
i being a vector of firm-specific covariates such as financing policies or

size measures. Using this model, one can decompose the difference in the mean outcomes
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between group 0 and 1 as follows

E[Y 1
i ] − E[Y 0

i ] = E[X1
i ]β1 − E[X0

i ]β0

= E[X1
i ](β1 − β0)

︸ ︷︷ ︸

∆µ
S

"Structure effect"

+ (E[X1
i ] − E[X0

i ])β0

︸ ︷︷ ︸

∆µ
X

"Composition effect"

.

The two components of the decomposition are also referred to as price or discrimination

and endowment effect, respectively. This aggregate decomposition can yield insights into

the overall contribution of differences in firm policies to differences in financial perfor-

mance. To get the separate effect of each policy variable, the composition effect can be

decomposed as follows

∆µ
X =

K∑

k=1

(E[X1
ik] − E[X0

ik])β0
k (2.2)

with each element within the summation representing the marginal impact of the k-th

covariate on the aggregate composition effect. Computing a detailed decomposition at the

mean is labeled a solved problem in the literature (Fortin et al. (2011)). Its solution does

not depend on the ordering of the covariates and adds up to the total effect.

For quantiles and distributional features other than the mean, the analysis is inherently

difficult since they are no longer additive separable functions in the population defining

parameters, in contrast to the mean function. Consequently, sequential detailed decom-

positions are widely used (DiNardo et al. (1995), Machado and Mata (2005), Altonji et al.

(2012), Chernozhukov et al. (2013)). Their general idea is to first get an estimate for the

contribution of a single variable to the aggregate decomposition and then conditional on

the first variable for a subsequent one and so forth leading to an overall path dependent

decomposition. This is an unattractive feature and in many examples these path-wise

decompositions are strongly varying across different orderings. Another approach is based

on local approximations of the differences via recentered influence function regressions

(Firpo et al. (2007), Firpo et al. (2013)). They tend to be inaccurate if the compared

distributions are not close to location shifted versions of each other or if their differences

are generally large.

Rothe (2015) proposes a more general decomposition for one-dimensional distributional
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features such as quantiles or standard deviations. He relies on a copula approach to rewrite

the joint distribution function of the explanatory variables as a continuous function of

marginal distributions only which eases the construction of counterfactual distributions.

His approach gives a path independent detailed decomposition of the composition effect

into three different components: changes in marginal distributions, interactions, and a

difference in the dependence structure of the explanatory variables across groups.

Formally, for two groups g = 0, 1, let F
g
Y and F

g
X be the distribution functions for

outcome Y and covariates X with support Yg and X g and the conditional cumulative

distribution function be F
g
Y |X . A distributional feature of interest v(F ) is a functional

such that v : F → R maps from all one-dimensional distribution functions to the real

numbers such as the mean or a quantile. The overall difference for a functional v between

two group outcomes ∆v
O is then given by

∆v
O = v(F 1

Y ) − v(F 0
Y )

= (v(F 1
Y ) − v(F

0|1
Y ))

︸ ︷︷ ︸

∆v
S

"Structure Effect"

+ (v(F
0|1
Y ) − v(F 0

Y ))
︸ ︷︷ ︸

∆v
X

"Composition Effect"

with

F
0|1
Y (y) =

∫

F 0
Y |X(y, x)dF 1

X (x) (2.3)

being a counterfactual distribution that uses the conditional distribution of the outcome

given observables as in group zero but the joint distribution of the explanatory variables

as in group one. This corresponds to a hypothetical distribution that could be observed

for group one if the observations became part of the zero group. We impose X 1 ⊂ X 0 to

assure that the integral in (2.3) is well-defined or put differently that the range of firm

policy variables are overlapping and hence comparable across groups. For further related

identification assumptions see the subsequent section.

To get a detailed decomposition Rothe proposes to rewrite (2.3) in terms of the single

marginal distributions. By Sklar’s Theorem (Sklar (1959)) for continuously distributed

9



variables there exists a unique function Cg(·) called coupla such that

F
g
X(x) = Cg(F g

X1
(x1), . . . , F

g
Xd

(xd)) for g ∈ {0, 1}.

The copula is effectively a multivariate cumulative distribution function with standard

uniformly distributed marginals. For a short example on why the copula can be helpful

for a general decomposition, consider the case of two covariates, i.e., K = 2. By adding

and subtracting, one can rewrite the composition effect as follows

∆v
X =v

( ∫

F 0
Y |X(y, x)dC1(F 1

X1
(x1), F 1

X2
(x2))

)

+v

( ∫

F 0
Y |X(y, x)dC0(F 1

X1
(x1), F 1

X2
(x2))

)

− v

( ∫

F 0
Y |X(y, x)dC0(F 1

X1
(x1), F 1

X2
(x2))

)

︸ ︷︷ ︸

∆v
D

"Dependence Effect"

− v

( ∫

F 0
Y |X(y, x)dC0(F 0

X1
(x1), F 0

X2
(x2))

)

︸ ︷︷ ︸

βv(1,1)

.

Note that the dependence effect uses the same marginal and conditional distributions and

hence is only affected by differences between the copula functions of the two groups which

can be interpreted as a difference in the dependence structure of the covariates across the

two groups. By adding and subtracting, the second component on the right hand side can

further be rewritten as

βv(1, 1) = v

( ∫

F 0
Y |X(y, x)dC0(F 1

X1
(x1), F 0

X2
(x2))

)

− v(F 0
Y ) ⇒ ∆v

M (1, 0)

+ v

( ∫

F 0
Y |X(y, x)dC0(F 0

X1
(x1), F 1

X2
(x2))

)

− v(F 0
Y ) ⇒ ∆v

M (0, 1)

+

[

v

(
∫

F 0
Y |X(y, x)dC0(F 1

X1
(x1), F 1

X2
(x2))

)

− v(F 0
Y )

−v

(
∫

F 0
Y |X(y, x)dC0(F 1

X1
(x1), F 0

X2
(x2))

)

− v(F 0
Y )

−v

(
∫

F 0
Y |X(y, x)dC0(F 0

X1
(x1), F 1

X2
(x2))

)

− v(F 0
Y )

]







⇒ ∆v
M (1, 1)

with ∆v
M(k) reflecting the direct contribution of a possibly simultaneous change of the

covariates defined by k ∈ {0, 1}K . For the first component ∆v
M(1, 0) note that it can only

be driven by a change of the marginal distribution of the first covariate X1 of group zero

to F 1
X(x1) while conditional distribution, copula, and remaining marginal distributions

are being held fixed. This corresponds to a fixed partial distributional policy effect Rothe

(2012). ∆v
M (0, 1) can be interpreted similarly while ∆v

M(1, 1) is the difference due to a
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joint change in the marginal of both covariates minus the individual marginal contribu-

tions ∆v
M (1, 0) and ∆v

M (0, 1) which can be interpreted as a pure interaction effect.

For the general case, one can rewrite the composition effect in a similar fashion as

∆v
X =

∑

i≤|k|≤K

∆v
M (k) + ∆v

D

with |k| =
∑K

i=1 ki. The components ∆v
M (k) can capture either direct contribution of a

change in the marginal distribution of a variable to the overall difference, i.e., k being the

corresponding unit vector or contributions of interaction terms.

The difference in the copulas or the dependence structure ∆v
D is a new component that

is not addressed by prior decomposition methods. In the context of firm accounting data

we would expect this effect to be close to zero since the stochastic relation of fundamental

firm data taken from balance sheet information is unlikely to differ based on whether the

firm is owned by a foundation or other shareholders.

3. Identification and Simultaneity Bias

The use of accounting information for achieving causal statements is inherently difficult

since, by construction, any double-entry bookkeeping system creates dependencies over

the different accounting figures that are not one-directional. From a corporate governance

point of view, a management has different channels to influence the company’s accounting

figures. This is the so-called (real) earnings management. There are many examples that

show that there are interdependencies of accounting figures. For instance, a balance sheet

contraction without changing the equity capital lowers leverage which is defined as debt

divided by total assets and raises return on assets. A firm can do so by selling receivables,

so-called factoring. Another example is that a firm’s management might have a target

leverage ratio. On the other hand, Welch (2004) finds that stock returns can explain a

substantial proportion of leverage dynamics. Also, a firm that is particularly indebted to

its employees might be interested in publishing high personnel expense ratios on a regular

basis. Thus, such a firm might be willing to earn lower returns and get more employees’
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satisfaction instead. There are many more examples showing that potentially everything

depends on everything when dealing with accounting data.

For illustration, consider the following linear model setup. Let Yit be the return on

assets, Xit the standard deviation of the return on assets, and Zit the leverage of firm i in

year t. In the following, we impose without loss of generality that all variables have a mean

of zero. For simplicity, assume all firms are observed over the time period t = 1, . . . , T .

Let the structural mechanism be described by the following model

Yit = Xitβ + Zitγ + εit,

Zit = Xitα + Yitδ + uit

with all errors being orthogonal to the contemporaneous Xit and not correlated across

equations. The latter assumption could be easily relaxed. In the data at hand, the risk

measure is unobservable on a yearly basis but a standard deviation of the return on assets

can be computed ex post and used as an average measure of risk. The model averaging

all variables within firm over time looks as follows

Ȳi = X̄iβ + Z̄iγ + ε̄i,

Z̄i = X̄iα + Ȳiδ + ūi.

Assume we are interested in the structural parameters of the first equation. Ignoring the

simultaneity of Zit and Yit, we could run an OLS regression for the first equation. One

can show that the estimators for β and γ do not converge to the true parameters, i.e.,

under some mild regularity conditions it holds that

β̂
p

−→
β + αγ

1 − δγ
+

[
ρX,Z

σXσZ

]
γσ2

u + δσ2
ε

(1 − ρ2
X,Z)(1 − δγ)2

γ̂
p

−→
γσ2

u + δσ2
ε

(1 − ρ2
X,Z)σ2

Z(1 − δγ)2

assuming that (1 − δγ) 6= 0, |ρXZ | < 1 with σ2
L being the variance of a random variable

L, σ2
L,S the covariance between two random variables L and S, and ρL,S their correlation

coefficient. All formal statements for the assumptions as well as proofs and derivations
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can be found in Appendix A.

Hence, depending on the type of simultaneity that is determined by the signs and size

of the parameters, we would over- or underestimate the true structural relationships in a

nontrivial fashion. To overcome this issue, we propose to exploit the persistence of firm

policy variables as an identification strategy. In particular for leverage ratios, Lemmon

et al. (2008) and Hanousek and Shamshur (2011) find historically strong persistence even

over several decades. Assume leverage can be observed in a year t = 0 prior to the period

for which we average the return on assets. To put persistence into a model, say that the

dynamics of leverage are appropriately captured by a stationary AR(1) structure, i.e., we

have that

Zit = θZit−1 + νit ⇔ Zit = Zi0θt +
t−1∑

j=0

θjνit−j

with νit being some independent zero mean error. This could be easily relaxed and merely

serves illustrative purposes. Taking averages for the leverage over t = 1, . . . , T yields

Z̄i = Zi0
1

T

T∑

t=1

θt +
1

T

T∑

t=1

t−1∑

j=0

θjνit−j

≡ Zi0Θ + Ni.

Using the lagged leverage as regressor, leads to the following model

Ȳi = X̄iβ + Zi0ω + µi

with µi = Z̄iγ − Zi0ω + ε̄i. Assuming that simultaneity is not present across different time

periods, one can show that OLS for this model yields

β̂
p

−→ β,

ω̂
p

−→ Θγ

and, hence, we can consistently estimate the structural parameter on the standard de-

viation of the return on assets. Under stationarity, we have that |Θ| < 1 and, thus, our

estimated coefficient for the leverage, ω̂, would correspond to a lower bound in absolute
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terms for the actual structural parameter γ. Since for leverage the AR parameter is ex-

pected to be positive, our estimates can be understood as actual lower bounds for the

structural relationship. The higher the persistence in the variable, the closer the esti-

mates are to the true parameter. In particular, ω̂ converges to γ if the firm policy variable

follows a random walk, i.e., Zit = Zit−1 + νit.

This allows in a similar fashion for identification of the actual components or at least

the lower bounds of the detailed decomposition in equation (2.2). We are aware that,

for the linear model, applying the decomposition on an IV (instrumental variables) esti-

mator, that uses the lagged policy variable as instrument, would in general be a better

way how to approach the problem for the average return difference. However, the main

focus of this study is the heterogeneity between low-, average-, and top-performers and,

hence, the Blinder-Oaxaca decomposition serves more as a benchmark comparison to the

Rothe decomposition for which the IV methodology cannot be transferred as easily as for

conditional mean models.

Note that our approach can be regarded as a predictive problem as well. For instance,

assume at the end of time t = 0 a manager would like to predict the possible effect for the

next year(s) of adjusting a firm policy towards the policy of competing FoFs in the market.

She can only observe her firm’s and the competing firms’ policy variables right now but

not for the following periods. Since her decision is based on the information set in time 0,

understanding the relationship between structural parameters and the actually available

information can be beneficial. Using the biased results from a least squares regression

for contemporaneous variables would be misleading since the estimates do not reflect the

relation between today’s firm policy variables and future returns. Thus, in this study, we

rely on the assumption of persistence of certain firm policy variables. For instance, we

assume that the leverage of today can be seen as a good proxy for the leverage of tomorrow

which also appears to be backed by the literature. We use this to predict future returns.

So, the manager can analyze whether an adjustment of the firm’s leverage towards the

leverage of FoFs might have a desired impact on the firm’s return on assets.
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4. Estimation and Inference

All Blinder-Oaxaca based models are estimated via least squares using heteroscedasticity

robust standard errors. For the copula decomposition, we need to estimate the marginal

distribution functions of the covariates for each group, the copula, and the conditional

distribution function within the control group. We mostly follow the proposals by Rothe

(2015) and estimate the marginal distributions by the empirical distribution function, i.e.,

F̂
g
Xl

(x) =
1

ng

ng
∑

i=1

1(Xg
il ≤ x)

with ng being the group size of group g. For the conditional distribution function, we

use a parametric approach of distributional regression (Foresi and Peracchi (1995)) which

assumes that locally at a point y, it holds that F
g
Y |X(y, x) ≡ Φ(x′δg(y)) with Φ being a

strictly increasing, positive link function. Here, we use the standard normal distribution

function. The parameters depend on the location of y and can be estimated by maximum

likelihood, i.e.,

δ̂g(y) = arg max
δ

ng∑

i=1

(1(Y g
i ≤ y) log(Φ(Xg

i
′δ)) + (1 − 1(Y g

i ≤ y)) log(1 − Φ(Xg
i

′δ))).

Plugging in the estimate into the expression for the conditional distribution function gives

the prediction. The detailed decomposition only requires estimation of the conditional

distribution function for the 0 group which is very large in the data at hand. Hence, we

allow for a more flexible model by including quadratic terms of all firms policy variables

as well as first order interactions.

For the copula, we restrict attention to the Gaussian copula model only. This is bene-

ficial since its parameterization requires the estimation of joint distributions for only two

variables at once. Especially for estimating the copula for the FoFs with less than 110

observations, the possibly restrictive nature is required to still achieve precise estimates.

Formally, assume that C
g
Σ(u) = ΦK

Σ (Φ−1(u1), . . . , Φ−1(uK)) is a K-dimensional Gaussian

copula with variance covariance matrix Σ. The parameterization of the copula can be

done via a minimum distance approach that minimizes the squared distance between the

estimated joint distribution of a pair of variables and the Gaussian copula, i.e., for a pair
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a, b

Σ̂ab = arg min
ρ

ng
∑

i=1

(F̂ g
Xa,Xb

(Xg
ia, X

g
ib) − Φ2

ρ(Φ−1(F̂ g
Xa

(Xg
ai)), Φ−1(F̂ g

Xb
(Xg

bi))))
2

with

F̂
g
Xa,Xb

(xa, xb) =
1

ng

ng
∑

i=1

1(Xg
a ≤ xa, X

g
b ≤ xb).

Rothe (2015) shows that under some regularity conditions in all steps, the estimate for

the marginal components ∆̂v
M (k) of the detailed decomposition is root n asymptotically

normal. The standard errors are computed using a nonparametric bootstrap that samples

with replacement.

5. Data

We analyze accounting data of German firms for the sampling period 2004 until 2013.

Accounting data is provided by Orbis. For the identification of FoFs, we refer to a list

from 2012 by Marc Eulerich (University of Duisburg/Essen) that is not publicly available.

This list is an updated version of the list of German FoFs in Fleschutz (2009). It com-

prises 740 firms. For each of these firms, we check the ownership structure. A firm is

included as an FoF, if a foundation has at least two percent of the voting rights of the

firm or at least two percent of the equity stake of the firm. Robustness checks with a more

restrictive threshold are considered in Section 7.4 as well. We consider effective shares

of the foundation in the foundation owned firm since there are often pyramid structures

(Draheim and Franke, 2015). For most FoFs, we get data on voting rights from Orbis. If

the data is not available for a particular firm, we hand-collect it using firm reports. Con-

cerning the equity stakes, most data is provided by Hoppenstedt. Again, we hand-collect

data if Hoppenstedt does not provide the desired information. In this study, we compare

FoFs to firms that are not foundation owned (Nons). For a meaningful comparison, we ap-

ply several criteria for the construction of Nons that are described below and in Section 7.1.

We start with the collection of all German firms available in Orbis. Several data filters

are applied. We exclude firms that are not for-profit. For industry classification, we use

two digit US SIC codes. We do not include financial institutions (US SIC 60-64) due
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to special accounting conventions or firms that are part of the public authority (US SIC

91-93, 97) because in this sector we assume incentive structures to be different from the

other sectors we analyze. In order to avoid outliers due to structural breaks such as a

mergers or acquisitions or due to data errors, we analyze the time series of operating rev-

enue, total assets, and the number of employees for each German firm available in Orbis.

If we see a negative change of more than 50 percent or a positive change of more than 100

percent from one year to the next year, we exclude all the firm’s observations (for each

variable) before the most current change (Strebulaev and Yang (2013)). Similarly, if a

firm switches from German accounting standards to IFRS or vice versa, then we exclude

all the observations before the most current switch. All observations are deflated to the

price level of 2004 using the Eurostat BIP deflator for Germany.

For our analysis, we require each firm to report operating revenue for at least two years

within the sampling period 2004 to 2013. We denote the first year a firm reports operat-

ing revenue as t0. In addition, we require each firm to report material expense, personnel

expense, and shareholder funds at least for the year t1. EBIT and total assets is required

to be reported at least for the years t2 and t3. Thus, we require firms to report accounting

figures for at least four years. All firms that do not meet these requirements are excluded.

Firms that have missing values for any firm policy variable are disregarded as well. To

avoid low persistence in the firm policy variables that would weaken the identification

result according to Section 3, the age of the firms is required to be at least ten years, i.e.,

we exclude start-ups. This should remove extreme adjustments that are common in the

first years of a firm. We consider only industries with both FoFs and Nons. That leaves

us with 109 FoFs and 20260 Nons.

We use variables for our analysis that Draheim and Franke (2015) find to be significantly

different for FoFs and Nons. Table 5.1 contains the description and construction of the

variables we use.
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Table 5.1: Description of Variables

Variable Description Time

RoA Average return on assets = EBIT / total assets, t2 − tmax

financial performance measure.
σRoA Standard deviation of the RoA, t2 − tmax

risk measure.
PPM Personal expense / material expense, t1

production policy measure.
Leverage 1 − ( shareholder funds / total assets ), t1

financing policy measure.
OR rank [0, 1]-normalized operating revenue rank relative to t1

all other firms at time of entrance, size measure.
OR growth Operating revenue growth, t0 − t1

measure of growth dynamics
HGB Indicator for whether firm uses German accounting constant

standards or IFRS
Listed Indicator for whether firm listed at stock exchange or not constant
Voting share Share of foundation’s voting rights constant
Charitable Indicator for whether foundation charitable or not constant

This table describes the construction of the relevant variables used in this study.

We are aware of the fact that we, in general, do not use all available accounting infor-

mation for a firm; several variables (PPM, Leverage, OR rank) are only analyzed for one

year as Table 5.1 indicates, although we likely observe them for more years. This is due

to accounting for a potential simultaneity bias as explained in Section 3. There is always

a trade-off between information content and avoiding a simultaneity bias when using ac-

counting data. However, we think that we do not neglect too much information following

our approach. Since operating revenue is very unstable over time, i.e., non-stationary, we

use as size measure OR rank. This is defined as the rank according to the size of operating

revenue (1 represents the smallest firm, N represents the largest firm at t1) divided by N .

OR rank turns out to be much more stable than operating revenue itself, i.e., OR rank is

persistent by construction. According to literature, leverage is also found to be persistent

(e.g., Lemmon et al. (2008) and Hanousek and Shamshur (2011)). PPM turns out to be

less persistent than leverage but more presistent, relative to OR growth. As explained

in Section 3, the estimated effects get closer to the true effects, the higher persistence is.

Nonetheless, estimates can be interpreted as lower bounds although the according variable

does not show high levels of persistence.
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6. Observational Findings

Table 6.1: Untrimmed Sample Comparison
FoF, n = 109 Non, n = 20260

Mean SD Q25 Median Q75 Mean SD Q25 Median Q75

RoA 6.650 5.792 3.608 6.689 9.169 9.132 11.663 3.444 7.496 13.395
σRoA 4.279 3.047 2.098 3.570 6.084 6.006 6.386 2.207 4.302 7.714
PPM 1.693 3.541 0.361 0.722 1.607 1.470 3.370 0.171 0.450 1.117
Leverage 0.630 0.210 0.460 0.675 0.778 0.722 0.284 0.567 0.742 0.881
OR rank 0.847 0.157 0.769 0.889 0.969 0.532 0.279 0.301 0.545 0.769
OR growth 0.068 0.135 -0.008 0.048 0.120 0.081 0.217 -0.032 0.053 0.161

This table shows summary statistics for the the return on assets (RoA) and firm policy variables for FoFs

and Nons.

Figure 6.1: Density: Return on Assets
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This figure shows kernel density estimates of the return on assets for FoFs and Nons. The estimates are

obtained with a boundary corrected Epanechnikov kernel. Bandwidths are chosen via cross-validation.

Table 6.1 shows summary statistics for the most relevant variables of our analysis before

any trimming procedure as done in Section 7. We report the mean, the standard devia-

tion, the 25 percent quantile, the median, and the 75 percent quantile for each variable,

separately for FoFs and Nons. We choose these values for the points at which we estimate

the decompositions in Section 7 as well. Although results would be interesting for quan-

tiles higher than the 75 percent quantile or lower than the 25 percent quantile, estimates
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at extreme quantiles are less reliable due to the small number of FoFs.

First, we consider the RoA, the outcome variable in this study, for FoFs and Nons. FoFs

have a slightly higher 25 percent quantile RoA than Nons: 3.61 percent for FoFs and 3.44

for Nons. For the other quantiles as well as for the mean, the RoA is lower for FoFs. This

difference seems to increase along the quantiles: the median RoA is 6.69 percent for FoFs

and 7.50 percent for Nons, the 75 percent quantile RoA is 9.17 percent for FoFs and 13.40

percent for Nons. This is also depicted in Figure 6.1 which plots the RoA density function

for FoFs and Nons2. The right tail of the density function contains more probability mass

for Nons indicating more firms with high returns. As an illustration, the figure contains

the return differences for the mean and the 90 percent quantile. It is very striking that

the difference increases dramatically as we move to more extreme quantiles. This is one

of the major motivations for a general decomposition that goes beyond the mean. A

Kolmogorov-Smirnoff (KS) test on equality of the two cumulative distribution functions

is rejected at p < 0.001.

2All density functions in Figure 6.1 and Figure 6.2 are estimated using a second order Epanechnikov
kernel with cross-validated bandwidths.
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Figure 6.2: Density: Firm Policy Variables
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This figure shows kernel density estimates of σRoA, PPM, Leverage, and OR rank for FoFs and Nons.

The estimates are obtained with a boundary corrected Epanechnikov kernel. Bandwidths are chosen via

cross-validation.

Second, we consider several firm variables that might have an impact on the difference

in RoA for FoFs and Nons. For σRoA, the picture is clear-cut. For all reported quantiles

and the mean, σRoA is lower for FoFs. This difference seems to increase along the quantiles

monotonically. Hence, the highest difference is for the 75 percent quantile: it is 6.08 per-

cent for FoFs and 7.71 percent for Nons. Figure 6.2, upper left hand corner, displays the

density function of σRoA for FoFs and Nons. For FoFs, there is more mass for low levels

of σRoA and less mass for high levels of σRoA, relative to Nons. The findings for σRoA are
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consistent with the result that the standard deviation of RoA within the group of FoFs

is 5.79 percent which is much lower than the standard deviation of RoA of Nons which is

11.66 percent. There is a lot of literature supporting the positive relation between risk and

return of a firm, see, e.g., Glosten et al. (1993), Duffee (1995), and Bekaert and Wu (2000).

For all quantiles and the mean, labor intensity is higher in FoFs, as measured by PPM.

The means for FoFs and Nons seem to be driven by some extremely labor intensive firms

since they are higher than the 75 percent PPM quantiles. Figure 6.2, upper right hand

corner, visualizes the finding of more labor intensity in FoFs. Draheim and Franke (2015)

find that most FoFs are firms with former family ownership, i.e., family firms. Thus, FoFs

share several characteristics with family firms. Chirico and Bau (2014) and Bingham et al.

(2011) observe that there is a firm culture in family firms that benefits employees. More

labor intensity is one channel to do so.

Leverage is consistently lower in FoFs. All reported quantities as well as Figure 6.2,

lower left hand corner, support this finding. For low levels of leverage there is more mass

for FoFs, while there is less mass for higher levels of leverage for FoFs. Smith (1977) argues

that small firms face higher costs to issue new equity and to issue long-term debt. FoFs

tend to be clearly larger than Nons (see OR rank). Thus, it is likely that Nons are more

leveraged.

Summary statistics for the size, measured by OR rank, support the hypothesis that

FoFs are much larger than Nons. All OR rank quantiles of FoFs are much higher than

the quantiles of Nons. Figure 6.2, lower right hand corner, supports this. While the den-

sity function for Nons is flat which suggests a uniform rank distribution3, there is a very

pronounced peak at the right side of the density function for FoFs. Draheim and Franke

(2015), who generate a nearest neighbor matching firm sample for 164 FoFs, match with

respect to industry and size. They also find that FoFs are larger than control firms but,

due to their matching approach, their observed discrepancy is not as strong as in our

sample.

3This is the case by construction since Nons make up most of the sample. Note that the ranking of
operating revenue is defined before any trimming procedure is applied and hence there are some slight
deviations at the boundaries.
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Concerning growth dynamics, we find that OR growth tends to be smaller for FoFs.

Only for the 25 percent quantile, we find lower OR growth for Nons. This finding for FoFs

and Nons might be in line with Evans (1987) who finds a negative relationship between

firm growth and size.

For all variables considered here, the KS tests reject the null of equal distributions in

the covariates for FoFs and Nons with p-values below 0.001. In the subsequent section,

we address the question of whether and how these significant differences translate into

financial performance differences.

7. Results

7.1. Model Setup

In this section, we present the results for the decompositions of RoA differences. The

decompositions are performed by using the method of Blinder (1973) and Oaxaca (1973)

(this method is denoted by "BO") and of Rothe (2015) (this method is denoted by "RO").

For both methods, we estimate 7 models whereas we regard model 2 and 3 as the baseline

models; the other models are included as robustness checks. The models differ in how and

if they take into account OR growth, industry fixed effects, accounting standards, stock

listing effects, voting share of foundations, and charity of foundations. For BO, we can

only evaluate RoA differences at the mean; for RO, we evaluate RoA differences at the

mean, the median, the 25 percent quantile, and the 75 percent quantile.

The construction of our variables and the assumptions for identification require some

adjustments in the estimation procedures. For models that look at a restricted sample,

e.g., according to accounting standards, all firms that do not fulfill this requirement are

removed.

To account for the impact of the financial crisis, all models contain a time dummy in-

dicating if the RoA time series of a firm contains the financial crisis year 2008. For firms

that enter the panel after 2008 this dummy has a value of zero. Except for model 1, indus-
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try fixed effects are included. In practice, the Frisch-Waugh-Lovell results on partitioned

regression (Frisch and Waugh (1933), Lovell (1963)) are used to first regress all firm policy

variables and RoA on the corresponding crisis and industry dummies. Then, we take the

residuals from the models as the firm policy variables and the RoA for the decomposition

models. This is equivalent to demeaning all variables within industry and crisis status. In

economic terms, models 2 to 7 represent a decomposition of differences in deviations from

the industry (crisis) specific average RoAs and relate them to deviations from the indus-

try (crisis) specific firm policy averages. Again, this is equivalent to modeling constant

industry and crisis fixed effects for both groups simultaneously4.

Common support adjustment is always done after controlling for any type of fixed ef-

fects or restricting the subsample which explains the slightly varying sample sizes even

in the less restricted models. For all models a minima-maxima comparison5 is applied;

for each firm policy variable, we observe a minimum and a maximum for FoFs and Nons.

Firms are removed that are out of the support range. A firm is out of the support range

if at least one of its policy variables is smaller than the less extreme minimum of FoFs

and Nons for this variable or larger than the less extreme maximum of FoFs and Nons for

this variable. In practice, that only drops Nons. In addition, the sample is trimmed more

severely according to OR rank. There is a single FoF that is very small. The outlier can

be seen in Figure 6.2, lower right hand corner, at the left side tail of the FoFs in the OR

rank category around 0.35. We remove this firm which is an extreme outlier, relative to

the other FoFs. Consequently, the minima-maxima comparison is used after removing this

outlier. Common support adjustment is required since else the counterfactual distribution

and the corresponding decomposition terms are not well defined. In economic terms, it

ensures that the characteristics of FoFs and Nons do not diverge too much which is likely

to be reasonable for a meaningful comparison.

Note that, since the return on assets is an average over time, the residual variance is

expected to be larger for firms that only enter the panel for a short time. Hence, to

4Note that for the copula based decomposition we are using, the within industry demeaned variables
may avoid computational problems arising from a high number of industry dummies in the copula
estimation.

5See Dehejia and Wahba (1999) in the context of propensity score trimming.
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Table 7.1: Mean RO2/BO2 and RO3/BO3

Variable BO2 RO2 BO3 RO3

Total ∆v
O −1.4502⋆⋆

−1.4595⋆⋆⋆
−1.5106⋆⋆

−1.5363⋆⋆⋆

(0.6307) (0.5236) (0.6315) (0.5582)
Structure ∆v

S −0.8023 −0.6591 −0.7604 −0.6509
(0.6789) (0.6284) (0.6760) (0.5833)

Composition ∆v
X −0.6479⋆⋆⋆

−0.8005⋆⋆⋆
−0.7502⋆⋆⋆

−0.8853⋆⋆⋆

(0.1575) (0.2284) (0.1693) (0.2316)
Dependence ∆v

D - −0.1902⋆ - −0.0841
(0.1079) (0.1093)

Marginal ∆v
M - −0.6103⋆⋆⋆ - −0.8012⋆⋆⋆

(0.2052) (0.1974)

σRoA −0.2933⋆⋆
−0.2430 −0.2843⋆⋆

−0.2890⋆⋆

(0.1283) (0.1589) (0.1276) (0.1357)
Leverage 0.1166⋆ 0.1498⋆⋆⋆ 0.1233⋆ 0.0972

(0.0615) (0.0377) (0.0651) (0.0734)
PPM 0.0149 0.0474 0.0145 −0.0138

(0.0198) (0.0666) (0.0196) (0.0466)
OR rank −0.4861⋆⋆⋆

−0.4602⋆⋆⋆
−0.5053⋆⋆⋆

−0.5457⋆⋆⋆

(0.0842) (0.0882) (0.0861) (0.1029)
OR growth - - −0.0983⋆

−0.1266⋆

(0.0565) (0.0700)
FoFs 108 108 108 108

Nons 11562 11562 11151 11151

This table shows mean decomposition estimates for BO and RO for models 2 and 3. Bootstrapped standard

errors are in parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.

get a more efficient estimate, all observations are weighted by the number of years that

are used to construct the average RoA. The same weighting scheme is applied for the

copula decomposition as well. However, this generates slight deviations in the overall

differences between BO and RO that can be seen in the subsequent section. We regard

these differences as negligible since they are usually in the second digit after the decimal

point.

7.2. Decomposition Results of the Mean Difference

In addition to separately analyzing firm policy variables that seem to be relevant for RoA

differences, we analyze their impact on RoA differences when conditioning on the other

variables. All statements in the subsequent sections are valid conditional on all other

differences being held fixed. For the baseline specification (model 2 and 3), the firm pol-

icy variables that we investigate are σRoA, leverage, PPM, OR rank, and, in addition,
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OR growth for model 3. In both models, we take industry fixed effects into account as

described before. Here, we look at the RoA mean difference, i.e., we decompose the differ-

ence of the mean RoA of FoFs and that of Nons into its components. Table 7.1 shows the

findings for BO and RO for the models 2 and 3. BO is a benchmark for RO since it can be

considered a special case of RO under linear structural functions and a zero dependence

effect. Here, Nons are the reference group: e.g., a coefficient of −1.45 as total effect for

BO2 corresponds to an underperformance of FoFs by 1.45 percentage points. Note that

when interpreting the estimation results for BO and RO, they must always be related to

the difference in the performance. Hence, e.g., a negative estimate for the marginal effect

of σRoA implies that the different level of risk that FoFs take, relative to Nons, makes

them perform worse in comparison.

First, we analyze BO2 and RO2. The total difference, according to BO2, is 1.45 percent-

age points; it is significant at the 5 percent level. This difference is the sum of differences in

firm policies (composition effect) which accounts for 0.65 percentage points (highly signifi-

cant), and of structural or unexplained differences (structure effect) of FoFs and Nons: 0.80

percentage points (insignificant). For RO2, the total difference is 1.46 percentage points

which is highly significant. The highly significant composition effect accounts for 0.80

percentage points. The structure effect is insignificant. Dependence effect and marginal

effects of firm policy variables sum up to the composition effect. The dependence effect

reflects different dependence structures of the explanatory variables for FoFs and Nons. It

is slightly significant. More important is the highly significant sum of the marginal effects

of firm policies, the total marginal effect, which accounts for 0.61 percentage points.

Regardless of analyzing BO2 or RO2, PPM turns out to not significantly contribute to

the difference in mean RoAs. According to BO2, the difference in σRoA lowers the mean

RoA of FoFs by 0.29 percentage points. For RO2, the magnitude of this effect is similar

but, surprisingly, insignificant. According to theory, which predicts a positive relationship

between risk and return, we would expect a significantly negative effect due to consistently

lower σRoA in FoFs. The effect of leverage is positive for BO2 (slightly significant) and

for RO2 (highly significant). This might reflect that lower levels of leverage, which are

typical for FoFs, might be beneficial regarding RoA, relative to higher levels of leverage for
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Nons. Size as measured by OR rank has a significantly negative effect of similar magni-

tude according to BO2 and RO2. FoFs are significantly larger. Potentially, large firms are

subject to different constraints making them react slowlier to new market developments

than small firms and, therefore, they generate relatively lower returns.

OR growth is added to the analysis in BO3 and RO3. Relative to model 2, the total

effect rises by a negligible extent. The composition effect grows, whereas the structure

effect remains insignificant. Thus, a larger proportion of the difference in mean RoAs can

be explained by differences in firm policies. For RO3, the dependence effect is insignifi-

cant, in contrast to RO2, and the sum of marginal effects of firm policy variables is larger,

relative to RO2.

We, now, turn to the impact of single firm policy variables on the total mean RoA dif-

ference for FoFs and Nons. PPM, again, turns out to be insignificant. In contrast to model

2, the effect of σRoA is significant, also for the Rothe decomposition. Here, it is negative

which is in line with the well-documented positive relationship between risk and return

due to lower σRoA in FoFs. The impact of leverage is not clear-cut: it is positive but only

significant for BO3. As in model 2, the effect of OR rank is significantly negative. There

seem to be many small Nons generating high returns even after trimming and conditioning

on other firm policy variables. The impact of OR growth is slightly significantly negative

for BO3 and RO3 reflecting lower financial performance due to lower growth rates in FoFs.

In general, differences at the mean between BO and RO are either a result of the depen-

dence effect or, which is more likely here, a result of nonlinearities in the data generating

process or misspecification of some models. For instance, under a correct RO specification,

BO potentially overestimates the effect of leverage since our specification for BO cannot

capture non-linearities. Except for RO3, the contribution of leverage at the mean seems

to be positive. This suggests that the contribution of lower leverage in FoFs is beneficial

for them with respect to the RoA difference. A potential mechanism here could be that

Nons operate at relatively high levels of leverage, thus, restricting the funding of profitable

investment opportunities. The impact of σRoA is significantly negative, except for RO2,

where it is insignificant. This indicates that higher risk in Nons might lead to higher
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Table 7.2: RO2: All Estimates, FoFs = 108, Nons = 11562

Variable Q25 Median Mean Q75

Total ∆v
O 0.4807 −0.2341 −1.4595⋆⋆⋆

−2.2495⋆⋆⋆

(0.7836) (0.6420) (0.5236) (0.5893)
Structure ∆v

S 0.9594 0.3336 −0.6591 −1.0435
(0.7976) (0.6578) (0.6284) (0.6760)

Composition ∆v
X −0.4786⋆⋆⋆

−0.5678⋆⋆⋆
−0.8005⋆⋆⋆

−1.2060⋆⋆⋆

(0.1720) (0.1418) (0.2284) (0.2723)
Dependence ∆v

D −0.2688⋆⋆
−0.1227⋆

−0.1902⋆
−0.1347⋆

(0.1167) (0.0684) (0.1079) (0.0788)
Marginal ∆v

M −0.2098⋆
−0.4451⋆⋆⋆

−0.6103⋆⋆⋆
−1.0713⋆⋆⋆

(0.1221) (0.1188) (0.2052) (0.2708)

σRoA 0.1863⋆⋆⋆
−0.1558 −0.2430 −0.6348⋆⋆

(0.0382) (0.1010) (0.1589) (0.2894)
Leverage 0.1737⋆⋆⋆ 0.1219⋆⋆⋆ 0.1498⋆⋆⋆ 0.1003

(0.0337) (0.0337) (0.0377) (0.0646)
PPM 0.1416⋆⋆⋆ 0.0824⋆ 0.0474 −0.0332

(0.0410) (0.0470) (0.0666) (0.1051)
OR rank −0.2441⋆⋆

−0.3344⋆⋆⋆
−0.4602⋆⋆⋆

−0.6621⋆⋆⋆

(0.0962) (0.0774) (0.0882) (0.1353)

This table shows decomposition estimates for RO2. Bootstrapped standard errors are in parentheses. ⋆,
⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.

returns, in line with theory. In addition, the largest proportion of the total difference can

be explained by different size of the firms. It turns out that even after conditioning on

other firm policies, FoF size is detrimental to financial performance. This is potentially

connected to slower adjustment processes of large firms. In addition, lower OR growth in

FoFs contributes to lower mean RoA of FoFs.

One can conclude from these findings that differences in firm policy variables capture

a significant proportion of return differences at the mean. Although some findings do not

seem to be consistent (findings for leverage and for σRoA), we argue that, as explained

before, estimated effects can be seen as lower bounds for true effects. Relying on this, the

picture gets more clear-cut: lower levels of σRoA, higher levels of OR rank, and lower OR

growth contribute to the mean RoA underperformance of FoFs, whereas lower levels of

leverage offset this result. PPM differences do not seem to have an impact on mean RoA

differences.
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Table 7.3: RO3: All Estimates, FoFs = 108, Nons = 11151

Variable Q25 Median Mean Q75

Total ∆v
O 0.4235 −0.2910 −1.5363⋆⋆⋆

−2.3083⋆⋆⋆

(0.8581) (0.5648) (0.5582) (0.6391)
Structure ∆v

S 0.8703 0.3667 −0.6509 −0.9990
(0.8370) (0.5756) (0.5833) (0.6504)

Composition ∆v
X −0.4468⋆⋆⋆

−0.6578⋆⋆⋆
−0.8853⋆⋆⋆

−1.3092⋆⋆⋆

(0.1602) (0.1547) (0.2316) (0.2722)
Dependence ∆v

D −0.0773 −0.0687 −0.0841 −0.0604
(0.0945) (0.0622) (0.1093) (0.0846)

Marginal ∆v
M −0.3695⋆⋆⋆

−0.5891⋆⋆⋆
−0.8012⋆⋆⋆

−1.2488⋆⋆⋆

(0.1330) (0.1386) (0.1974) (0.2561)

σRoA 0.1699⋆⋆⋆
−0.1784⋆

−0.2890⋆⋆
−0.6525⋆⋆

(0.0334) (0.1023) (0.1357) (0.2586)
Leverage 0.1574⋆⋆⋆ 0.0888⋆⋆ 0.0972 0.0551

(0.0370) (0.0441) (0.0734) (0.1049)
PPM 0.1189⋆⋆⋆ 0.0453 −0.0138 −0.0848

(0.0383) (0.0372) (0.0466) (0.0684)
OR rank −0.2940⋆⋆⋆

−0.3660⋆⋆⋆
−0.5457⋆⋆⋆

−0.7669⋆⋆⋆

(0.1056) (0.0858) (0.1029) (0.1427)
OR growth 0.0646 −0.0416 −0.1266⋆

−0.2569⋆⋆⋆

(0.0530) (0.0567) (0.0700) (0.0823)

This table shows decomposition estimates for RO3. Bootstrapped standard errors are in parentheses. ⋆,
⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.

7.3. Decomposition Results of Quantile Differences

In addition to analyzing the differences in mean RoAs, the copula approach allows to con-

duct a detailed analysis at different quantiles. Thus, we can decompose RoA differences

at different quantiles of the distributions to address potential heterogeneity. Table 7.2

shows the estimation results for model 2; Table 7.3 displays the findings for model 3 of the

copula based decomposition6. For different quantiles, the RoA difference (”total effect”)

varies. The difference seems to be the more pronounced the higher the quantile is. At the

25 percent quantile, the difference is even positive (indicating overperformance of FoFs)

but insignificant. The difference in median RoAs is negative but insignificant. For the

mean and the 75 percent quantile, the difference is significantly negative. These findings

hold true for RO2 and RO3. Apparently, there seem to be some high-performing Nons

driving the RoA difference at high quantiles. On the other hand, the return difference

gets insignificant at low quantiles.

6The results for the means are already discussed in section 7.2 but they are included for the sake of
comparability.
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The composition effect seems to increase monotonically in absolute terms along the

quantiles. It is always highly significant. This is confirmed by RO2 and RO3. While the

dependence effect is slightly significant and negative at all quantiles for RO2, its signif-

icance vanishes when considering RO3 where OR growth is included as additional firm

policy variable. The total marginal effect seems to be more relevant: except for the 25

percent quantile when regarding RO2 where it is slightly significant, it is highly significant

for all the other quantiles, irrespective of RO2 or RO3. In absolute terms, it increases

monotonically along the quantiles.

When analyzing the marginal effects of the firm policy variables, we find that the effect

of differences in σRoA is decreasing monotonically along the quantiles: at the 25 percent

quantile it is significantly positive for RO2 and RO3, at the median it is negative and

slightly significant for RO3 and insignificant for RO2, at the 75 percent quantile it is sig-

nificantly negative for RO2 and RO3. This might indicate that, even conditional on other

policy variables, FoFs follow more stable firm policies, i.e., they are not willing to take

a lot of risk. On the one hand, this might restrict high levels of RoA (see underperfor-

mance of FoFs at the 75 percent quantile). On the other hand, this also might avoid very

low RoA levels (see (insignificant) overperformance of FoFs at the 25 percent quantile).

Concerning the leverage, we find that its effect decreases along the quantiles: leverage has

the strongest positive and most significant impact at the 25 percent quantile for RO2 and

RO3, at the median it is still positve and highly significant for RO2 and significant for

RO3, at the 75 percent quantile significance vanishes. This suggests that typically lower

levels of leverage offset the effect of other firm policy variables that are disadvantageous

for FoFs in terms of financial performance for lower quantiles but do not matter for higher

quantiles. Apparently, at lower quantiles, firms with a lower leverage (FoFs) have more

scope to invest into profitable investments, whereas highly indebted firms are restricted

to do so. For high-performing firms a high leverage might not represent a source of in-

vestment restriction. The impact of PPM is highly significant at the 25 percent quantile

for RO2 and RO3, it is slightly significant at the median for RO2. Whenever it is signifi-

cant, its sign is positive. Thus, for low quantiles, stronger substitution of raw material by

labor seems to contribute to better financial performance of FoFs. For size, as measured
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by OR rank, the findings are clear-cut: its effect is highly significant (except for the 25

percent quantile when analyzing RO2, where it is only significant at the 5 percent level)

and increases monotonically in absolute terms along the quantiles. The bigger size of

FoFs, as measured by OR rank, seems to be a disadvantage for FoFs in terms of financial

performance. There seem to be small or medium size Nons generating high returns and,

thus, driving the RoA difference. This is consistent with the finding of Banz (1981) who

documents that small firms have higher risk-adjusted stock returns than larger firms. OR

growth is only included in RO3. Its effect is insignificant, except for the 75 percent RoA

difference where it is highly significant and negative. Different growth rates of FoFs and

Nons - on average, they are higher for Nons - might drive the RoA difference for high-

performing FoFs and Nons.

Overall, the RoA difference for high-performing FoFs and Nons (75 percent quantile) is

driven by differences in σRoA, OR rank, and OR growth. Apparently, there are several

Nons that take more risk, are smaller and, thus, more dynamic, and grow faster than FoFs

which results in the large RoA discrepancy. For average performers (median), there is an

underperformance of FoFs which is insignificant. Still, size differences, as measured by OR

rank, have a negative impact on FoF performance. This effect is partly offset by different

levels of leverage in FoFs. It is likely that generally lower levels of leverage in FoFs lead

to more freedom regarding investment opportunities, in contrast to being restricted by

too much debt which might be the case for Nons. For low-performing FoFs and Nons,

there is even underperformance of Nons, but this effect is insignificant. Only differences in

OR rank drive underperformance of FoFs. This effect is overcompensated by differences

in σRoA, leverage, and PPM. Apparently, there are low-performing Nons having taken

too much risk, as well as being exposed to a high leverage restricting further investment

opportunities. The significant effect of PPM is not easy to interpret. It may be that more

outsourcing, as indicated by lower levels of PPM in Nons, is not beneficial regarding RoA.
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7.4. Robustness Checks

7.4.1. Setup

We perform the analysis for five additional specifications to assure robustness of the major

findings in the previous subsection. In addition to estimating model 2 and 3, we estimate

model 1 which is the same as model 2 without accounting for industry fixed effects. Model

4, 5, 6, and 7 are the same as model 3 but, additionally, exclude listed firms (model 4),

only include firms using German accounting standards ("HGB") (model 5), HGB firms and

FoFs whose owning foundations have a voting share of at least 25 percent (model 6), and

HGB firms and FoFs whose owning foundations are charitable (model 7). Check marks in

the corresponding tables display the specifications of the models. The discussion focuses

on major differences, relative to model 2 and 3.

7.4.2. Mean Differences

We display the findings for the difference in mean RoAs in Table 7.4 for BO and in Table

7.5 for RO. Only for model 1, the structure effect is significant (BO) or slightly significant

(RO). This is no surprise since model 1 does not take industry effects into account not

capturing structural differences among certain industries.

Models 4, 5, and 6 do not display significant effects of σRoA, leverage, and OR growth.

This might be a consequence of the sample restrictions leading to only few FoFs. Anyway,

for RO2 and RO3, the effects of σRoA and leverage are also not always significant as

seen before. But as described before, one has to be aware of the fact that the estimates

displayed have to be understood as lower bounds for the true effects. Due to this, one does

not need to conclude that the results are inconsistent. Based on this reasoning, we, rather,

want to point to the findings of model 2 and 3 which seem to be the most appropriate

models in our setup, at least with respect to the number of observations. Having this in

mind, their findings do not seem to be contradicted by the other models. Anyway, the

estimates of OR rank are consistent, and OR rank turns out to be the most important

driver of mean RoA differences.
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Table 7.4: Blinder Oaxaca Decomposition

Variable BO1 BO2 BO3 BO4 BO5 BO6 BO7

Total ∆v
O −1.9502⋆⋆⋆

−1.4502⋆⋆
−1.5106⋆⋆

−1.7708⋆⋆⋆
−1.6561⋆⋆

−1.3043⋆
−1.5063⋆

(0.5727) (0.6307) (0.6315) (0.6568) (0.7431) (0.7767) (0.7935)
Structure ∆v

S −1.2276⋆⋆
−0.8023 −0.7604 −1.1004 −0.9968 −0.7195 −1.0864

(0.6204) (0.6789) (0.6760) (0.7050) (0.7904) (0.8259) (0.8389)
Composition ∆v

X −0.7226⋆⋆⋆
−0.6479⋆⋆⋆

−0.7502⋆⋆⋆
−0.6704⋆⋆⋆

−0.6593⋆⋆⋆
−0.5847⋆⋆⋆

−0.4199⋆

(0.1554) (0.1575) (0.1693) (0.1790) (0.1930) (0.2088) (0.2260)

σRoA −0.3239⋆⋆⋆
−0.2933⋆⋆

−0.2843⋆⋆
−0.2183 −0.1764 −0.1871 −0.1832

(0.1201) (0.1283) (0.1276) (0.1340) (0.1456) (0.1633) (0.1781)
Leverage 0.1096⋆⋆ 0.1166⋆ 0.1233⋆ 0.1042 0.1166 0.1322 0.1918⋆⋆

(0.0465) (0.0615) (0.0651) (0.0718) (0.0796) (0.0871) (0.0927)
PPM −0.0165 0.0149 0.0145 0.0234 0.0123 0.0176 0.0332

(0.0217) (0.0198) (0.0196) (0.0264) (0.0207) (0.0254) (0.0382)
OR rank −0.4918⋆⋆⋆

−0.4861⋆⋆⋆
−0.5053⋆⋆⋆

−0.4888⋆⋆⋆
−0.5170⋆⋆⋆

−0.4894⋆⋆⋆
−0.4236⋆⋆⋆

(0.0867) (0.0842) (0.0861) (0.0868) (0.0906) (0.0902) (0.0909)
OR growth - - −0.0983⋆

−0.0909 −0.0948 −0.0581 −0.0382
(0.0565) (0.0614) (0.0716) (0.0718) (0.0947)

Industry - X X X X X X

HGB - - - - X X X

No Listed - - - X - - -

Voting Share > 25% - - - - - X -

Charitable only - - - - - - X

FoFs 108 108 108 100 87 77 65

Nons 11406 11562 11151 10916 10170 10711 9935

This table shows decomposition estimates for BO for all the models. Bootstrapped standard errors are in

parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.
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Table 7.5: Copula Decomposition: Mean

Variable RO1 RO2 RO3 RO4 RO5 RO6 RO7

Total ∆v
O −1.9698⋆⋆⋆

−1.4595⋆⋆⋆
−1.5363⋆⋆⋆

−1.7539⋆⋆⋆
−1.6522⋆⋆

−1.2342⋆
−1.4098⋆

(0.5536) (0.5236) (0.5582) (0.6008) (0.6943) (0.7002) (0.8536)
Structure ∆v

S −1.1354⋆
−0.6591 −0.6509 −1.0369 −0.9510 −0.4919 −0.7643

(0.6182) (0.6284) (0.5833) (0.6466) (0.7351) (0.7445) (0.8492)
Composition ∆v

X −0.8344⋆⋆⋆
−0.8005⋆⋆⋆

−0.8853⋆⋆⋆
−0.7170⋆⋆⋆

−0.7012⋆⋆⋆
−0.7423⋆⋆

−0.6454⋆

(0.2040) (0.2284) (0.2316) (0.2068) (0.2412) (0.3203) (0.3299)
Dependence ∆v

D −0.1816 −0.1902⋆
−0.0841 −0.0208 0.0014 −0.1057 −0.2074⋆

(0.1134) (0.1079) (0.1093) (0.0953) (0.0975) (0.1081) (0.1150)
Marginal ∆v

M −0.6528⋆⋆⋆
−0.6103⋆⋆⋆

−0.8012⋆⋆⋆
−0.6962⋆⋆⋆

−0.7027⋆⋆⋆
−0.6366⋆⋆

−0.4380
(0.1946) (0.2052) (0.1974) (0.1893) (0.2300) (0.3053) (0.3099)

σRoA −0.2806⋆
−0.2430 −0.2890⋆⋆

−0.1984 −0.1871 −0.1872 −0.1398
(0.1454) (0.1589) (0.1357) (0.1253) (0.1704) (0.1952) (0.1987)

Leverage 0.1716⋆⋆⋆ 0.1498⋆⋆⋆ 0.0972 0.1115 0.0919 0.1102 0.2362⋆⋆

(0.0589) (0.0377) (0.0734) (0.0866) (0.0806) (0.1021) (0.1115)
PPM 0.0751 0.0474 −0.0138 0.0347 −0.0113 −0.0043 0.0637

(0.0718) (0.0666) (0.0466) (0.0496) (0.0391) (0.0476) (0.0664)
OR rank −0.4182⋆⋆⋆

−0.4602⋆⋆⋆
−0.5457⋆⋆⋆

−0.4934⋆⋆⋆
−0.5372⋆⋆⋆

−0.5212⋆⋆⋆
−0.4073⋆⋆⋆

(0.1095) (0.0882) (0.1029) (0.1089) (0.0964) (0.0969) (0.1014)
OR growth - - −0.1266⋆

−0.0868 −0.1203 −0.0835 −0.0120
(0.0700) (0.0661) (0.0815) (0.0869) (0.1103)

Industry - X X X X X X

HGB - - - - X X X

No Listed - - - X - - -

Voting Share > 25% - - - - - X -

Charitable only - - - - - - X

FoFs 108 108 108 100 87 77 65

Nons 11406 11562 11151 10916 10170 10711 9935

This table shows mean decomposition estimates for RO for all the models. Bootstrapped standard errors

are in parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.
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Table 7.6: Copula Decomposition: Q25

Variable RO1 RO2 RO3 RO4 RO5 RO6 RO7

Total ∆v
O 0.3958 0.4807 0.4235 0.1230 −0.7355 0.2302 0.2368

(0.7127) (0.7836) (0.8581) (0.9324) (1.1684) (1.0837) (1.0410)
Structure ∆v

S 0.7606 0.9594 0.8703 0.5186 −0.4097 0.6529 0.7302
(0.7101) (0.7976) (0.8370) (0.9103) (1.1520) (1.0785) (0.9803)

Composition ∆v
X −0.3648⋆⋆⋆

−0.4786⋆⋆⋆
−0.4468⋆⋆⋆

−0.3956⋆⋆
−0.3258⋆⋆

−0.4227⋆⋆
−0.4933⋆⋆

(0.1111) (0.1720) (0.1602) (0.1753) (0.1629) (0.1988) (0.2172)
Dependence ∆v

D −0.1306⋆⋆
−0.2688⋆⋆

−0.0773 −0.0380 −0.0009 −0.0845 −0.1958⋆⋆

(0.0648) (0.1167) (0.0945) (0.0983) (0.0908) (0.0987) (0.0946)
Marginal ∆v

M −0.2342⋆⋆⋆
−0.2098⋆

−0.3695⋆⋆⋆
−0.3576⋆⋆

−0.3249⋆⋆⋆
−0.3382⋆⋆

−0.2975
(0.0888) (0.1221) (0.1330) (0.1420) (0.1261) (0.1691) (0.1824)

σRoA 0.1876⋆⋆⋆ 0.1863⋆⋆⋆ 0.1699⋆⋆⋆ 0.1863⋆⋆⋆ 0.1531⋆⋆⋆ 0.1634⋆⋆⋆ 0.1560⋆⋆⋆

(0.0480) (0.0382) (0.0334) (0.0328) (0.0303) (0.0326) (0.0347)
Leverage 0.0716 0.1737⋆⋆⋆ 0.1574⋆⋆⋆ 0.1811⋆⋆⋆ 0.1508⋆⋆⋆ 0.1682⋆⋆⋆ 0.1739⋆⋆⋆

(0.0536) (0.0337) (0.0370) (0.0343) (0.0404) (0.0393) (0.0457)
PPM 0.2085⋆⋆⋆ 0.1416⋆⋆⋆ 0.1189⋆⋆⋆ 0.1428⋆⋆⋆ 0.1227⋆⋆⋆ 0.1333⋆⋆⋆ 0.1618⋆⋆⋆

(0.0655) (0.0410) (0.0383) (0.0404) (0.0342) (0.0343) (0.0378)
OR rank −0.1853⋆⋆

−0.2441⋆⋆
−0.2940⋆⋆⋆

−0.2611⋆⋆⋆
−0.2334⋆⋆

−0.2554⋆⋆
−0.2048⋆⋆

(0.0749) (0.0962) (0.1056) (0.0992) (0.0925) (0.1044) (0.0953)
OR growth - - 0.0646 0.0902⋆ 0.0684 0.1021 0.1348

(0.0530) (0.0523) (0.0569) (0.0628) (0.0824)

Industry - X X X X X X

HGB - - - - X X X

No Listed - - - X - - -

Voting Share > 25% - - - - - X -

Charitable only - - - - - - X

FoFs 108 108 108 100 87 77 65

Nons 11406 11562 11151 10916 10170 10711 9935

This table shows 25 percent quantile decomposition estimates for RO for all the models. Bootstrapped

standard errors are in parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.
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Table 7.7: Copula Decomposition: Median

Variable RO1 RO2 RO3 RO4 RO5 RO6 RO7

Total ∆v
O −0.6286 −0.2341 −0.2910 −0.5530 −0.4691 0.2934 −0.5351

(0.5481) (0.6420) (0.5648) (0.5869) (0.8538) (0.9394) (1.1241)
Structure ∆v

S 0.1565 0.3336 0.3667 0.0093 0.0552 0.8509 −0.0412
(0.5781) (0.6578) (0.5756) (0.5923) (0.8842) (0.9535) (1.1153)

Composition ∆v
X −0.7851⋆⋆⋆

−0.5678⋆⋆⋆
−0.6578⋆⋆⋆

−0.5623⋆⋆⋆
−0.5243⋆⋆⋆

−0.5576⋆⋆⋆
−0.4940⋆

(0.1561) (0.1418) (0.1547) (0.1448) (0.1618) (0.2168) (0.2598)
Dependence ∆v

D −0.1642⋆⋆
−0.1227⋆

−0.0687 −0.0510 0.0040 −0.0566 −0.1124
(0.0736) (0.0684) (0.0622) (0.0569) (0.0640) (0.0668) (0.0702)

Marginal ∆v
M −0.6209⋆⋆⋆

−0.4451⋆⋆⋆
−0.5891⋆⋆⋆

−0.5112⋆⋆⋆
−0.5283⋆⋆⋆

−0.5009⋆⋆
−0.3815

(0.1366) (0.1188) (0.1386) (0.1396) (0.1570) (0.1999) (0.2460)

σRoA −0.2735⋆⋆⋆
−0.1558 −0.1784⋆

−0.1132 −0.1193 −0.1306 −0.1053
(0.1035) (0.1010) (0.1023) (0.0955) (0.1274) (0.1362) (0.1564)

Leverage 0.0877⋆⋆ 0.1219⋆⋆⋆ 0.0888⋆⋆ 0.1057⋆⋆ 0.0689 0.0889 0.1871⋆⋆

(0.0401) (0.0337) (0.0441) (0.0530) (0.0531) (0.0648) (0.0870)
PPM 0.0372 0.0824⋆ 0.0453 0.0904⋆ 0.0524 0.0735 0.1406⋆⋆

(0.0456) (0.0470) (0.0372) (0.0484) (0.0443) (0.0522) (0.0700)
OR rank −0.3585⋆⋆⋆

−0.3344⋆⋆⋆
−0.3660⋆⋆⋆

−0.3452⋆⋆⋆
−0.3900⋆⋆⋆

−0.3766⋆⋆⋆
−0.3213⋆⋆⋆

(0.0885) (0.0774) (0.0858) (0.0961) (0.0787) (0.0775) (0.0878)
OR growth - - −0.0416 −0.0194 −0.0523 −0.0200 0.0258

(0.0567) (0.0503) (0.0665) (0.0683) (0.0918)

Industry - X X X X X X

HGB - - - - X X X

No Listed - - - X - - -

Voting Share > 25% - - - - - X -

Charitable only - - - - - - X

FoFs 108 108 108 100 87 77 65

Nons 11406 11562 11151 10916 10170 10711 9935

This table shows median decomposition estimates for RO for all the models. Bootstrapped standard errors

are in parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.
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Table 7.8: Copula Decomposition: Q75

Variable RO1 RO2 RO3 RO4 RO5 RO6 RO7

Total ∆v
O −3.4793⋆⋆⋆

−2.2495⋆⋆⋆
−2.3083⋆⋆⋆

−2.2090⋆⋆⋆
−2.1036⋆⋆

−1.9096⋆
−2.0156

(0.5083) (0.5893) (0.6391) (0.7180) (0.8514) (0.9784) (1.2639)
Structure ∆v

S −2.1452⋆⋆⋆
−1.0435 −0.9990 −1.1771 −1.0633 −0.8704 −1.2152

(0.6134) (0.6760) (0.6504) (0.7502) (0.9086) (0.9876) (1.3250)
Composition ∆v

X −1.3341⋆⋆⋆
−1.2060⋆⋆⋆

−1.3092⋆⋆⋆
−1.0319⋆⋆⋆

−1.0403⋆⋆⋆
−1.0392⋆⋆

−0.8004
(0.2575) (0.2723) (0.2722) (0.2620) (0.3385) (0.4491) (0.4902)

Dependence ∆v
D −0.1046 −0.1347⋆

−0.0604 0.0155 0.0046 −0.1047 −0.2218⋆

(0.0685) (0.0788) (0.0846) (0.0880) (0.0872) (0.1094) (0.1286)
Marginal ∆v

M −1.2295⋆⋆⋆
−1.0713⋆⋆⋆

−1.2488⋆⋆⋆
−1.0474⋆⋆⋆

−1.0449⋆⋆⋆
−0.9345⋆⋆

−0.5786
(0.2514) (0.2708) (0.2561) (0.2607) (0.3483) (0.4537) (0.4726)

σRoA −0.7923⋆⋆⋆
−0.6348⋆⋆

−0.6525⋆⋆
−0.4960⋆⋆

−0.4731 −0.4790 −0.3956
(0.2453) (0.2894) (0.2586) (0.2397) (0.3236) (0.3642) (0.3523)

Leverage 0.1706⋆⋆⋆ 0.1003 0.0551 0.0718 0.0659 0.0859 0.2586⋆

(0.0532) (0.0646) (0.1049) (0.1240) (0.1221) (0.1639) (0.1486)
PPM −0.0375 −0.0332 −0.0848 −0.0240 −0.0526 −0.0335 0.0825

(0.0927) (0.1051) (0.0684) (0.0909) (0.0777) (0.0983) (0.1187)
OR rank −0.7240⋆⋆⋆

−0.6621⋆⋆⋆
−0.7669⋆⋆⋆

−0.6697⋆⋆⋆
−0.8007⋆⋆⋆

−0.7243⋆⋆⋆
−0.5663⋆⋆⋆

(0.1321) (0.1353) (0.1427) (0.1503) (0.1394) (0.1368) (0.1362)
OR growth - - −0.2569⋆⋆⋆

−0.2156⋆⋆
−0.2582⋆⋆

−0.2116⋆
−0.0975

(0.0823) (0.0881) (0.1124) (0.1120) (0.1266)

Industry - X X X X X X

HGB - - - - X X X

No Listed - - - X - - -

Voting Share > 25% - - - - - X -

Charitable only - - - - - - X

FoFs 108 108 108 100 87 77 65

Nons 11406 11562 11151 10916 10170 10711 9935

This table shows 75 percent quantile decomposition estimates for RO for all the models. Bootstrapped

standard errors are in parentheses. ⋆, ⋆⋆ and ⋆⋆⋆ denote 10%, 5%, and 1% significance levels.
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7.4.3. Quantile Differences

We display the findings for the difference in 25 percent quantile RoAs in Table 7.6, for

the difference in median RoAs in Table 7.7, and for the difference in 75 percent quantile

RoAs in Table 7.8.

Most of the findings for the 25 percent quantile appear to be consistent for all the

models. Varying significance levels of the dependence effect are one exception. The total

marginal effect is not significant for model 7, in contrast to the other models. The findings

for σRoA, leverage, PPM, and OR rank seem to be consistent; only for model 1, leverage is

insignificant. Model 4 is the only model where OR growth is at least slightly significant.

For median RoAs, the findings are not clear-cut. Only for model 1 and 2, the dependence

effect is significant or slightly significant, respectively. Model 7 is the only model whose

total marginal effect is insignificant, possibly due to the small number of FoFs taken into

account. Only for model 1 and 3 the impact of σRoA is negative and (slightly) significant.

Leverage turns out to be significantly positive, except for model 5 and 6. The picture

for PPM is not clear-cut at all. Again, OR rank turns out to be highly significant and

negative for all models. We remind of the fact that estimated effects are lower bounds

(in absolute terms) for the true effects. Considering this and observing that the signs of

the estimates are consistent, we conclude that the findings for the different models might

support consistency.

The picture looks similar for the 75 percent quantile. For model 7, we do not find a

significant total effect; the composition effect is insignificant, while the dependence effect is

slightly significant. Besides, we see a highly significant structure effect for model 1, possibly

due to not taking industry fixed effects into account moving the additional heterogeneity

to the unexplained or structural component. σRoA is insignificant for model 5, 6, and 7.

Leverage turns out to be positive and highly significant for model 1 and slightly significant

for model 7. The effect for PPM is insignificant for all models, while the effect of OR rank

is significantly negative for all models. Except for model 7, OR growth turns out significant

and negative. Again, we refer to the fact that these estimates have to be interpreted as
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lower bounds of the true effects. Taking this into consideration and observing consistent

signs of estimated firm policy effects across the models, we believe that these findings

support the findings of baseline models 2 and 3.

8. Conclusion

In this paper, we study if and how differences in firm policies have an impact on differ-

ences in return on assets of FoFs and Nons. We perform the analysis for return differences

at the mean and at several quantiles. We document that for high-performing FoFs and

Nons the RoA difference is more pronounced in favor of Nons, for low-performing firms

the difference vanishes. Performance differences are substantially driven by differences in

firm policies. We find that (1) lower risk in FoFs, as measured by the standard deviation

of return on assets, increases FoF underperformance at high quantiles, but offsets it at

low quantiles, (2) a lower leverage of FoFs offsets FoF underperformance at low quantiles

and the median, (3) higher labor intensity in FoFs offsets their underperformance at low

quantiles, (4) the larger size of FoFs increases FoF underperformance for the mean and all

quantiles, (5) lower growth rates of FoFs increase FoF underperformance at high quantiles,

and (6) residual differences beyond firm policies tend to be insignificant.

Managers of FoFs might be less incentivized to take higher risk which is likely to be

a driver of lower but more stable returns in FoFs, while there seem to be several Nons

generating very high returns. A lower leverage in FoFs appears to give more scope to new

investment opportunities and, thus, partly offsets the performance disadvantage of FoFs.

More labor intensity in FoFs might be interacted with less outsourcing. Possibly, some

Nons have overdone outsourcing reducing the performance gap. The larger size of FoFs

involves less flexibility and lower adjustment to new market conditions resulting to higher

RoA difference. Slower growth of FoFs might translate into lower returns.

By the construction of the variables we try to mitigate the simultaneity bias adherent

in accounting information. We show that under this potential bias estimates have to be

interpreted as lower bounds for true effects. The more persistent the variables are, the

closer the estimates get to true effects.
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This study might contribute to a better understanding about the impact of today’s firm

policies on future returns since it can be interpreted as a predictive approach due to the

construction of the variables. As far as it is possible, a manager of a Non might adjust a

certain variable towards the level which can be observed in FoFs for this variable and vice

versa in order to push future returns into the desired direction. Further studies on the

relationship between present firm policies and future returns combined with conversations

with practitioners might deepen our understanding.
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Appendix A Parameter Proofs

The models for the time averages are given by

Ȳi = X̄iβ + Z̄iγ + ε̄i,

Z̄i = X̄iα + Ȳiδ + ūi.

Let the model stacked over all observations be denoted as

Y = Xβ + Zγ + ε,

Z = Xα + Y δ + u

with all elements being vectors of size n and all parameters being scalars. We assume that

E[X̄iε̄i] = E[X̄iūi] = 0 and without loss of generality that all variables have mean zero,

i.e., are centered. For the sake of simplicity we assume that the errors are uncorrelated

across equations. In addition, we assume the usual regularity conditions to assure that all

empirical correlation and variance covariance matrices converge to a fixed matrix in prob-

ability. In the following, we derive the probability limits for the least squares estimation

of β and γ. One can rewrite the outcomes as

Y = Xβ + Zγ + ε

= Xβ + (Xα + Y δ + u)γ + ε

⇔ Y = X

(
β + αγ

1 − δγ

)

+ u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)

⇒ Z = X

(
α + βδ

1 − δγ

)

+ u

(
1

1 − δγ

)

+ ε

(
δ

1 − δγ

)

.

Let for any n times k dimensional matrix W the residual maker matrix be defined as

MW = I −W (W ′W )−1W ′, σ2
L be the variance of a random variable L, σ2

L,S the covariance

between two random variables L and S, and ρL,S their correlation coefficient. The closed
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form solution for the least squares estimate of β is given by

β̂ = (X ′MZX)−1X ′MZY

= (X ′MZX)−1X ′MZX

(
β + αγ

1 − δγ

)

+ (X ′MZX)−1X ′MZ

[

u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)]

=

(
β + αγ

1 − δγ

)

+ (X ′MZX)−1
{

X ′
[

u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)]

− X ′Z(Z ′Z)−1Z ′
[

u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)]}

=

(
β + αγ

1 − δγ

)

+ (X ′X − X ′Z(Z ′Z)−1Z ′X)−1
{

X ′
[

u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)]

− X ′Z(Z ′Z)−1Z ′
[

u

(
γ

1 − δγ

)

+ ε

(
1

1 − δγ

)]}

.

As auxiliary result we use that

n−1Z ′u = n−1X ′u

(
α + βδ

1 − δγ

)

+ n−1u′u

(
1

1 − δγ

)

+ n−1ε′u

(
δ

1 − δγ

)
p

→
σ2

u

1 − δγ

n−1Z ′ε = n−1X ′ε

(
α + βδ

1 − δγ

)

+ n−1u′ε

(
1

1 − δγ

)

+ n−1ε′ε

(
δ

1 − δγ

)
p

→
δσ2

ε

1 − δγ

and hence by multiplying and dividing through with n it follows that

β̂
p

→
β + αγ

1 − δγ
+

(

σ2
X −

σ2
X,Z

σ2
Z

)−1
σX,Z

σ2
Z

[
γσ2

u + δσ2
ε

(1 − δγ)2

]

=
β + αγ

1 − δγ
+

[
ρX,Z

σXσZ

]
γσ2

u + δσ2
ε

(1 − ρ2
X,Z)(1 − δγ)2

.

With the intermediary step from above one can show that the OLS estimate of γ yields

γ̂ = (Z ′MXZ)−1Z ′MXY

= (Z ′MXZ)−1Z ′[Y − X(X ′X)−1X ′Y ]

= (Z ′MXZ)−1
{[

Z ′X

(
β + αγ

1 − δγ

)

+ Z ′u

(
γ

1 − δγ

)

+ Z ′ε

(
1

1 − δγ

)]

− Z ′X(X ′X)−1
[

X ′X

(
β + αγ

1 − δγ

)

+ X ′u

(
γ

1 − δγ

)

+ X ′ε

(
1

1 − δγ

)]}

= (Z ′MXZ)−1
[

Z ′u

(
γ

1 − δγ

)

+ Z ′ε

(
1

1 − δγ

)

− Z ′X(X ′X)−1
{

X ′u

(
γ

1 − δγ

)

+ X ′ε

(
1

1 − δγ

)}]

.
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Using the identification and convergence assumptions and plugging in Z, we obtain

γ̂ = (Z ′MXZ)−1
[

γ

1 − δγ
Z ′u +

1

1 − δγ
Z ′ε

]

+ op(1)

= (Z ′MXZ)−1
[

γ

1 − δγ

{

X ′u

(
α + βγ

1 − δγ

)

+ u′u

(
1

1 − δγ

)

+ ε′u

(
δ

1 − δγ

)}

+
1

1 − δγ

{

X ′ε

(
α + βγ

1 − δγ

)

+ u′ε

(
1

1 − δγ

)

+ ε′ε

(
δ

1 − δγ

)}]

+ op(1)

= (Z ′MXZ)−1
[

γ

(1 − δγ)2
u′u +

δ

(1 − δγ)2
ε′ε

]

+ op(1)

= (Z ′Z − Z ′X(X ′X)−1X ′Z)−1
[

γ

(1 − δγ)2
u′u +

δ

(1 − δγ)2
ε′ε

]

+ op(1)

and hence it follows that

γ̂
p

→

[

σ2
Z −

σ2
X,Z

σ2
X

]−1
γσ2

u + δσ2
ε

(1 − δγ)2

=
γσ2

u + δσ2
ε

(1 − ρ2
X,Z)σ2

Z(1 − δγ)2
.

Now, consider the auxiliary model with lagged regressors Zi0 assuming that the prior

values are not subject to simultaneity bias, i.e., E[Zi0ε̄i] = E[Zi0ūi] = 0. Let Z0 be the

stacked vector of the predetermined regressors. To put persistence into a model, say that

the dynamics of leverage are appropriately captured by a stationary AR(1) structure, i.e.,

we have that

Zit = θZit−1 + νit ⇔ Zit = Zi0θt +
t−1∑

j=0

θjνit−j

with νit being some independent zero mean error. This could be easily relaxed and merely

serves illustrative purpose. Taking averages for the leverage over t = 1, . . . , T yields

Z̄i = Zi0
1

T

T∑

t=1

θt +
1

T

T∑

t=1

t−1∑

j=0

θjνit−j

≡ Zi0Θ + Ni

⇔ Z = Z0Θ + N.

Therefore, the auxiliary model for estimation is given by

Y = Xβ + Z0ω + ν
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with ν = ε − Z0ω + Zγ. Using the additional orthogonality condition as well as the

independence of the error in the autoregressive model, one can derive the probability

limits for the least squares estimator of the auxiliary model parameters

β̂ = (X ′MZ0
X)−1X ′MZ0

Y

= (X ′MZ0
X)−1X ′MZ0

(Xβ + Zγ + ε)

= β + (X ′MZ0
X)−1X ′MZ0

Zγ + (X ′MZ0
X)−1X ′MZ0

ε

= β + (X ′MZ0
X)−1X ′MZ0

(Z0Θ + N)γ + (X ′MZ0
X)−1X ′MZ0

ε

= β + (X ′MZ0
X)−1X ′MZ0

(Nγ + ε)

p
→ β.

Hence, we can estimate β consistently. For the new parameter ω on the lagged regressor

one obtains that

ω̂ = (Z ′
0MXZ0)−1Z0MXY

= (Z ′
0MXZ0)−1Z0MX(Xβ + Zγ + ε)

= Θγ + (Z ′
0MXZ0)−1Z0MX(Nγ + ε)

p
→ Θγ

which under stationarity is an absolutely lower bound for the effect size γ from the true

structural equation which completes the proof.
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