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We propose a general framework for estimating means of orthogonal groups stemming from e.g. cat-
egorical regressors or (quasi-)experimental data. It penalizes the loss function by adding squared
L2-norm differences between group location parameters and a first stage estimate for potentially all
other groups. Under quadratic loss, the penalized estimation problem has a simple interpretable
closed form solution that is related to methods established in the literature on discretized support
smoothing kernels and model averaging methods. We provide optimal smoothing parameters that
serves as a benchmark method, propose a plug-in approach and study their comparative statics. The
behavior of both methods is analyzed in an asymptotic local to zero framework that allows for the
presence of moderate test statistics for arbitrary sample sizes. We introduce a class of sequences
for close and distant systems that is sufficient for describing a large range of data generating pro-
cesses. We show consistency, derive the asymptotic distribution under fixed, theoretically optimal
and estimated smoothing parameters and provide upper limits for the statistical complexity of the
estimators. The method is applied to the estimation of time trends in a short panel based on the
Haifa field experiment by Gneezy and Rustichini (2000a) and to the difference-in-differences minimum
wage study by Card and Krueger (1994).
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1. Introduction

Modern data sets such as (quasi-)experimental data, survey data or medical records typi-

cally contain many ordered categorical explanatory variables that can be used to estimate

conditional mean functions. Without restricting the functional form of the conditional

mean, one problem is having small or even empty groups sizes for distinct combinations

of categorical predictors that form orthogonal groups or cells. In general, the question

is how to appropriately setup a statistical model for the conditional mean of an outcome

variable of interest in such cases. For simplicity, imagine a very simple example with two

potential groups and a small sample. A fully saturated model would allow one parameter

per group while a global model would yield the simple average over all observations. If

means are truly identical, aggregating will yield a lower variance for parameter estimate

and predictions since they are based on a larger sample size. However, the true means

are unknown. A classical test would be a two sample t-test for equality of the means.

Say, the researcher decides on a 5% confidence level. The test will lead to a zero-one

decision based on the value of the test statistics. However, what if test sizes are “moder-

ate”, i.e. we have a t-statistics of 1.96 leading to a rejection of the equality of two means?

Aggregating both groups might still be beneficial in terms of the predictive accuracy since

the differences in the means are relatively small for a given sample size and bias intro-

duced by the aggregation might be offset by reduction in variance. In addition, choosing

a significance level creates a somewhat arbitrary discontinuity around the critical value.

However, e.g. two t-statistics of 1.95 and 1.96 might stand for rather similar processes in

finite samples. Therefore, considering smooth variants of aggregation can potentially be

beneficial in finite samples.

Nonparametric methods in the fashion of Aitchison and Aitken (1976) are originally

intended to deal with the small to empty cell problem in the context of multivariate

discrete (Hall, 1983; Simonoff, 1996) or for mixed data (Li and Racine, 2003). In the

nonparametric regression framework Hall et al. (2004, 2007) and Ouyang et al. (2009)

propose kernel methods with particular emphasis on cross-validated smoothing parameters

and their behavior under the presence of irrelevant regressors. In a Bayesian sense, these

methods shrink a multivariate mean towards a target value such as the global mean.

For probability distribution functions there is also a literature on empirical Bayes with
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data driven shrinkage parameters under appropriate priors for multinomial data, see

e.g. Fienberg and Holland (1973), Titterington and Bowman (1985) or Simonoff (1996)

for a comprehensive review with particular focus on sparse asymptotics.

In the frequentist model averaging literature, aggregation across parameters or pre-

dictions of different models has a similar effect in the cell context. Methods proposed

by e.g. Hjort and Claeskens (2003), Hansen (2007) and Liu (2015) implicitly aggregate

different estimates for cell means and effectively smooth across estimates.

In the shrinkage literature, the smoothness between the coefficient estimates is enhanced

by adding an L1-norm penalty of all the pairwise differences to a loss function. The L1-

norm allows for partial and complete fusion of the groups depending on the choice of

the smoothing parameter. Such an approach is e.g. implemented in Tibshirani et al.

(2005) for linear models with ordered categorical data and in Tutz and Oelker (2016)

for group-specific generalized linear models. The main difference to the other methods is

that aggregation and estimation is done in a single, one-step procedure while e.g. model

averaging directly and nonparametric smoothing implicitly use first stage estimates such

as submodels or averages.

From a theoretical point of view, the direct or implicit aggregation that is introduced by

all of these methods for regression models leads to the question of what an overall “good”

aggregation rule is. A proper aggregation rule should be theoretically optimal under a

reasonable metric and if possible allow for conducting valid asymptotic inference.

We propose a general framework for orthogonal groups that penalizes the loss func-

tion by adding squared L2-norm differences between group location parameters and first

stage estimates for potentially all other group location parameters in the model. First

stage estimates can be cell means or other arbitrary consistent estimators. Adding a

squared L2-norm penalty has several advantages. Namely, under a quadratic loss, the

penalized estimation problem has a simple interpretable closed form solution, which we

call the pairwise cross-smoothing estimator (PCS) that is closely related to the methods

established in the literature on discretized support smoothing kernels for categorical data

and model averaging methods. Additionally, the maximum degree of smoothing flexibility

can be achieved by introducing individual smoothing parameters for all squared L2-norm

differences.

One of the main questions is how to choose the smoothing parameters optimally. In the
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case of having exclusively categorical regressors, a closed form solution of the mean squared

error (MSE) optimal smoothing parameters can be derived. This allows for an extensive

study of their comparative statics. Additionally, they can be used as a benchmark method

in future research. Since the MSE optimal smoothing parameters depend on unknown

parameters, we propose a plug-in approach for their estimation. We further contribute to

the literature by analyzing the behavior of both estimated smoothing parameters as well

as estimator based on the estimated smoothing parameters in an asymptotic local to zero

framework that allows for the presence of moderate test statistics for arbitrary sample

sizes. We introduce a class of sequences for close and distant systems that is sufficient

for describing a wide range of data generating processes. We show consistency and derive

the asymptotic distribution of the PCS estimator under fixed, theoretically optimal and

estimated smoothing parameters. In addition, we provide upper limits on the effective

degrees of freedom of the linear operator associated with the PCS.

Monte Carlo evidence suggests that the theoretically optimal smoothing parameters

outperform the other considered competitors by a large factor. In contrast to existing

methods, the feasible PCS seems to be a more conservative but robust refinement over

ordinary least squares which is more significant for smaller group sizes and closer systems

of locations. In fact, we observe a uniformly dominant behavior of the PCS over the

ordinary least squares.

The method is applied to the estimation of time trends in a short panel based on the

field experiment in private day-care centers for children in Haifa by Gneezy and Rustichini

(2000a) and to the well-known difference-in-differences study about the effect of minimum

wages on employment by Card and Krueger (1994) illustrating potential applications.

Section 2 introduces the pairwise cross-smoothing model and its relation to conven-

tional smoothing kernels and model averaging methods. Section 3 presents the MSE

optimal smoothing parameters, discusses their small and large sample behavior and gives

some preliminary results on the large sample behavior of the PCS under fixed and opti-

mal smoothing. Section 4 introduces the local asymptotic framework, demonstrates the

large sample properties of the feasible PCS estimator and discusses the degree of model

complexity reduction inherent in the pairwise cross smoothing. Section 5 provides some

Monte Carlo evidence. Section 6 and 7 contain the applications. Section 8 concludes.

3



2. Pairwise Cross-Smoothing

2.1. The Model

All the notation is based on scalars, sums and vectors. For the more matrix affine

reader, consulting Appendix A might turn out to be useful. Consider independent and

identically distributed data (Yi, Xi), i = 1, . . . , n, where the vector Xi contains ordered

and/or unordered discrete random variables. The discrete variables in Xi uniquely deter-

mine J orthogonal groups. For example, two binary discrete random variables determine

four orthogonal groups. Let a vector Di represent whether an observation i belongs to a

group j ∈ {1, . . . , J}. In such a case, the j-th entry of the vector Di contains one, Dij = 1,

and the rest of the entries is equal to zeros, Dij′ = 0 for all j′ 6= j, i.e. Di ∈ {ej , 1 ≤ j ≤ J},

which together form the standard basis of RJ .

Within this framework, a regression model for the conditional mean of Yi looks as

follows:

Yi = D′
iµ + εi (2.1)

with µ = (µ1, . . . , µJ)′ and E[εi|Di] = 0. Let µ̂ = (µ̂1, . . . , µ̂J)′ be a consistent first-stage

estimator for the conditional group means. We propose to estimate the model for the

conditional mean of Yi as a penalized least squares problem, i.e.

(µ̂P CS
1 , . . . , µ̂P CS

J ) = arg min
µ1,...,µJ

n∑

i=1

(Yi − D′
iµ)2 +

J∑

j=1

∑

s 6=j

λjs(µj − µ̂s)
2, (2.2)

where λjs are given smoothing parameters with λjj = 0 for all j ∈ {1, . . . , J} and PCS

stands for pairwise cross-smoothing since the penalties form hyperrectangles that geomet-

rically overlap in RJ−1. The idea behind the penalty is to improve the conditional group

mean estimates by using information from other groups which is collected in the first-stage

estimate µ̂.

Regarding the optimal choice of the smoothing parameters, the more informative group

s is for group j, the larger the smoothing parameter λjs should be and vice versa. In the

special case of λjs = 0 for all pairs (j, s), i.e. none of the groups uses information from the

other groups, the optimization problem (2.2) becomes a standard OLS and µ̂P CS is equal

to OLS group mean estimates. By setting one of the λjs arbitrarily large, i.e. group s uses
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(full) information of the group j, µ̂P CS
j is shrunken to µ̂s. For a fixed j, setting all λjs’s to

large values, i.e. all other groups are very informative for the group j, would make µ̂P CS
j

to be shrunken to the mean of all µ̂s where s 6= j.

The uniqueness of the solution of (2.2) is guaranteed if
∑

s 6=k λks > −nk for all k ∈
{1, . . . , J}. For a complete derivation see Appendix B.1. Under this condition, the k-th

group estimate is given by

µ̂P CS
k (Λk) =

nkȲk

nk +
∑

l 6=k λkl
+

∑

j 6=k

λkjµ̂j

nk +
∑

l 6=k λkl
, (2.3)

with Λk = (λk1, . . . , λkJ) and Ȳk denoting the sample mean of group k, µ̂j being the first

stage estimate for group j and nk =
∑n

i=1 Dik. By looking at the k-th group estimate, we

can illustrate how the penalty works. One can see that the k-th group location estimator

is a linear combination of the different first-stage group estimates and its own cell mean.

Regarding µ̂, a possible choice is the linear (cell based) projection of Yi on Di, i.e. µ̂ =

(
∑n

i=1 DiD
′
i)

−1 ∑n
i=1 DiYi, the vector of cell means. This is also referred to as frequency

approach in the literature since it uses cell probabilities as weights. The k-th group

estimator can be easily decomposed into:

µ̂P CS
k (Λk) =

nkȲk

nk +
∑

l 6=k λkl
+

∑

j 6=k

λkjȲj

nk +
∑

l 6=k λkl
, (2.4)

which is a linear combination of the cell means. It is noteworthy that the smoothing

parameters λkj’s and therefore also the implicit weights are not all restricted to be larger

than or equal to zero. Just the overall smoothing for one baseline category can’t be

too negative based on the condition for the uniqueness of (2.3). This fundamentally

differentiates our approach from e.g. discretized support kernel approaches that are built

as weighted averages using probability mass functions. They lead to weights which are

restricted to be larger than zero. We will come back to this point in the Section 2.2.

2.2. Relation to Kernel Estimators

The pairwise cross smoothing approach is directly linked to traditional smoothing ker-

nels for binary data in the sense of Aitchison and Aitken (1976). These methods are

originally intended to deal with the small to empty cell problem in the context of multi-
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variate discrete (Hall, 1983; Simonoff, 1996) or mixed data (Li and Racine, 2003). They

try to get reasonable estimates of the joint or conditional probability distributions of the

discrete random variables. The kernel methods effectively smooth the probability esti-

mates of the cells towards close cells, i.e. they smoothly aggregate information across the

cells.

The direction of the results on the methods discussed above carries over to the non-

parametric estimation of regression functions. Prominent sources concerned with discrete

or mixed regressors are Li and Racine (2007), Hall et al. (2004, 2007) and Ouyang et al.

(2009) who put particular emphasis on cross-validated smoothing parameters and their

behavior under the presence of irrelevant regressors.

For the case of exclusively discrete data, Ouyang et al. (2009) show qualitatively differ-

ent behavior under cross-validated smoothing parameters that cannot be replicated as a

special case of the mixed data framework. They consider the case of arbitrary ordered or

unordered discrete regressors Xi = (Xi1, . . . , Xir)′ and a model

Yi = g(Xi) + εi

with E[εi|Xi] = 0. The discretized support kernels for unordered regressors are defined by

l(Xis, xs, λs) = λ1(Xis 6=xs)
s

which for the general case of s ∈ {1, . . . , r} leads to a product kernel in the shape of

L(Xi, x, λ) =
r∏

s=1

l(Xis, xs, λs) =
r∏

s=1

λ1(Xis 6=xs)
s (2.5)

with λs ∈ [0, 1] for all s being the bandwidth parameters and λ = (λ1, . . . , λr). The point

x = (x1, . . . , xr) is a fixed point of interest. For ordered discrete data, they propose to

implement the same principle but with exponentially decaying weights in the absolute

differences between the discrete variables, i.e. putting higher weights on close cells or

6



Table 2.1: Kernel Weights: Example with λ1 = 0.3 and λ2 = 0.7

(xi1, xi2) = (0, 0) (xi1, xi2) = (1, 1)
xj1|xj2 0 1 2 xj1|xj2 0 1 2
0 1 0.7 0.49 0 0.21 0.3 0.21
1 0.3 0.21 0.15 1 0.7 1 0.7
2 0.09 0.06 0.04 2 0.21 0.3 0.21

formally

l(Xis, xs, λs) = λ|Xis−xs|
s

L(Xi, x, λ) =
r∏

s=1

λ|Xis−xs|
s . (2.6)

In the case of λs → 0 for all s, the kernel will degenerate towards a cell based indicator

function equivalent to the frequency based approach while for λs → 1 the results will be

shrunken completely towards the global mean. The resulting estimator for g(x) is then

given by

ĝ(x) =

∑n
i=1 YiL(Xi, x, λ)

∑n
i=1 L(Xi, x, λ)

.

For illustration consider the case of a univariate regression model (i.e. r = 1) with Xi ∈
{0, 1, 2}. A smooth nonparametric estimate for g(0) is then given by

ĝ(0) =

∑

Xi=0 Yi +
∑

Xi=1 λ1Yi +
∑

Xi=2 λ2
1Yi

∑

Xi=0 +
∑

Xi=1 λ1 +
∑

Xi=2 λ2
1

(2.7)

=
∑

Xi=0

w0Yi +
∑

Xi=1

w1Yi +
∑

Xi=2

w2Yi (2.8)

with wj = λj
1/(

∑

Xi=0 +
∑

Xi=1 λ1 +
∑

Xi=2 λ2
1) which is still a weighted average but over

a larger range of cells than in the frequency approach.

Since the bandwidths are bounded between 0 and 1, more distant cells will automatically

receive a lower weight. Table 2.1 illustrates this relationship for the case of two discrete

variables taking on values from 0 to 2 for two different points of interest. The degree

of smoothing depends on the smoothing parameter related to a specific covariate and is

independent of the group that is considered as a target. Cell distances are not smoothed

differently within one direction as illustrated by the second table in Table 2.1. This

approach puts a particular, i.e. exponential structure on the kernel decay over the support
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of the ordered discrete variables. A somewhat more flexible approach would be to recode

the two ordered regressors into nine orthogonal groups and allow for a separate smoothing

parameter for each category. This is still in line with the product kernel idea. An even

more flexible approach would introduce different smoothing parameters depending on the

target category. This is what PCS allows for.

Therefore, kernel estimators introduced in the literature can be seen as restricted ver-

sions of PCS. This is also illustrated by equations (2.4) and (2.8). Equation (2.8) is very

reminiscent of the closed form solution of the PCS when cell based projections serve as

first stage estimates in equation (2.4). In particular, for the case of only binary regressors

or for transformed data that consists of non-overlapping groups only, there exists a one

to one relation between PCS and a traditional smoothing kernel, i.e. the latter one is a

restricted version of PCS. By restricting λkj = λjnj for all k 6= j, one obtains the tradi-

tional smoothing kernel. Hence, for the case of orthogonal groups there exists a penalized

regression representation in the fashion of equation (2.3) that has the identical solution as

the smoothing kernels if cell based means are used as first stage estimators.

2.3. Relation to Model Averaging

The question of how to aggregate across distinctive groups can also be rephrased from

a model or variable selection perspective, i.e. which group deserves its own location pa-

rameter and which groups can be put into one? Hence in terms of a regression framework,

one would like to know whether a more or less saturated model in terms of group dummy

variables is appropriate. There is a large and growing literature on model selection and

model averaging. At first, note that the similarities between model averaging and the

pairwise cross smoothing estimator mainly come from the fact that for models containing

location parameters only, predictions and parameters are the same notion. Here, we focus

on the papers in the frequentist model averaging literature that are more closely related

to this work, i.e. we omit relevant contributions in the literature especially in the context

of Bayesian model averging, forecast combination, instrumental variables and others. For

a comprehensive list of relevant papers in these fields, we refer the reader to Section 1 of

Hansen (2014).

Classical model selection aims at selecting a single best model among a set of candi-

dates by an appropriate criterion such as the Akaike Information Criterion (AIC, Akaike,
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1970) or Schwarz-Bayes Criterion (BIC, Schwarz, 1978) or traditional multivariate test-

ing procedures. More recently, frequentist model averaging methods have become more

popular. Hjort and Claeskens (2003) consider frequentist model averaging estimators and

their distributional theory in a general maximum likelihood framework with a local to

zero n−1/2-asymptotic framework. See also Claeskens et al. (2008) for a comprehensive

overview.

Buckland et al. (1997) and Burnham and Anderson (2003) consider smooth variants

of the AIC by applying exponential weighting structures. Hansen (2007) introduces a

weighting procedure for different least squares estimates based on a Mallows Criterion.

Liang et al. (2011) consider optimal weighting schemes in terms of the mean squared error

for the linear model and general likelihood models. Zhang et al. (2011) propose a focused

information criterion and a model averaging estimator for generalized additive partially

linear model with polynomial splines. Hansen and Racine (2012) develop a jacknife model

averaging estimator using cross-validation for conditional mean functions under potential

misspecification of the submodels. They allow for heteroskedastic errors and non-nested

models and show asymptotic optimality in the class of averaging estimators with weights

in the unit simplex or a constrained subset thereof.

Hansen (2014) derives conditions for asymptotic dominance of the averaging estimator

in a nested least squares setup under penalization of the averaging weights in a local to

zero n−1/2 framework. Liu (2015) derives distributional theory for least squares averaging

estimators in the linear framework under different data-dependent weighting schemes and

generalized error term structures. He considers a local to zero n−1/2-asymptotic framework

for subsets of regressors, i.e. weak partial correlations of additional regressors beyond

a correctly specified base model. He shows the nonstandard behavior of the averaging

estimators and proposes alternative procedures for inference. In the context of point

estimation risk, Cheng et al. (2016) consider averaging between two general method of

moments estimators under potential misspecification of the second, overidentified model.

They show that the averaging estimator using estimated mean squared error optimal

weights dominates the asymptotic risk of the base estimator uniformly over all degrees

of misspecification. Their results indicate a more robust increase in performance than

classical pretesting for overidentification conditions.

Papers that contain mean squared error optimal plug-in weights such as Hjort and

9



Claeskens (2003), Liu (2015) and Cheng et al. (2016) provide closed-form solutions for the

optimal weights in the case of two models only. Beyond that, there are no closed-form

solutions in general, i.e. solutions can only be obtained by numerical optimization. It

turns out that there is a one-to-one correspondence between their solution and the PCS

estimator in the case of two groups. We contribute to the literature by exploiting the

orthogonal structure of our data to achieve an interpretable closed-form solution for an

arbitrary number of groups. This allows for a comprehensive discussion of the comparative

statics with respect to the relevant population and sample information and has negligible

computational costs. We adopt some of the ideas from the local asymptotic framework

to be flexible with respect to the data generating process. In contrast to weak partial

correlations, we consider close and distant systems of location parameters in Section 4.3.

Additionally to the summability constraint, it is common in the model averaging lit-

erature (Hansen and Racine, 2012; Liu, 2015) to restrict the weights to lie in the unit

simplex. Li (1987) and Hansen and Racine (2012) argue that for admissibility of the av-

eraging estimator in the linear case all eigenvalues of the corresponding projection matrix

have to lie in the unit interval. Since the submodel projection matrices have eigenvalues

in [0, 1], positivity of the weights is sufficient for admissibility. Hansen and Racine (2012)

further show than in the case of nested linear regression models, positivity is a necessary

condition for admissibility under mean squared error loss.

One might ask, if there is a one-to-one correspondence between the PCS approach and

conventional model averaging methods why do the results on admissibility not apply here?

In particular, positive smoothing parameters should be obtained by admissibility under

MSE loss since the submodels are effectively linear. Consider the simple case of three

groups. If one chooses the nested sequence of models that yields predictions Ȳ1, Ȳ12 and Ȳ

where the subscript denotes the groups used for the average1. By rewriting the averaging

estimator for µ̂1 with model weights {(1− ω1 − ω2), ω1, ω2}, one obtains that the following

1Note that any other arbitrary combination could be chosen here as long as they are distinguishable by
one group per nesting step.
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must hold between the model averaging weights and the PCS smoothing parameters:

ω1

(
n2

n1 + n2

)

+ ω2

(
n2

n

)

= ω12,

ω2

(
n3

n

)

= ω13

with ωkj = λkj/(nk +
∑

l 6=k λkl). However, since there are only two weights overall in

the classical model averaging framework, it must also hold ω12 = ω32 and ω13 = ω23

which clearly adds additional restrictions to the optimization problem of the MSE. The

difference is that in the model averaging context, the general outcome for all observations

is considered while we focus on group specific predictions. The difference can also be

seen through the number of smoothing parameters that are J − 1 in the model averaging

and (J − 1)2 in the PCS framework. Thus, only within the more restrictive averaging

framework positivity is a sufficient and necessary condition for admissibility and hence

there is no contradiction between the results from the literature and the optimal solutions

for the PCS.

Naturally, under some data generating processes, the restrictions imposed by the more

constrained averaging method are actually helpful to stabilize the estimated weighting

parameters such that the resulting estimator might perform better in finite samples. We

discuss some of these issues in Section 3.2 and Section 5.

3. Optimal Aggregation

3.1. Mean Squared Error Optimal Smoothing

To derive MSE optimal smoothing parameters, we first rewrite (2.3) as:

µ̂P CS
k (Λk) = (1 −

∑

j 6=k

ωkj)Ȳk +
∑

j 6=k

ωkjµ̂j (3.1)

with ωkj = λkj/(nk +
∑

l 6=k λkl). The k-th group representation (3.1) will allow us to get

MSE optimal finite sample smoothing parameters as a function of the true group means

and the variance of the error terms. We choose the predictive mean squared error as

optimality criterion for the quality of the estimator. Note that due to the diagonal struc-

ture of the gram matrix and the base category dependence of the smoothing parameters,
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minimization of the predictive MSE is equivalent to minimization of the parameter MSE,

see also Appendix C.1.

Let E[Yi|Dij = 1] = µj, V [εi|Dij = 1] = σ2
j be finite moments and ∆µkj ≡ µk − µj .

From now on, assume that the first stage estimator is a linear projection which implies

zero covariances across the elements of µ̂P CS
k by construction. Under these assumptions,

one can derive a leading term of a first order approximation of the MSE using a first stage

estimator which is based on random sampling over the different cells2. The approximation

can be seen as the exact finite sample MSE in the case of fixed regressors, i.e. deterministic

selection into cells.

Proposition 3.1 Under the assumptions given above, the leading term of the MSE of

µ̂k(Λk) is then given by

MSE(µ̂P CS
k (Λk)) = bias(µ̂P CS

k )2 + V [µ̂P CS
k ]

=

(
∑

j 6=k

ωkj(∆µkj)

)2

+ (1 −
∑

j 6=k

ωkj)
2 σ2

k

npk
+

∑

j 6=k

ω2
kj

σ2
j

npj
. (3.2)

with pj = P (Dij = 1) > 0, j = 1, . . . , J .

Proof: The proof can be found in the Appendix C.2. �

Theorem 3.1 The MSE in (3.2) is minimized at

ω∗
kj =

σ2
kpj

/
σ2

j pk

akj
(3.3)

or equivalently

λ∗
kj =

σ2
knpj

/
σ2

j

akj − ∑

l 6=k
σ2

k
plakj

σ2
l

pkakl

for all k 6= j, λ∗
kk = 0 (3.4)

where akj =

(

1 +
σ2

k/npk

1+bkj

∑

l 6=k
1+bkl

σ2
l
/npl

+
∆µkj

1+bkj

∑

l 6=k
∆µkl

σ2
l
/npl

)

and bkj =
∑

m6=k
∆µkm∆µjm

σ2
m/npm

.

Proof: The proof can be found in the Appendix C.3. �

Note that the results in Theorem 3.1 are for any n ∈ N. The uniqueness of (3.3) for

finite n is established in A.2. For n → ∞, a unique solution exists only for a case of two

groups with unequal means. Otherwise, the (3.2) has weak minimizers. See A.2 for the

complete proof. Intuitively, one can see that once the variance stops contributing to the

2µ̂k = µk + 1

npk

∑n

i=1
Dikεi + Op(n−1).

12



MSE (i.e. n → ∞), there are more ways how to achieve the same values of a squared bias

for more than two groups and two groups with the same mean. The uniqueness of the

solution stems from a unique trade-off between the bias and the variance which appears

in finite samples or in the special case of two unequal means.

3.2. Comparative Statics in Small Samples

For a qualitative discussion, the small sample behavior of the smoothing parameters

will be analyzed under different DGPs. The following framework of 4 groups {1, 2, 3, 4} is

considered. Group 1 is chosen as a base category, i.e. the group whose mean is shrunken to

the other groups. Therefore, the following MSE optimal smoothing parameters (weights)3:

ω11, ω12, ω13 and ω14 will be analyzed as functions of (1) number of observations: n1, n2

and n3, (2) error variances: σ2
1 , σ2

2 and σ2
3 and (3) differences in the group means: ∆µ12,

∆µ23 and ∆µ13, since the smoothing parameters depend on the differences in means, not

on the levels themselves, see (3.3).

Table 3.1 contains the parameter values for all potential design combinations. Only

design (A) allows to disentangle the effects of individual inputs from the closed form

solution of ωkj directly. The solutions under the designs (B) and (C) are rather convoluted

and therefore the effects are illustrated graphically. For the sake of brevity, only the most

important results are mentioned. All the other graphs and discussions can be found in

Appendix C.4.

Table 3.1: Design Values

µ1 µ2 µ3 µ4 σ2
1 σ2

2 σ2
3 σ2

4 n1 n2 n3 n4

Equal Means Homosced. Small Design

(A) 0 0 0 0 1 1 1 1 5 5 5 5
Non-Equal Means Heterosced. Large Design

(B) 0 0 0 100 3 5 1.5 1 100 100 100 100
(C) 0 100 2 0

Ranges of Inputs in ω11(·), ω12(·), ω13(·), and ω14(·)
Means, µ Variances, σ2 No. of obs., n
[-400,400] [1,10] [2,100]

3All ω’s in the following text should have a star superscript which is left out unless necessary for read-
ability.
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Equal Means Design (A) In the design (A), we analyze the effect of number of observa-

tions under both types of error variances and the effect of variance under heteroscedasticity

in a small and large sample design.

The closed form solution for the MSE optimal smoothing parameters under equal means

boils down to

ωkj =
nj

∏

l 6=j σ2
l

∑4
m=1 nm

∏

l 6=m σ2
l

. (3.5)

Keeping the other parameters constant, the smoothing parameter ωkj increases in nj and

decreases in nm where m 6= j. In other words, the mean estimate of the group with more

observations is relatively more informative and therefore can stabilize the estimates of the

other groups with the same mean by getting a higher smoothing weight, see Figure 3.1.

The other smoothing weights then decrease correspondingly. The degree of the changes

in ωkj depends on the overall number of observations in the sample. In a small sample

design, additional observations play an important role for the shrinkage intensity and help

to smooth the mean of base category towards the largest group strongly, while the other

intensities become relatively less informative. In a large sample design, the additional

observations do not have much importance, since the whole system is already stabilized

towards large groups, however more observations still lead to an increase in shrinkage

intensity. The effects for n2 and n3 are qualitatively the same and can be found in Figure

C.1 in Appendix C.4.

Figure 3.1: Effect of n1 on ω11, ω12, ω13, ω14, Equal Means, Homoscedasticity
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When changing the number of observations under heteroscedasticity, the qualitative

results do not change. Quantitatively, target groups with larger variances have lower

smoothing levels, see Figure 3.2. Note that under equal means in a small sample design, the

number of observations is more important to get a higher smoothing weight in comparison

to a large design where the variance is the more important factor. Compare group 1 and

group 4 in Figure 3.2: Group 1 gets a high weight in a small sample design and group 4 gets

a very high smoothing weight in a large sample design. This implies that a small variance
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can be exploited well only when the number of observations in the group is reasonably

large.

Figure 3.2: Effect of n1 on ω11, ω12, ω13, ω14, Equal Means, Heteroscedasticity

n1

0 20 40 60 80 100

ω
1
1

0

0.2

0.4

0.6

0.8
Small design Large design

n1

0 20 40 60 80 100

ω
1
2

0

0.2

0.4

0.6

0.8
Small design Large design

n1

0 20 40 60 80 100

ω
1
3

0

0.2

0.4

0.6

0.8
Small design Large design

n1

0 20 40 60 80 100

ω
1
4

0

0.2

0.4

0.6

0.8
Small design Large design

Regarding the variance, the following results can be derived:

∂ωkj

∂σ2
k

=
nknj

∏

l 6={k,j} σ2
l

∏

l 6=k σ2
l

[
∑4

m=1 nm
∏

l 6=m σ2
l ]2

for j 6= k, (3.6)

∂ωkj

∂σ2
j

= −
nj

∏

l 6=j σ2
l

[
∑4

m=1 nm
∏

l 6=m σ2
l ]2




∑

m6=j

nm

∏

l 6={k,m}

σ2
l



 . (3.7)

Given the non-negativity of n and σ2, the ωkk decreases in its own variance σ2
k. Meanwhile,

the other smoothing parameters ωkj increase in σ2
k and decrease in σ2

j . Intuitively, groups

with lower variance can provide more precise mean estimates and therefore the smoothing

towards them is higher and the other weights decrease correspondingly, see Figure 3.3

and the plots in Figure C.3 in Appendix C.4. At high variance levels, smoothing weights

stay relatively stable as can be seen from (3.6) and (3.7) by taking limits with σ2
k → ∞

and σ2
j → ∞. This stability comes from the fact that the group with a large variance

is basically ignored at large levels of variance by getting an almost zero weight and the

information for the mean estimate is taken from more informative groups. The lower the

variance of the target group, the higher smoothing weight the group gets. Since group 4

has always the lowest variance, it has the largest smoothing weight. On Figure 3.3 one

can see that the results are independent of the sample size. That is because the number

in all groups are scaled by the same constant and by (3.5), the values coincide in this case.

Figure 3.3: Effect of σ2
1 on ω11, ω12, ω13, ω14, Equal Means, Heteroscedasticity
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Unequal Means Design (B) The mean design (B) represents a situation of three equal

means and one distant mean, in which the effect of number of observations and effect of

the mean differences were analyzed under both types of variances and the effect of variance

was added for the heteroscedasticity in small and large sample design.

Unless one of the means is shifted, group 1 is basically not smoothed towards group 4,

see Figure 3.4. It is not surprising that the large distance between µ4 and the other group

means decreases the smoothing towards the distant mean considerably. As group 4 is

ignored in the smoothing scheme, the changes in n1, n2, n3, σ2
1, σ2

2 and σ2
3 have an effect

mainly on the three equal groups in a similar manner as in the design (A). The only

difference is the higher level of the weights for these three groups, since group 4 is not

contributing. For a more detailed discussion of the effects of error variances and number

of observations consider Appendix C.4.

Figure 3.4: Effect of n1 on ω11, ω12, ω13, ω14, Unequal Means, Homoscedasticity and Effect
of σ2

1 on ω11, ω12, ω13, ω14, Unequal Means, Heteroscedasticity
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The analysis of mean differences reveals that under homoscedasticity the impact on the

smoothing parameters depends on: (1) which group mean changes, (2) the size of the mean

difference and (3) the presence of another close group mean, see Figure 3.5. Introducing

heteroscedasticity does not alter the results qualitatively, see Appendix C.4.

Figure 3.5: Effect of ∆µ12 and ∆µ13 on ω11, ω12, ω13, ω14, Unequal Means, Homoscedas-
ticity

∆µ13 = ∆µ12 (µ1 shifts)
-400 -200 0 200 400

ω
1
1

0

0.5

1
Small design Large design

∆µ13 = ∆µ12 (µ1 shifts)
-400 -200 0 200 400

ω
1
2

0

0.5

1
Small design Large design

∆µ13 = ∆µ12 (µ1 shifts)
-400 -200 0 200 400

ω
1
3

0

0.5

1
Small design Large design

∆µ13 = ∆µ12 (µ1 shifts)
-400 -200 0 200 400

ω
1
4

0

0.5

1
Small design Large design

16



The presence of another close mean affects the shapes of the curves. The main effects

are illustrated shifting µ1. The effects of shifting the µ2 and µ3 follow a similar logic and

are discussed in Appendix C.4. Shifting µ1 far away from all the other group means causes

the most weight to be put into its own smoothing weight ω11 as there is no other close

group mean to which it would be sensible to smooth. However, when µ1 ∈ [0, 100], the

ω11 is the lowest as there are other close means towards which it pays off to smooth, see

the peaks of ω12 and ω13 at 0 (i.e. µ1 = 0) and ω14 at 100 (i.e. µ1 = 100). Shifting µ1 from

0 towards negative values causes a milder decrease in smoothing weights towards group 2

and 3 in comparison to group 4, since there is no other close group mean for µ2 and µ3 to

compete with as µ4 is even further. Shifting µ1 towards positive values causes a steeper

decrease in smoothing weights towards groups 2 and 3 until µ1 reaches 100, since µ4 is a

relatively close group mean for µ1 and therefore ω14 increases as it competes with groups 2

and 3 for a smoothing weight. Beyond µ1 = 100, ω14 decreases as µ1 is getting further

from µ4. Notice that for large negative mean differences in ∆µ12 (when µ1 shifts) the

smoothing weights towards groups 2, 3 and 4 are close to zero or even in negative values,

because their group means are very far from µ1. For large positive differences, groups 2

and 3 are ignored by having a very low (even negative) smoothing weight, while group 4

still has a positive smoothing weight as µ4 is the closest mean to µ1.

Unequal Means Design (C) The mean design (C) represents a situation of three close

means (2 of them are equal to each other) and one distant mean and heteroscedasticity in

small and large samples.

In this design, group 2 gets almost zero or even slightly negative smoothing weight

because µ2 is too far from µ1 in comparison to the other means. An increase in n2 or σ2
2

has therefore almost no effect on the smoothing weights, see Figure 3.6. The reason is

that the smoothing weights decide to ignore group 2 because the ∆µ21 is so large that it

is simply not sensible to smooth no matter how big the group is or how small the variance

is. As a consequence, all the smoothing weights stay stable because any change in n2 or

σ2
2 is simply not taken into account. Since µ1, µ3 and µ4 are very close to each other,

group 1 is smoothed to them. The shrinkage intensity then depends on the number of

observations and the error variance. Leaving group 2 aside, the effects of n1, n3, σ2
1 and

σ2
3 are very similar to the effects in the design (B), since µ3 is close enough to µ1 and µ4,
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i.e. it is almost as being in the equal mean design situation, see Figures C.9 and C.10 in

Appendix C.4 for n1, n3, σ2
1 and σ2

3 .

Figure 3.6: Effect of n2 and σ2
2 on ω11, ω12, ω13, ω14, Unequal Means, Heteroscedasticity
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Regarding the effect of mean differences, the results depend again on: (1) which group

mean changes, (2) the size of the mean difference, (3) the presence of another close group

mean and (4) error variances, see Figure 3.7 for shifting µ2 and graphs in Figure C.11

in the Appendix C.4 for shifting µ1 and µ3. The effect of shifting µ1 are comparable to

shifting µ1 in design (B). The only change is that in design (C), group 2 represents now

the “distant group mean” and group 4 is now in the set of “equal group means”. The

same happens in the case of shifting µ3. Then we are directly back in design (B) in which

group 2 plays a role of a “distant group mean”.

Figure 3.7: Effect of ∆µ12 and ∆µ23 when µ2 shifts on ω11, ω12, ω13, ω14, Unequal Means,
Heteroscedasticity
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Since groups 1, 3 and 4 have very close means, shifting µ2 to more extreme values than

-2 or 4 makes µ2 to be a distant group mean, i.e. the smoothing towards group 2 is very

close to zero or even slightly negative out of the [-4,2] interval for ∆µ12. Within this

interval, we can see relatively big changes in the smoothing parameters. The logic behind

the behavior of the smoothing parameters is similar to design (B) only on a smaller scale,

since there is no large stabilizing mean. For a detailed description consider Appendix C.4.
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As mentioned above, in the case when all the means are very close to each other the

MSE optimal smoothing parameters are changing their values sharply in a narrow interval

covering the close distance between the means. Once, there is one distant mean, the

smoothing parameters stabilize around certain levels depending on the distances to the

other means and their error variances. This behavior could potentially cause problems for

any estimate of the smoothing parameter that is subject to small sample variation. Finite

samples deviations from the true parameters might yield smoothing parameters far away

from the optimal ones leading to unfavorable aggregation.

3.3. Large Sample Properties with Fixed and MSE Optimal Smoothing

To learn more about the large sample behavior of the MSE optimal smoothing param-

eters and the corresponding PCS estimator, one can establish the following propositions:

Proposition 3.2 If the optimal smoothing parameters according to (3.3) or (3.4) are
chosen, then

MSE(µ̂P CS
k (Λ∗

k)) = O(n−1) (3.8)

with Λ∗
k = (λ∗

k1, λ∗
k2, . . . , λ∗

kJ) ∈ R
J being the MSE optimal smoothing parameters.

Proof: The proof can be found in the Appendix C.5. �

Together with closed form of the theoretical MSE, one can establish a rate for the

theoretical optimal smoothing parameters. In fact, one obtains that λ∗
kj = O(n) and

ω∗
kj = O(1), see the conclusion in Appendix C.5. This means that asymptotically the

MSE optimal smoothing parameters do not vanish in general. Hence there is potential

aggregation even in the limit. This is qualitatively different from the smoothing kernel

approach where informative, i.e. conditionally independent, regressors are smoothed to a

global average with a smoothing parameter converging to its upper bound.

The result (3.8) implies that the MSE optimal PCS estimator is consistent. In fact,

one can establish two generic asymptotic normality results under fixed and MSE optimal

smoothing.

Theorem 3.2 If the smoothing parameters are fixed, i.e. Λk does not vary with sample

size, nk/n
p→ pk > 0 for all k and µ̂ is a linear (cell based) projection, then

√
n(µ̂P CS

k (Λk) − µk + Bk(Λk))
d→ N

(

0,
σ2

k

pk

)

(3.9)

with Bk(Λk) =
∑J

j ωkj∆µkj/
√

n = O(n−1/2).
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Proof: The proof can be found in the Appendix A.3. �

Hence, we see that µ̂P CS
k (Λk) is asymptotically normally distributed and we know an

analytic expression for the small sample bias under fixed smoothing parameters. Note

that similar to ridge regression with fixed tuning parameter, the asymptotic variance is

equivalent to the OLS solution under heteroskedasticity of unknown form4.

Theorem 3.3 If the optimal smoothing parameters according to (3.4) or (3.3) are chosen

and nk/n
p→ pk > 0 for all k and µ̂ is a linear (cell based) projection, then

√
n(µ̂P CS

k (Λ∗
k) − µk + Bk(Λ∗

k))
d→ N

(

0,
J∑

j=1

ω̄2
kj

σ2
j

pj

)

(3.10)

with Bk(Λ∗
k) =

∑J
j ω∗

kj∆µkj/
√

n = O(n−1/2) and ω̄kj = lim
n→∞

ω∗
kj.

Proof: The proof can be found in the Appendix A.3. �

By construction, this estimator is infeasible since it depends on true population quan-

tities.

4. Plug-In Estimation and Large Sample Properties

4.1. Plug-In Estimation

To get a feasible estimator, we propose plug-in estimation of the MSE optimal smoothing

parameters, i.e.

ω̂kj =
σ̂2

knj
/
σ̂2

j nk

âkj
for all k 6= j, (4.1)

or equivalently

λ̂kj =
σ̂2

knj
/
σ̂2

j

âkj − ∑

l 6=k
σ̂2

k
nlâkj

σ̂2
l

nkâkl

for all k 6= j, λ̂kk = 0 (4.2)

where âkj =

(

1 +
σ̂2

k
/nk

1+b̂kj

∑

l 6=k
1+b̂kl

σ̂2
l

/nl
+

ˆ∆µkj

1+b̂kj

∑

l 6=k
ˆ∆µkl

σ̂2
l
/nl

)

, b̂kj =
∑

m6=k

ˆ∆µkm
ˆ∆µjm

σ̂2
m/nm

, ˆ∆µkj =

µ̂k − µ̂j and σ̂2
k = 1

nk−1

∑n
i=1 Dik(Yi − µ̂k)2.

The idea is that a first step is sufficiently informative for the optimal weights such

that using a plug-in estimate will yield an estimated weighting scheme that improves on

the actual performance of the resulting estimator. This approach is very close in spirit

to other approaches based on MSE optimal averaging, focused information criteria and

corresponding averaging estimators such as Hjort and Claeskens (2003), Liu (2015) and

Cheng et al. (2016).

4In the case of orthogonal group regressors unknown heteroskedasticity is equivalent to grouped het-
eroskedasticity.
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4.2. Local Parameterization

In the following, we derive and discuss the fundamental properties of the PCS estimator

under estimated weights, i.e. we address their connection to the infeasible theoretically

MSE optimal smoothing estimator and the uniform behavior over a sufficient class of

data generating processes. In particular, we would like to distinguish between systems of

locations in which the differences are small for a given sample size (close systems) and

where differences are large (distant systems). Formally,

(close systems)
√

n(µk − µj) → δkj ∈ R ∀k, j or
√

n∆ → δ ∈ RJ2

(distant systems) ||√n(ιJµk − µ)|| → ∞ ∀k or ||√n∆|| → ∞

with ∆ = (µ1 − µ1, µ1 − µ2, . . . , µJ − µJ) and δ = (δ11, δ12, . . . , δJJ). Note that close

systems require that all scaled pairwise differences do not diverge, i.e. their differences

depend on the local parameters δkj while for the second specification it is sufficient if just

one group in the system is different from the rest in the limit.

To further motivate these classes of sequences and in particular the rate of the local

parameter differences, consider a system of J different locations that are estimated via

least squares. Assume that the asymptotic variances are known. Let Z be a random

variable which obeys a classical central limit theorem. A simple test for equality of two

means µk and µj can be rewritten as follows:

T =
√

n
µ̂k − µ̂j

√

σ2
k

pk
+

σ2
j

pj

=
√

n
µk − µj

√

σ2
k

pk
+

σ2
j

pj

+ Z + Op(n−1/2)







→ ∞, if systems are distant,

d→ N
(

δkj

/√

σ2
k

pk
+

σ2
j

pj
, 1

)

, if systems are close.

Therefore, depending on the local parameter δkj, one can obtain a small, moderate or

even large mean of the test statistics’ distribution. In the special case of δkj being exactly

equal to zero, the local parameterization does not longer affect the asymptotic distribution

and standard inference can be conducted using the standard normal distribution. It is

apparent that in any other case, choosing a model based on such a test might be misleading

if the local parameter is at a size that centers the distribution around the critical value

used for rejection of the null hypothesis. The PCS estimator can be considered as a smooth

variant of a classical pre-testing based estimator. Hence, we expect it to perform better
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exactly in these medium type of regions in which the test has both a rather high type-I

and type-II error. So far, this intuition only applies to a single pairwise difference.

For a more general statement, consider a Wald statistics for equality between all possible

pairs in the system. Again, we assume knowledge of the variances. Let Zkj be a random

variables which obey a classical central limit theorem for all k, j. Under abuse of notation,

the test statistics can be rewritten as follows:

W = n
∑

k

∑

j>k

(µ̂k − µ̂j)
2

σ2
k

pk
+

σ2
j

pj

=
∑

k

∑

j>k

(
n(µk − µj)

2

σ2
k

pk
+

σ2
j

pj

+ 2

√
n(µk − µj)
√

σ2
k

pk
+

σ2
j

pj

Zkj + (Zkj)2
)

+ Op(n−1/2)







→ ∞, if systems are distant,

d→ ∑

k

∑

j>k

(
δ2

kj

σ2
k

pk
+

σ2
j

pj

+ 2
δkj√

σ2
k

pk
+

σ2
j

pj

N (0, 1) + X 2
1

)

, if systems are close.

Hence under distant systems, the first term goes to infinity as the Wald statistics does

under the alternative of at least one single different mean. If the local parameters are

all zero, the statistics is classical X 2 with J(J − 1)/2 degrees of freedom. Under any

other close system however, the asymptotic distribution is a mixture between a chi square

and mean zero normal plus a strictly positive constant. Hence depending on the norm of

the pairwise differences, the test statistics can be very different from the classical critical

value. As in the case of two groups, one can expect that for moderate sizes of the local

parameters, a test will reject the equality of means even if they are identical in the limit.

Therefore, the local asymptotic framework allows for a better representation of the finite

sample behavior, in particular when test statistics are moderate.

The specification for close and distant systems is somewhat reminiscent of Cheng et al.

(2016) sequences for locally misspecified models up to order n−1/2 and severely misspeci-

fied models for the sequences of the second type. Misspecification in their context refers

to the validity or, in the intermediate case, to the speed of convergence of valid moment

conditions. In this paper, it simply describes setups with at least one location that is

either globally different from the rest or the intermediate case, in which it is approaching

the others at a slower than n−1/2 speed. Again, there is a one-to-one correspondence in

the case of two groups, i.e. the overidentified model is a moment condition yielding the

global average while the base model only consists of the group specific means. Hence, mis-

specification in this context refers to differences in mean locations along drifting sequences
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of data generating processes.

4.3. Estimated Optimal Smoothing Parameters

Before considering the asymptotic behavior of the PCS estimator under drifting se-

quences of parameters, we first establish some basic convergence results for the plug-in

smoothing parameters. Note again that the mean squared error minimization for µ̂P CS
k

depends only on ωkj, j = 1, . . . , J . For any n ∈ N, minimization of the sample equiv-

alent to (3.2) is a quadratic optimization problem with a positive definite hessian and

hence convex. It is useful to consider the following form of ω̂kj (see Appendix C.6 for the

derivation):

ω̂kj =

[
Z ′m̂1Z +

√
n∆′m̂2Z + n∆′m̂3∆ + ĉ0

Z ′M̂1Z +
√

n∆′M̂2Z + n∆′M̂3∆ + 1
+ 1

]−1 njσ̂
2
k

nkσ̂2
j

(4.3)

with Z being a vector of random variables which converge to a standard normal distribu-

tion and m̂1, m̂2, m̂3, M̂1, M̂2, M̂3, (ĉ0) being random matrices (scalar) that converge(s) in

probability, i.e. they depend only on ratio of cell observations and estimated as well as

true cell variances. Equation (4.3) allows us to study the behavior of the plug-in estimator

under different sequences of data generating processes.

1. Case: Locally close groups

Consider sequences
√

n∆ → δ where δ is a constant vector in RJ2

. Along these se-

quences, the differences between groups are sufficiently small for a given sample size. This

includes the degenerate case in which all locations are identical to the global mean. Since

Z is a vector of asymptotically standard normally distributed random variables, we obtain

that for an arbitrary matrix M :

n∆′M∆ → cM,δ ∈ R
√

n∆′MZ
d→ Nδ,M ∼ N (0, Σδ,M )

Z ′MZ
d→ XM

where Σδ,M is a variance covariance matrix depending on M and δ and XM is a weighted

sum of chi square random variables with positive and negative weights. Note that all

elements in the estimated smoothing parameter depend on the same random vector Z,

hence we have joint convergence in distribution. Using this together with an application
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of the portmanteau lemma and the continuous mapping theorem it follows that:

ω̂kj
d→

[ Xa + Nδ,b + ce,δ

XA + Nδ,B + cE,δ
+ 1

]−1 pjσ
2
k

pkσ2
j

≡ ω̃kj (4.4)

with ce,δ, cE,δ ∈ R. Therefore, the estimated smoothing parameters have a nonstandard

limiting distribution if all group means are locally close. Note that the limiting distribution

is a function of the local parameter δ through Nδ,b, Nδ,B as well as ce,δ and cE,δ. δ cannot be

estimated consistently due to the
√

n multiplier. From (4.4) it follows that the estimated

smoothing parameters ω̂kj are Op(1).

2. Case: Locally different groups

Consider distant sequences ||√n∆|| → ∞, i.e. at least two groups differ along the

sequences of data generating processes. It follows that:

n∆′M∆ = O(n)

∆′MZ
d→ N∆,M

Z ′MZ
d→ XM .

For the random weights, one obtains that:

ω̂kj =

[
Op(n−1) + Op(n−1/2) + ce,∆

Op(n−1) + Op(n−1/2) + cE,∆
+ 1

]−1 pjσ
2
k

pkσ2
j

= ω∗
kj + Op(n−1/2).

with ce,∆cE,∆ ∈ R being constants depending on the vector of pairwise differences ∆. The

plug-in smoothing parameters are no longer random in the limit as in the locally close

case. The plug-in approach estimates the optimal smoothing parameters consistently as

long as there are at least two arbitrary groups for which the root-n multiplied pairwise

difference goes to infinity. Interestingly, if one enriches a system under locally close groups

with just one additional locally different group, the behavior of all smoothing parameters

is affected accordingly, see also Section 4.3.2.

4.3.1. Consistency

Consider the case of locally close groups, Recall that the PCS is given by µ̂P CS
k (Λ̂k) =

∑J
j=1 ω̂kjµ̂j. Plugging in the first stage estimator yields

µ̂P CS
k (Λ̂k) − µk =

J∑

j=1

ω̂kj√
n

√
n∆µjk +

J∑

j=1

ω̂kj
σj√
npj

zj + Op(n−1).

The first term converges to zero in probability since ω̂kj/
√

n are Op(n−1/2) by the previous

results and the
√

n∆µjk’s just converge to finite constants δjk. Similarly, the second term
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consists of a sum of product of an Op(1) and an Op(n−1/2) term and hence converges to

zero in probability.

For the case of distinct groups, note that the estimation noise of the weights is asymp-

totically negligible, i.e. one can write the PCS as the optimal PCS plus an op(1) term.

The first part has the asymptotic risk of the PCS estimator under true optimal weights, or

the limiting expression (3.2). Together with Markov’s inequality this implies that under

at least one different group P (|µ̂k(Λ̂k) − µk| > ε) can by bounded in the limit by (3.2)

(divided by ε2) with weights being replaced by the theoretically optimal ones. Proposi-

tion 3.2 shows that the MSE under theoretically optimal weights is O(n−1). This implies

that the PCS estimator is consistent. Thus, consistency is achieved under all sequences of

DGPs.

4.3.2. Asymptotic Distribution of the Plug-In Estimator and Valid Confidence
Interval

One can use the results from above directly to get the distributional properties of the

PCS estimator using the estimated (plug-in) MSE optimal weights under drifting sequences

of data generating processes. Using the distributional results for the estimated smoothing

parameter, it follows in locally close systems that

√
n

(

µ̂P CS
k (Λ̂k) − µk

)
d→

J∑

j=1

ω̃kjδjk +
J∑

j=1

ω̃kj
σj√
p

j

Nj

with Nj being an independent standard normally distributed random variable for all j.

Note that since the smoothing parameters are Op(1) it follows that the first component is a

random function, i.e. it is Op(1). The limiting distribution of the stabilizing transformation

is nonstandard since it is a random function plus a weighted combination of standard

normally distributed random variables with random weights. Hence in the case of all

groups being locally close, the limiting behavior of the PCS is nonstandard. Additionally,

the asymptotic distribution depends on the unknown parameter δ through both δ directly

as well as the smoothing parameters as described in equation (4.4).

In the case of at least one different group, recall that the estimated smoothing parameters
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converge in probability to a constant at the root-n rate. Thus it follows that

√
n(µ̂P CS(Λ̂k) − µk −

J∑

j=1

ω∗
kj∆µjk) =

J∑

j=1

ω∗
kj

√
n(µ̂j − µj)

+
J∑

j=1

√
n(ω̂kj − ω∗

kj)∆µjk + Op(n−1/2)

where by the following argument, the ”bias” term is actually of order O(n−1/2). If one looks

at the proof of Proposition 3.2, one can see that since the optimal smoothing parameters

are O(1), it follows that the variance part is O(n−1). The squared bias part has to have

the same rate of convergence. Otherwise, there exists an n0 for which some smoothing

parameters would yield a smaller MSE than the optimal MSE smoothing parameters

for n > n0 which violates the fact that the smoothing parameters are the minimizers.

Since the estimated smoothing parameters are continuous functions of the same random

vector as the OLS estimator for the location, variance and cell probabilities, asymptotic

normality and joint convergence in distribution is guaranteed. Hence, one can apply the

Delta method to obtain asymptotically valid confidence bounds. In general, let Σ be the

joint asymptotic variance covariance matrix of the first stage estimated means, variances

and cell probabilities. And Let Gk = ∇(µ̂P CS(Λ̂k) − µk − ∑
ω∗

kj∆µj,k) be the gradient

with respect to first stage estimated means, variances and cell probabilities at the true

parameters. We have that

√
n(µ̂P CS(Λ̂k) − µk −

J∑

j=1

ω∗
kj∆µjk)

d→ N(0, G′ΣG). (4.5)

More details about a structure of the asymptotic variance under homoscedasticity can be

found in the Appendix D.

The result in (4.5) suggests the following bias-corrected confidence bound for µk

CIα,n(µk) =

[

µ̂P CS
k (Λ̂k) −

J∑

j=1

ω̂kj
ˆ∆µjk ± z1−α/2√

n

√

Ĝ′
kΣ̂Ĝk

]

,

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution and Ĝk and Σ̂ are

consistent estimates of the corresponding population quantities. It turns out that under

homoskedasticity the CI above is equivalent to the classical OLS confidence bounds. By the

distributional theory, it has asymptotically correct coverage rates. We do not recommend

to rely on this approximation in very small samples. For that purpose, there is large

literature on robust confidence intervals in small samples with and without distributional

assumptions. Since the main focus of this paper is point estimation risk, we do not pursue
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these ideas on inference any further.

Note that comparing the asymptotic variance of the limiting distributions of PCS under

true and estimated smoothing parameters, i.e. equations (4.5) and (3.10), it seems that

under distant systems the refinement that is due to optimal PCS is actually of order n−1/2

an hence present in the first order asymptotic distribution whilst for the plug-in PCS under

homoskedasticity it is of order n−1. Our simulations in Section 5 seem not to contradict

these results. For close systems, the same comparison based on the asymptotic normality

is not possible due to the nonstandard behavior of plug-in PCS. However, for the optimal

PCS the same intuition applies.

Figures 4.1 and 4.2 illustrate the asymptotic behavior using a simple Monte Carlo ex-

periment5. They contain a histogram of the estimated smoothing parameters as well as

the PCS estimator and a normal density for comparison. None of the theoretical results

can be rejected in these four group setups. Figure 4.1a depicts the distribution of an

estimated smoothing parameter under close groups and 4.1b contains a corresponding

cross-smoothing estimator for n = 25, 50, 100, and 400. One can see that the distribution

of the estimated smoothing parameter is nonstandard, even for large n. Similarly, the dis-

tribution of the PCS estimator is also not equal to the normal even for large n, i.e. there

is more mass concentrated around the true parameter and less in the tails.

Figure 4.2a shows the distribution of the estimated smoothing parameter under distant

groups. While the distribution is closer to the normal in this particular case, the general

conclusion about convergence in probability can be seen by the more and more concen-

trated distribution around one third which is the theoretically optimal solution. Figure

4.2b illustrates the distribution of the corresponding averaging estimator. In contrast to

the close group design, its distribution is very close to the normal, even for smaller sample

sizes. This confirms the theoretical finding that a single distant group in the system is

sufficient for asymptotic normality of the averaging estimator.

4.4. Effective Degrees of Freedom

Many estimators for µ have a corresponding linear map that maps Y to its predictions

Ŷ . In particular, these estimators determine a matrix Π such that ΠY = Ŷ . In the case

of the standard projection in the first stage one obtains that Π = D(D′D)−1D′. The

5The designs are homoskedastic with unit variance, standardized log-normal errors, µ = (0, 0, n−1/2, 0)
for the close design and µ = (0, 0, 1, 0) for the distant design. All simulations use 2000 replications.
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Figure 4.1: Distributional Plots under Close Groups

-1 -0.5 0 0.5 1

n=25

0

50

100

150

200

-1 -0.5 0 0.5 1

n=50

0

50

100

150

200

-1 -0.5 0 0.5 1

n=100

0

50

100

150

200

-1 -0.5 0 0.5 1

n=400

0

50

100

150

200

(a) Distributional Plot ω̂12
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Figure 4.2: Distributional Plots under Distant Groups
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complexity of the linear map or of the estimator can be described by the effective degrees

of freedom, i.e. the sum of the eigenvalues of the matrix which can be computed as the

trace over the linear operator Π. Consider the following examples that illustrate directly

why L2 penalization can be beneficial since it reduces the sum of the eigenvalues of the

linear map that is its trace. For the OLS one obtains that

tr(D(D′D)−1D′) = J.

Without loss of generality, assume now we have some prior belief on why regularization of

the group means towards zero should be beneficial. A simple ridge estimator with tuning
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parameter κ yields a corresponding projection matrix with effective degrees of freedom

tr(D(D′D + κIJ)−1D′) =
J∑

j=1

nj

nj + κ
< J for all κ > 0.

The ridge estimator basically pushes the eigenvalues towards zero and for a nonorthogonal

design reduces the impact of large covariances between different regressors. In the case of

orthogonalized groups it limits the impact of each category specific observation by moving

it towards zero. In a generalized ridge setup, other shrinkage targets such as the global

average are feasible as well, i.e. the zero target does not affect the general conclusion on the

complexity. Regularization lowers the effective degrees of freedom and therefore potentially

reduces estimation noise. This illustrates why the effective degrees of freedom are often

used as description of the dimensionality of the parameter space, i.e. the complexity of

the statistical model.

The complexity of both, optimal as well as estimated PCS is non-standard, i.e. we obtain

the following results for the effective degrees of freedom:

Theorem 4.1 Let µ̂ be a (cell-based) projection and let Π(Λ∗) and Π(Λ̂) denote the lin-
ear operator based on the MSE optimal smoothing parameters and the plug-in estimator
respectively. If #{(k, j) : µk 6= µj, k = 1, . . . , J − 1, j > k} > 0, then

tr(Π(Λ∗)) = 2 + O(n−1) and tr(Π(Λ̂)) = 2 + Op(n−1/2) (4.6)

else
tr(Π(Λ∗)) = 1 + O(n−1) and tr(Π(Λ̂)) = 1 + Op(n−1/2). (4.7)

Proof: The proof can be found in Appendix 4. �

In other words, if there are at least two different groups, the sum of the eigenvalues of the

linear operator will converge to two as the sample size increases. Trivially, if there is only

one location, i.e. the global mean, it converges to one. Hence independently of the total

number of different groups under the true DGP, the effective degrees of freedom obtained

by the PCS estimator will always converge to the same fixed number two or one. This

seems to imply that, for large samples, any system described by countable many different

locations should optimally (in a MSE sense) be modelled by two effective parameters only.

We are not aware of any comparable result in the literature.

For illustrative purpose, consider Figure 4.3. It depicts the effective the dregrees of

freedom over a grid of 1000 Monte Carlo repetitions for a variety of estimators in the

case of four groups. For more details on the DGP consider Section 5. By construction,

the highest complexity is obtained by the frequency approach (OLS). Since it estimates
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Figure 4.3: Effective Degrees of Freedom, Distant Systems
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exactly one parameter per cell, its trace is at a constant four over all replications. The

PCS methods are slightly below two effective degrees of freedom. Note that the theoretical

optimal PCS as well as the plug-in approach have similar overall complexities that are

very stable over all replications. However, this does not necessarily translate into equal

performance that is subject of investigation in the subsequent section. The cross validated

PCS has a somewhat stronger variation in the effective degrees of freedom and seems to

be smoothing more than the other PCS methods as well. Kernel smoothing (Ouyang

et al., 2009) has by far the most volatile complexity over all replications and, except for

the frequency method, the largest average complexity being above three in the majority

of cases.

5. Monte Carlo Study

The following simulations are meant to give further insights into the small sample be-

havior of the pairwise cross smoothing estimator and potential alternatives over a large

range of data generating processes. In particular, the performance gains for both distant

and close systems under a large range of local parameter values will be analyzed. The

following estimators are considered:
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1. Ordinary least squares/frequency method (OLS),

2. pairwise cross smoothing with theoretically optimal smoothing (PCSopt),

3. pairwise cross smoothing with plugin smoothing parameters (PCSest),

4. pairwise cross smoothing with leave-one-out cross-validated smoothing parameters

(PCSCV ),

5. a pretesting estimator based on Mallow’s Cp
6,

6. nonparametric smoothing kernels with cross-validated bandwidths7.

We consider a setup with a moderate number of groups, i.e. J = 4 that are selected with

equal likelihood. We consider the following two baseline scenarios µclose = (0, 0, 0, δ/
√

n)′

and µdistant = (−1, 0, 0, δ)′ where δ varies over a positive grid starting at 0. Note that in the

close system, the limiting parameter for the fourth group is identical to zero independently

of the local parameter value. For δ = 0, we are in the case of identical means, i.e. a global

model would be the most efficient one. For the distant system, we let δ vary over the same

grid, however it is already a distant at δ = 0. There is no convergence to the same mean

but there are potential gains of aggregation due to mean two and three being identical

over the whole grid. For the error, we assume a homoskedastic, standardized log-normal

distribution8.

Relative predictive mean squared errors with OLS as reference for n = 16, 32 and 48 are

reported in Figure 5.1. Larger sample sizes are not relevant in this moderate group setup

since all estimators except for the infeasible PCS with theoretically optimal weights are

virtually identical to OLS or slightly worse (Mallow’s) depending on the data generating

process.

First, note that the pairwise cross smoothing with theoretically optimal weights domi-

nates all approaches over all DGPs by a substantial which is in line with the theoretical

results. It even shows improvement in distant systems for larger sample when all empirical

approaches are as good as OLS or worse. Note that for all cases, all estimators get closer

6We consider all possible submodels and choose the one with the lowest criterion value. Note that in
our setup, the criterion by Mallows (1973) does selection identical to the Akaike (1970) information
criterion.

7Ouyang et al. (2009).
8All results are robust with respect to the error distribution, i.e. changing symmetry and heteroskedas-

ticity. Results for the normal distribution and heteroskedasticity do not differ qualitatively and are
available on request.
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to the OLS as the sample size increases.

Figure 5.1: Relative Predictive Mean Squared Errors

||δ||
0.825

1

1.075
n=16, close                                                         

||δ||
0.825

1

1.075
n=16, distant                                                     

||δ||
0.9

1

1.05
n=32, close                                                         

||δ||
0.9

1

1.05
n=32, distant                                                     

||δ||
0.9

1

1.05
n=48, close                                                         

||δ||
0.9

1

1.05
n=48, distant                                                     

OLS PCS
opt

PCS
est Mallows Kernel PCS

CV

For the feasible PCS, improvements are largest in small samples and range from 0% to

13% with most values being between 2% to 6%. The more distant a system gets or the

larger the local parameters become, the closer the PCS is to the OLS. It is noteworthy that

the PCS is virtually never worse than OLS, i.e. it shows uniformly dominant behavior in

terms of the predictive risk. However, it is not always beating all the competitors, i.e. for

some DGPs, the kernel method and the pretesting estimator are superior. Note that e.g. for

close systems at δ = 0, the restrictions implied by the nonparametric kernel method (see

Section 2.2) are actually not conflicting with the theoretically optimal aggregation hence

it has some advantage due to the smaller dimensionality of the smoothing parameter

vector. This translates to a better performance for that particular DGPs up to moderate

deviations from it. For close systems with large local parameters, the estimator based
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on Mallow’s criterion sometimes beats the other methods by a small margin. However,

both of these alternative methods and in particular the Mallow’s show poor behavior for

distant systems, i.e. kernel shows worse performance than the OLS for large sample sizes

and Mallow’s shows worse performance over all DGPs considered while the PCS has small

improvements for small sample sizes and is virtually identical for larger samples. Therefore

PCS seems to be a robust refinement over OLS which is more significant for smaller group

sizes and closer systems.

However, there is still room for improvement since the large gains that are shown by

the theoretically optimal PCS cannot be reached in most DGPs.

6. Application I: A Fine is a Price

Gneezy and Rustichini (2000a) investigate the prediction of the deterrence hypothesis,

i.e. that ceteris paribus introducing fines will decrease the likelihood of the associated

action or behavior. They ran a randomized control treatment study at ten day-care

centers for young children in Haifa, Israel over a period of twenty weeks. It can be seen

as a small panel data set with ten observations and twenty time periods. In period five,

a fine was introduced for parents that came too late to pick up their children in six of

these centers. They find that the fine increases the number of delayed parents and even

after removal of the fine, the rate stayed at the same, higher level. The results have

also been quoted in the literature on intrinsic and extrinsic motivation and crowding-out

effects (Gneezy et al., 2011). Most of their major findings are summarized in a plot similar

to the first subplot in Figure 6.1 which has been reused by, e.g. Gneezy and Rustichini

(2000b). In the variant used here, it depicts the share of late arrivals in both, treatment

and control group over the duration of twenty weeks. Note that each point is an average

over the subgroups of six and four data points in treatment and control group respectively

which are basically predictions of a panel data model9. In statistical terms, it presents

estimates for the expected share of late arrivals conditional on time period and treatment

status. Our method is well-suited for this application since by construction, there are small

orthogonal groups that are determined by time and treatment status. We stabilize the

estimates of the conditional means by using the plug-in PCS within treatment groups and

9Note that if only time trend dummy variables are used, a pooled OLS, fixed effect and random effect
models coincide.
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time-periods closely related to Gneezy and Rustichini (2000a), Table 2. Hence we smooth

the averages within weeks 1-4, 5-8, 9-16 and 17-20 for both groups using the orignal means

as first stage.

Figure 6.1: Mean Share of Late Arrivals, OLS and PCS estimates
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Figure 6.1 depicts OLS (Gneezy and Rustichini, 2000a) and PCS estimates for the

conditional mean over time and treatment status. The major findings of the original

visualization are confirmed. In fact, our estimates reveal the pattern much clearer since

the PCS suggests a more stable share of the control group and a less fluctuating mean of

the treatment group before and after the time of treatment.

7. Application II: Minimum Wage Study

The Card and Krueger (1994) paper is a case study evaluating the effects of minimum

wage increase on the employment of low-wage workers. They collected data from fast

food chains in New Jersey and Pennsylvania in a telephone survey before and after a

minimum wage increase in New Jersey from 4.25$ to 5.05$ in 1992. In reaction to a
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critique from Neumark and Wascher (2000) on the quality of their data, they re-estimated

the models using an administrative employment data in Card and Krueger (2000). The

results confirmed the conclusion from their previous paper that minimum wage increase

in New Jersey has no significant effect on the total employment in New Jersey’s fast-food

industry or possibly even has a positive effect contradicting the findings of Neumark and

Wascher (2000). No adverse employment effects are also confirmed by a meta-study of

Doucouliagos and Stanley (2009).

The setup is well-suited for our method since there are four orthogonal groups by con-

struction that are determined by state and time. We applied the PCS estimator in the

difference-in-differences (DiD) model on the original Card and Krueger (1994) data and for

each fast food chain separately to account for potential different time trends and hetero-

geneous effects on employment across chains. As mentioned in Card and Krueger (1994),

KFC differs in its size, opening hours and type of food from the other chains and therefore

might be a source of heterogeneity. The full-time equivalent employment is measured as

the number of full-time workers plus 0.5 times the part-time workers.

The OLS (Card and Krueger, 1994) and PCS results for pooled data and for each chain

separately are in Tables 7.1 - 7.5. Table E.1 in the Appendix E includes means, variances

and number of observations for all subgroups. The results of the KFC chain in Table

7.3 showed a different pattern from the other stores, as KFC was the only chain which

confirmed the theory of increasing the labor demand in a less labor costly environment.

Other chains in the data set did not follow this pattern. All the estimated effects of the

minimum wage on the employment are closer to 0 for the PCS in comparison to the OLS.

In the case of pooled data, Burger King, KFC and Roys, the difference between OLS

and PCS are not so big. However in case of Wendys, the chain with smallest number of

observations in the data set, the difference is more pronounced, showing the stabilizing

property of PCS in such scenarios.
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Table 7.1: Mean Estimates - All Chains

OLS PCS
NJ (t) PEN (c) NJ (t) PEN (c)

B 20.44 23.33 20.53 22.87
A 21.03 21.17 21.01 21.12

DiD 2.75 2.22

The table contains the mean estimates of the full-time employment. B = before the minimum wage
increase, A = after the minimum wage increase, NJ = New Jersey, PEN = Pennsylvania, t = treated, c =
control. DiD formula: (µ̂NJ,A − µ̂NJ,B) − (µ̂P EN,A − µ̂P EN,B).

Table 7.2: Mean Estimates - Burger King

OLS PCS
NJ (t) PEN (c) NJ (t) PEN (c)

B 22.16 29.42 22.25 29.06
A 23.63 26.22 23.63 26.06

DiD 4.67 4.38

The table contains the mean estimates of the full-time employment. B = before the minimum wage
increase, A = after the minimum wage increase, NJ = New Jersey, PEN = Pennsylvania, t = treated, c =
control. DiD formula: (µ̂NJ,A − µ̂NJ,B) − (µ̂P EN,A − µ̂P EN,B).

Table 7.3: Mean Estimates - KFC

OLS PCS
NJ (t) PEN (c) NJ (t) PEN (c)

B 12.79 10.71 12.76 10.92
A 13.73 13.00 13.60 12.96

DiD -1.35 -1.20

The table contains the mean estimates of the full-time employment. B = before the minimum wage
increase, A = after the minimum wage increase, NJ = New Jersey, PEN = Pennsylvania, t = treated, c =
control. DiD formula: (µ̂NJ,A − µ̂NJ,B) − (µ̂P EN,A − µ̂P EN,B).

Table 7.4: Mean Estimates - Roys

OLS PCS
NJ (t) PEN (c) NJ (t) PEN (c)

B 23.14 19.74 22.99 19.80
A 21.73 15.81 21.68 16.12

DiD 2.52 2.37

The table contains the mean estimates of the full-time employment. B = before the minimum wage
increase, A = after the minimum wage increase, NJ = New Jersey, PEN = Pennsylvania, t = treated, c =
control. DiD formula: (µ̂NJ,A − µ̂NJ,B) − (µ̂P EN,A − µ̂P EN,B).
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Table 7.5: Mean Estimates - Wendys

OLS PCS
NJ (t) PEN (c) NJ (t) PEN (c)

B 22.08 24.12 22.43 23.46
A 23.40 22.10 23.10 22.44

DiD 3.35 1.69

The table contains the mean estimates of the full-time employment. B = before the minimum wage
increase, A = after the minimum wage increase, NJ = New Jersey, PEN = Pennsylvania, t = treated, c =
control. DiD formula: (µ̂NJ,A − µ̂NJ,B) − (µ̂P EN,A − µ̂P EN,B).

8. Concluding Remarks

Pairwise cross smoothing provides a unifying framework to analyze and compare smooth-

ing methods for exclusively categorical data that nests different approaches from the non-

parametric smoothing kernel and model averaging literature. It penalizes L2 differences

between estimation targets and a first stage estimator or fixed value that serves as a ref-

erence target. The estimator can be easily implemented with standard software packages

using the closed form solutions derived in this paper. For future research, refined inference

of the estimated PCS under close systems should be tackled. In addition, relaxing the as-

sumption of a fixed number of groups, i.e. allowing for J to grow with the sample size

with some closeness restrictions that are related to sparsity in the sense of few different

locations should be considered. The Monte Carlo simulations are also highly suggestive of

a uniform dominance property over the ordinary least squares in the sense of Cheng et al.

(2016).
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9. Mixed Data

The original framework is rather restrictive beyond applications that form orthogonal

groups by construction. Imagine k-dimensional continuous regressors X and an additive

linear model:

Y = Xβ + Dµ + ε

with E[εi|Xi, Di] = 0. We propose to use the PCS in a two step procedure to estimate

both the location parameters as well as the parameter on the continuous regressor. The

idea is similar to ?, i.e. works by partialling out the expectations conditional on the set

of orthogonal dummies. Note that

Y − E[Y |D] = (X − E[X|D])′β + ε.

Replacing the conditional expectations by PCS estimators that only rely on the orthogonal

data yields the following estimator for β:

β̂P CS = [(X − Ê[X|D])′(X − Ê[X|D])]−1(X − Ê[X|D])′(Y − Ê[Y |D])

with

Ê[X|D] = D(D′D + U ′WyU)−1(I + U ′WyV (D′D)−1)D′Y

Ê[Y |D] = D(D′D + U ′WxU)−1(I + U ′WxV (D′D)−1)D′X

and Wx, Wy being the diagonal matrix of PCS smoothing parameters for the regression

model of X on D and Y on D respectively. To obtain an estimate for µ one can substract

the continuous component and use a projection, i.e.

µ̂P CS,a = (D′D)−1D′(Y − Xβ̂P CS)

One can show that both estimators are
√

n-consistent. The two-stage approach is compu-

tationally very efficient and does not require numerical optimization since the closed form

of the PCS can be used directly in the first stage. Note however, that optimality is now
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achieved with respect to the risk of the first stage. A better approach would be to use the

residuals Y ∗ ≡ (Y − Xβ̂P CS) in another PCS step, i.e. estimate the model

Y ∗ = Dµ + u

which yields

µ̂P CS,b = (D′D + U ′Wy∗U)−1(I + U ′Wy∗V (D′D)−1)D′Y

where u = X(β − β̂) + ε. Simulations reveal that this positively affects the parameter risk

for both the continuous and the discrete part. In fact, the improvements on the continuous

part are non negligible. There are huge gains for the parameter risk of the discrete part

which seems to dominate the simple OLS, in particular in the presence of small and/or

very volatile groups. The gains are more pronouneced if D and X are correlated. Detailed

results are available on request.

42



A. Matrix Notation Appendix

A.1. General Notation

In a matrix notation, the model looks as follows:

Y = Dµ + ε

with Y = (Y1, . . . , Yn)′, D is a n × J matrix collecting D′
i vectors in i-th rows, µ =

(µ1, . . . , µJ)′, ε = (ε1, . . . , εn) and E[ε|D] = 0. The optimization problem for the PCS can

be written as

µ̂P CS(W ) = arg min
µ

(Y − Dµ)′(Y − Dµ) + (Uµ − V µ̂)′W (Uµ − V µ̂) (A.1)

with µ̂ = (µ̂1, . . . , µ̂J), U = (IJ ⊗ ιJ), V = (ιJ ⊗ IJ) and W = diag(Λ) with Λ =

(λ11, λ12, . . . , λ1J , λ21, . . . , λJJ) and λjj = 0 for all j ∈ {1, . . . , J}.

Under D′D + UW U being a positive definite matrix, the global minimizer of (A.1),

i.e. the PCS estimator as a function of the smoothing parameters, is

µ̂P CS(W ) = (D′D + U ′W U)−1(D′Y + U ′W V µ̂). (A.2)

Regarding µ̂, a possible choice is the linear (cell based) projection of Y on D, i.e.

µ̂ = (D′D)−1D′Y = Ȳ , where Ȳ is a vector of cell means. This is also referred to as

“frequency approach” in the literature. Under this choice, the pairwise cross smoothing

estimator simplifies to

µ̂P CS(W ) = (D′D + U ′W U)−1(I + U ′W V (D′D)−1)D′Y. (A.3)

The estimator is linear in Y . However, note that the “projection” matrix D(D′D +

Q′W Q)−1(I + Q′W P (D′D)−1)D′ that maps from outcome to prediction is neither sym-

metric nor idempotent.
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A.2. Uniqueness of the MSE Optimal Regularization Parameters

The problem of minimizing (3.2) can be rewritten in a matrix form as follows:

min
Ωk

MSE = min
Ωk

Ω′
kHkΩk + 2γk(1 − ι′Ωk), (A.4)

where Ωk = (ωk1, ωk2, . . . , ωkJ)′,

Hk = ∆k∆′
k + V,

∆k = (µk − µ1, µk − µ2, . . . , µk − µJ)′,

V = diag(σ2
j /pjn), j ∈ {1, . . . , J},

γk . . . Lagrange multiplier,

ι = (1, . . . , 1)′.

The solution of setting the FOC to zero gives optimal values:

γ∗
k = [ι′(H ′

kHk)−1H ′
kι]−1 (A.5)

Ω∗
k = [ι′(H ′

kHk)−1H ′
kι]−1(H ′

kHk)−1H ′
kι (A.6)

To investigate if the Ω∗
k is a unique global minimizer of (3.2), we first rewrite the opti-

mization problem (3.2) into a form used in null-space methods to solve equality quadratic

problems (see Gould (1985)). The idea behind the null-space methods is to reduce the

dimensionality of the optimization problem by exploiting the constraints and obtain the

original solution as a combination of the optimal solution from the reduced space and a

corresponding vector stemming from the constraint. By choosing a matrix Z such that

ι′Z = 0 and rank(ι
... Z) = J , solving the following null-space method problem yields the

same solution as solving (3.2):

min
ΩZ,k∈RJ−1

Ω′
Z,kZ ′HkZΩZ,k + Ω′

Z,kZ ′HkιΩι,k (A.7)

where ι′ιΩι,k = 1 (A.8)

and then Ω∗
k = ZΩ∗

Z,k + ιΩι,k and γ∗
k = (ι′ι)−1ι′HkΩ∗

k. Note that (A.8) just determines

the value of Ωι,k and (A.7) is in fact an unconstrained problem.
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Case 1 - Finite n: The advantage of rewriting the problem into the form used in null-

space methods is the possibility to deduce whether the problem has a unique solution

(Gould, 1985). For completeness, theorem quoted below from (Gould, 1985, Theorem

1.1(i)) enables to test for the uniqueness of the solution.

Theorem A.1 Suppose (A.7) is as given with ι′ of full row rank and Z is constructed

so that ι′Z = 0 and rank(ι
... Z) = J . Then (A.7) has a strong minimizer if and only if

Z ′HkZ is positive definite.

It is easy to see that ι′ has a full row rank = 1. We choose

Z =
















−1 0 · · · 0

1 −1
. . .

...

0 1
. . . 0

...
. . .

. . . −1

0 · · · 0 1
















such that ι′Z = 0 and rank(ι
... Z) = J . Note that Z has a full column rank = J − 1. This

implies that if Hk is positive definite, then Z ′HkZ is also positive definite.

We know that Hk = ∆k∆′
k + V . Since V is a diagonal matrix with positive elements

for a finite n, V is a positive definite matrix. Since ∆k∆′
k gives a matrix which is rank

deficient, it can happen that for a non-zero vector x we get that x′∆k∆′
kx = 0 but it

cannot be negative as illustrated below:

x′∆k∆′
kx = (∆′

kx)′∆′
kx = a2 ≥ 0 for all x 6= 0.

Therefore, ∆k∆′
k is a positive semi-definite matrix. A sum of a positive definite and

positive semi-definite matrix gives a positive definite matrix:

x′Hkx = x′(∆k∆′
k + V )x = x′∆k∆′

kx
︸ ︷︷ ︸

≥0

+ x′V x
︸ ︷︷ ︸

>0

> 0 for all x 6= 0.

This means that Hk is a positive definite matrix and that Ω∗
k is a unique minimizer of (3.2).
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Case 2: n → ∞: For n → ∞, V converges to a zero matrix and Z ′HkZ converges then

to Z ′∆k∆′
kZ.

Subcase - J = 2, non-equal means (µ1 6= µ2): One can derive that Z ′∆k∆′
kZ =

(∆µk1 − ∆µk2)2 = (µ2 − µ1)2 > 0, i.e. Z ′∆k∆′
kZ is a positive definite matrix. And

according to Theorem A.1, (3.2) then has a unique minimizer Ω∗
k.

Subcase - J = 2, equal means (µ1 = µ2): One can derive that Z ′∆k∆′
kZ = (∆µk1 −

∆µk2)2 = (µ2 − µ1)2 = 0, i.e. Z ′∆k∆′
kZ is a positive semi-definite and singular matrix.

The following theorem, quoted from (Gould, 1985, Theorem 1.1(ii)) states conditions for

the existence of weak minimizers for the problem (3.2).

Theorem A.2 Suppose (A.7) is as given with ι′ of full row rank and Z is constructed so

that ι′Z = 0 and rank(ι
... Z) = J . Then (A.7) has weak minimizers if Z ′HkZ is positive

semi-definite with Z ′HkZ singular and Z ′HkZΩZ,k = −Z ′HkιΩι,k compatible.

It is easy to see that ι′ has a full row rank = 1 and Z is chosen as in the case of finite n.

We showed that Z ′HkZ is a positive semi-definite and singular matrix in the limit. Now

we check that the last equality in the Theorem A.2 holds.

0 · ΩZ,k = −
(

1 −1

)






∆µ2
k1 ∆µk1∆µk2

∆µk1∆µk2 ∆µ2
k2











1

1




 Ωι,k

0 = −
(

∆µ2
k1 − ∆µk1∆µk2 ∆µk1∆µk2 − ∆µ2

k2

)






1

1




 Ωι,k

0 = −(∆µ2
k1 − ∆µ2

k2)Ωι,k

0 = −(∆µk1 + ∆µk2) (∆µk1 − ∆µk2)
︸ ︷︷ ︸

=0

Ωι,k

0 = 0

In this case, there exist weak minimizers Ω∗
k of (3.2).

Subcase - J > 2: As for finite n, ∆k∆′
k is a positive semi-definite matrix. Since Z has

a full column rank, this implies that Z ′HkZ is also positive semi-definite.
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We also know that rank(∆k∆′
k) = 1 because each row of ∆k∆′

k is just a scaled ∆′
k.

Further, we use rank inequalities to determine rank(Z ′∆k∆′
kZ).

Note that

rank(Z ′∆k∆′
k) ≤ min(rank(Z ′), rank(∆k∆′

k))

rank(Z ′∆k∆′
k) ≤ min(J − 1, 1)

rank(Z ′∆k∆′
k) ≤ 1 ⇒ rank(Z ′∆k∆′

k) = 1

Then,

rank(Z ′∆k∆′
kZ) ≤ min(rank(Z ′∆k∆′

k), rank(Z))

rank(Z ′∆k∆′
kZ) ≤ min(1, J − 1)

rank(Z ′∆k∆′
kZ) ≤ 1 ⇒ rank(Z ′∆k∆′

kZ) = 1 < J − 1

This means that matrix Z ′∆k∆′
kZ is rank deficient and singular.

To use the Theorem A.2, we still need to check if Z ′∆k∆′
kZ is compatible with

Z ′HkZΩZ,k = −Z ′HkιΩι,k,

i.e. if any solutions Ω∗
Z,k exist where Hk = ∆k∆′

k. First we solve for Ωι,k based on (A.8),

i.e. Ωι,k = 1/J . Now, the question is if the following system of linear equations is solvable:

Z ′HkZΩZ,k = −Z ′Hkι
1

J











(µ2 − µ1)2 (µ2 − µ1)(µ3 − µ2) . . . (µ2 − µ1)(µJ − µJ−1)

(µ3 − µ2)(µ2 − µ1) (µ3 − µ2)2 . . . (µ3 − µ2)(µJ − µJ−1)
...

. . .
...

(µJ − µJ−1)(µ2 − µ1) (µJ − µJ−1)(µ3 − µ2) . . . (µJ − µJ−1)2












ΩZ,k =












−(1/J)(µ2 − µ1)
∑J

j=1 ∆µkj

−(1/J)(µ3 − µ2)
∑J

j=1 ∆µkj

...

−(1/J)(µJ − µJ−1)
∑J

j=1 ∆µkj
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As we know rank(Z ′HkZ) = 1 < J − 1. In that case, the system above will have

infinitely many solutions if and only if the rank of the coefficient matrix Z ′HkZ is equal

to the rank of the augmented matrix [Z ′HkZ | −Z ′Hkι(1/J)]. Now we need to check if

rank([Z ′HkZ | −Z ′Hkι 1
J ]) = 1.

[Z ′HkZ | −Z ′Hkι(1/J)] =

=












(µ2 − µ1)2 . . . (µ2 − µ1)(µJ − µJ−1) −(1/J)(µ2 − µ1)
∑J

j=1 ∆µkj

(µ3 − µ2)(µ2 − µ1) . . . (µ3 − µ2)(µJ − µJ−1) −(1/J)(µ3 − µ2)
∑J

j=1 ∆µkj

...
...

...

(µJ − µJ−1)(µ2 − µ1) . . . (µJ − µJ−1)2 −(1/J)(µJ − µJ−1)
∑J

j=1 ∆µkj












Multiplying each column q by − (1/J)∆µkq

µq+1−µq
for q ∈ {1, . . . , k − 1} and each column r

by − (1/J)∆µk,r+1

µr+1−µr
for r ∈ {k, . . . , J − 1} in [Z ′HkZ | −Z ′Hkι(1/J)], we get the following

matrix:












−(1/J)∆µk1(µ2 − µ1) . . . −(1/J)∆µkJ (µ2 − µ1) −(1/J)(µ2 − µ1)
∑J

j=1 ∆µkj

−(1/J)∆µk1(µ3 − µ2) . . . −(1/J)∆µkJ (µ3 − µ2) −(1/J)(µ3 − µ2)
∑J

j=1 ∆µkj

...
...

...

−(1/J)∆µk1(µJ − µJ−1) . . . −(1/J)∆µkJ(µJ − µJ−1) −(1/J)(µJ − µJ−1)
∑J

j=1 ∆µkj












Since ∆µkk = 0, summing the first J − 1 columns will yield the last column, i.e.

rank([Z ′HkZ | −Z ′Hkι(1/J)]) = 1 because −Z ′Hkι(1/J) is a linear combination of

columns in Z ′HkZ. This implies then that Z ′HkZ is compatible with (A.8) and weak

minimizers Ω∗
k of (3.2) exist.

A.3. Large Sample Properties

To learn more about the large sample behavior of the optimal smoothing parameters

and the corresponding PCS estimator, one can establish the following proposition:

Proposition A.1 If the optimal smoothing parameters according to (3.3) or (3.4) are

chosen, then

MSE(µ̂P CS(W ∗)) = O(n−1) (A.9)
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with W ∗ = diag(Λ∗) and Λ∗ = (λ∗
11, λ∗

12, . . . , λ∗
JJ) ∈ R

J2

being the MSE optimal smoothing

parameters.

Together with closed form of the theoretical MSE, one can establish a rate for the

theoretical optimal smoothing parameters. In fact, one obtains that Λ∗ = O(n) and

Ω∗ = (Ω∗
1

′, . . . , Ω∗
J

′)′ = O(1). This is qualitatively different from the smoothing kernel

approach where informative, i.e. conditionally independent, regressors are smoothed to a

global average with a smoothing parameter converging to its upper bound. This means

that asymptotically the MSE optimal smoothing parameters do not vanish in general.

Hence there is potential aggregation even in the limit.

This implies that the optimal PCS estimator is consistent. In fact, one can establish

two generic asymptotic normality results under fixed and MSE optimal smoothing.

Theorem A.3 If the smoothing parameters are fixed, i.e. W does not vary with sample

size, n−1D′D
p→= E[DiD

′
i], rank(E[DiD

′
i]) = J and µ̂ is a linear (cell based) projection,

we get

√
n(µ̂P CS(W ) − µ − B(W ))

d→ N(0, E[DiD
′
i]

−1E[DiD
′
iε

2
i ]E[DiD

′
i]

−1) (A.10)

with B(W ) = (D′D + U ′W U)−1U ′W (V − U)µ.

Proof: From exogeneity it follows that E[Diεi] = 0. Moreover, n−1W = 0. If the first

stage estimator is a linear projection it follows that:

µ̂P CS(W ) = (D′D + U ′W U)−1(D′D + U ′W V )µ + (D′D + U ′W U)−1(I + U ′W V (D′D)−1)D′ε

µ̂P CS(W ) − µ = (D′D + U ′W U)−1U ′W (V − U)µ + (D′D + U ′W U)−1(I + U ′W V (D′D)−1)D′ε

Retransforming and using LL-CLT yields:

√
n(µ̂P CS(W ) − µ − B(W ))

d→ N(0, E[DiD
′
i]

−1E[DiD
′
iε

2
i ]E[DiD

′
i]

−1)

with B(W ) = (D′D + U ′W U)−1U ′W (V − U)µ. �

Theorem A.4 If the optimal smoothing parameters according to (3.3) or (3.4) are chosen

and n−1D′D
p→ E[DiD

′
i], rank(E[DiD

′
i]) = J and µ̂ is a linear (cell based) projection, we

get
√

n(µ̂P CS(W ∗) − µ − B(W ∗))
d→ N

(

0,(E[DiD
′
i] + U ′W̄ ∗U)−1(IJ + U ′W̄ ∗V E[DiD

′
i]

−1)E[DiD
′
iε

2
i ]

(IJ + E[DiD
′
i]

−1V ′W̄ ∗U)(E[DiD
′
i] + U ′W̄ ∗U)−1

)

(A.11)
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with B(W ∗) = (D′D + U ′W ∗U)−1U ′W ∗(V − U)µ and W̄ = plim n−1W ∗.

Proof: From the convergence results on the MSE optimal smoothing parameters, i.e.

Λ∗ = O(n) we know that W ∗ which is the matrix of MSE optimal smoothing parameters

is also O(n). Let W̄ denote the probability limit of n−1W ∗. For the estimated parameter

using these lambdas we obtain

µ̂P CS(W ∗) − µ = (D′D + U ′W ∗U)−1U ′W ∗(V − U)µ

+ (D′D + U ′W ∗U)−1(IJ + U ′W ∗V (D′D)−1)D′ε

From this it follows that:

√
n(µ̂P CS(W ∗) − µ − B(W ∗))

d→ N

(

0,(E[DiD
′
i] + U ′W̄U)−1(IJ + U ′W̄ V E[DiD

′
i]

−1)E[DiD
′
iε

2
i ]

(IJ + E[DiD
′
i]

−1V ′W̄ U)(E[DiD
′
i] + U ′W̄U)−1

)

with B(W ∗) = (D′D + U ′W ∗U)−1U ′W ∗(V − U)µ and W̄ = lim n−1W ∗. �

We propose to estimate the smoothing parameters using a plug-in approach, i.e.

µ̂P CS
k = µ̂′Ω̂∗

k

Ω̂∗
k = [ι′(Ĥ ′

kĤk)−1Ĥ ′
kι]−1(Ĥ ′

kĤk)−1Ĥ ′
kι

Ĥk = ∆̂k∆̂′
k + V̂

∆̂k = (µ̂k − µ̂1, . . . , µ̂k − µ̂J)′,

V̂ = diag(σ̂2
j /pjn),

where µ̂ is a linear cell based projection and σ̂2
j = 1

nj−1

∑n
i=1 Dij(Yi − µ̂j)2.
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B. Supplementary Material for Section 2

B.1. SOC Conditions for (2.2)

Let Sλ(µ) denote the objective function in (2.2). Note that:

∂Sλ(µ)

∂µk
= −2

n∑

i=1

(Yi − D′
iµ)Dik + 2

∑

s 6=k

λks(µk − µ̄s) (B.1)

∂2Sλ(µ)

∂µ2
k

= 2nk + 2
∑

s 6=k

λks (B.2)

∂2Sλ(µ)

∂µk∂µl
= 0 l 6= k (B.3)

Hence the matrix of second derivatives of Sλ(µ) is a diagonal matrix that leads to a strictly

convex penalty if and only if

∑

s 6=k

λks > −nk for all k ∈ {1, . . . , T }.

An estimator defined as the solution to (2.2) is then a unique global minimizer. �

C. Supplementary Material for Section 3

C.1. Predictive MSE = Regular MSE

E[(Y − Ŷ )′(Y − Ŷ )] = E[(D(µ − µ̂) + ε)′(D(µ − µ̂) + ε)]

= E[(µ − µ̂)′D′D(µ − µ̂)] + E[ε′ε]

which in the case of the PCS is proportional to

J∑

k=1

E[(µk − µ̂P CS
k )2nk] =

J∑

k=1

E[(µk −
∑

j 6=k

ωkjµ̂j − ωkkȲk)2nk],

where ωkk = 1 − ∑

j 6=k ωkj. Since the nk just scale up the kth squared difference, mini-

mization is not affected. Removing the nk leaves us with parameter MSE. �
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C.2. Proof of Proposition 3.1

By using a linear projection, we have µ̂j = Ȳj for all j. Then,

µ̂P CS
k = (1 −

∑

j 6=k

ωkj)Ȳk +
∑

j 6=k

ωkjȲj.

For cell averages holds: E[Ȳk] = µk, V [Ȳk] = σ2
k/nk. Then,

MSE(µ̂k) = bias(µ̂k)2 + V [µ̂k]

=

(

(1 −
∑

j 6=k

ωkj)µk +
∑

j 6=k

ωkjµj − µk

)2

+ (1 −
∑

j 6=k

ωkj)
2 σ2

k

nk
+

∑

j 6=k

ω2
kj

σ2
j

nj

=

(

−
∑

j 6=k

ωkj(∆µkj)

)2

+ (1 −
∑

j 6=k

ωkj)
2 σ2

k

nk
+

∑

j 6=k

ω2
kj

σ2
j

nj

=

(
∑

j 6=k

ωkj(∆µkj)

)2

+ (1 −
∑

j 6=k

ωkj)
2 σ2

k

npk
+

∑

j 6=k

ω2
kj

σ2
j

npj
+ Op(n−1).

�

C.3. Proof of Theorem 3.1

Only the most important steps are mentioned here. A more detailed can be provided

upon a request.

Let Vk = σ2/npk. Note that only the smoothing parameters with baseline group k are

relevant in (3.2). Then, optimizing with respect to ωkl yields10:

∂MSE(µ̂P CS
k )

∂ωkl
= −2(1 −

∑

j 6=k

ωkj)Vk + 2ωklVl + 2
∑

j 6=k

ωkj∆µkj∆µkl
!
= 0

⇔ ωklVl = (1 −
∑

j 6=k

ωkj)Vk − ∆µkl

∑

j 6=k

ωkj∆µkj

Using this result one can derive:

ωklVl

1 +
∑

m6=k
∆µkm∆µlm

Vm

=
(1 − ∑

j 6=k ωkj)Vk

1 +
∑

m6=k
∆µ2

km
Vm

.

Note that the right hand side does not depend on l. Using this equation for two indeces

10All ωkl’s in the following text should have a star superscript which is left out unless necessary for
readability.
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l and j yields:

ωkjVj

1 +
∑

m6=k
∆µkm∆µjm

Vm

=
ωklVl

1 +
∑

m6=k
∆µkm∆µlm

Vm

ωkj =
ωklVl

1 +
∑

m6=k
∆µkm∆µlm

Vm

1 +
∑

m6=k
∆µkm∆µjm

Vm

Vj
.

Plugging it back into FOC equation leads to:

ω∗
kj =

Vk

Vjakj
,

where akj =

(

1 +
σ2

k
/npk

1+bkj

∑

l 6=k
1+bkl

σ2
l
/npl

+
∆µkj

1+bkj

∑

l 6=k
∆µkl

σ2
l
/npl

)

with bkj =
∑

m6=k
∆µkm∆µjm

σ2
m/npm

.

The rest comes from a simple algebra. �

C.4. Comparative Statics of Smoothing Parameters in Small Samples

This subsection contains all additional material regarding the small sample analysis of

the MSE optimal smoothing parameters.

Discussion - Design (B) The effects for the change in n under homoscedasticity are

plotted in Figure C.4 and one can see the exactly the same effect for n2 and n3 which was

described in the main text. Introducing heteroscedasticity has no effect on almost zero

smoothing of group 1 towards group 4. The effect on smoothing towards groups 1, 2 and

3 is the same as in the case of equal means, i.e. the higher the variance, the lower the

smoothing weight, see Figure C.6. The effects for the change in σ2 under heteroscedasticity

are in Figure C.7and were described in the main text.

Shifting µ2 away from zero leads to a situation in which only groups 1 and 3 are groups

with zero means. Therefore, these two groups get high smoothing weights, see Figure

C.5. Shifting µ2 towards positive values has the following effect. Parameter ω12 decreases

sharply as the means of group 1 and 3 are a way more sensible target groups. After reaching

µ2 = 100, ω12 becomes even negative. Smoothing towards groups 1 and 3 increases until

µ2 reaches 100, then it starts slightly decreasing. The intuition is that µ2 ≥ 100 is so

extreme that it even pays off to smooth towards the group 4 for a small cost of a lower

smoothing weight towards group 1 and 3. Parameter ω14 has a U-shape on the interval
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of µ2 ∈ [0, 100], i.e. until µ2 = 50, group 2 is a better target. Afterwards they become

similar and after µ2 exceeds 100, the group 4 even gains higher smoothing weight due to

being closer to group 1.

Shifting µ2 towards negative values causes parameter ω12 to decrease. But not as sharply

as in the opposite direction, since there is no other competing group with a negative mean

to which it would be more sensible to smooth. Smoothing towards groups 1 and 3 does

not change much. Parameter ω14 gains slowly on importance as µ2 becomes more and

more negative and gets a higher weight than group 2 after µ2 exceeds -100.

By replacing the group 2 and µ2 by group 3 and µ3 respectively, all the results in the

last two paragraphs are valid for shifting µ3. Notice also that, when the target groups 1, 2

and 3 have a zero mean at the same time, the group 1 is shrunken to each of them equally

and has almost a zero smoothing weight to the group 4.

Under heteroscedasticity, relatively larger error variances lead to flatter curves and rela-

tively smaller variances lead to more amplified curves but the qualitative results described

above do not change. This effect is illustrated in Figure C.8.

Discussion - Design (C) Since groups 1, 3 and 4 have very close means, shifting µ2 to

more extreme values than -2 or 4 makes µ2 to be a distant group mean, i.e. the smoothing

towards group 2 is very close to zero or even slightly negative on these two intervals.

Once the smoothing weight towards group 2 is close to zero, pushing µ2 to more extreme

values does not have any effect on any of the smoothing weights and all the smoothing

weights stabilize as before by ignoring the changes in the distant mean. Therefore, all

the interesting effects are on the interval where ∆µ12 ∈ [−4, 2]. Beyond these values the

smoothing weights just converge to a stable level of smoothing, see Figure C.11.

Within the framework of shifting the mean of group 2, if ∆µ12 = 0, i.e. µ2 = 0, then the

parameter ω13 loses the smoothing weight because it is the only unequal mean. Parameter

ω12 gets a relatively high weight and the other parameters get high smoothing weights

accordingly to the error variances of the target groups. When ∆µ12 = −2, i.e. µ2 = 2,

groups 1 and 4 get their maximum weights since they are more informative then the other

two groups. Even though the µ2 and µ3 are not that far from µ1, the group 1 is not

smoothed to them that much because they compete with each other by having the same

mean. Group 2 is mainly punished for its large variance and therefore it gets a lower
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weight than group 3. When ∆µ12 = −4, i.e. µ2 = 4, then the group 3 starts being more

important for group 1, as it is a more sensible target then group 2 and it has a lower

variance. When ∆µ12 = 2, i.e. µ2 = −2, group 3 gains smoothing weight since the mean

of group 2 is not 0 anymore. The increase in ω13 is compensated by a decrease in weights

for groups 1 and 4, since these profited before from 3 equal means and reduced the weight

for group 3, the only unequal mean. The mean of group 2 gains a little bit in this case in

comparison to ∆µ12 = −2, since it is not now a direct competitor to group 3 as they have

now different means. So, now it contributes more to the smoothing. Of course, as a group

with the closest mean and lowest variance, group 4 gets the largest smoothing weight.

Discussion - Summary All the results are shortly repeated here. This text can be skipped

without any influence on understanding of the rest of the paper.

For target groups whose group mean is close to the mean of the base category, more

observations and lower variances in the target group contribute to a large own smoothing

weight and decrease the other smoothing weights. If the target group mean is far from the

mean of the base category, then it is ignored by getting a close to zero or even negative

own smoothing weight and other smoothing weights are not affected by changes in the

number of observations or variances of the target group.

Regarding the changes in the mean differences, the smoothing parameters are mainly

influenced by the size of the difference and by a presence of another close group mean. If

the base category is far away from all the other group means, the most smoothing weight

goes into its own smoothing parameter and the rest of the groups is ignored. Surprisingly,

a presence of one distant mean (design (B)) helps to stabilize the weights in a sense that

the base category is strongly smoothed to other close or equal means and weights change

rather smoothly with a shift in any mean. However, when all the means are very close to

each other (design (C) - shifting µ2), the smoothing parameters are sensitive in the narrow

interval covering a close distance between the means and then with a larger distance they

stabilize around certain levels depending on the distances to the other means and their

error variances. This behavior could potentially cause problems for any estimate of the

smoothing parameter that is subject to small sample variation. Finite samples deviations

from the true parameters might yield smoothing parameters far away from the optimal

ones leading to unfavorable aggregation.
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Figure C.1: Effect of n1, n2 and n3 on ω11, ω12, ω13, ω14, Design (A), Homoscedasticity
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Figure C.2: Effect of n1, n2 and n3 on ω11, ω12, ω13, ω14, Design (A), Heteroscedasticity
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Figure C.3: Effect of σ2
1 , σ2

2 and σ2
3 on ω11, ω12, ω13, ω14, Design (A), Heteroscedasticity
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Figure C.4: Effect of n1, n2 and n3 on ω11, ω12, ω13, ω14, Design (B), Homoscedasticity
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Figure C.5: Effect of ∆µ12, ∆µ23 and ∆µ13 on ω11, ω12, ω13, ω14, Design (B), Homoscedasticity
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Figure C.6: Effect of n1, n2 and n3 on ω11, ω12, ω13, ω14, Design (B), Heteroscedasticity
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Figure C.7: Effect of σ2
1 , σ2

2 and σ2
3 on ω11, ω12, ω13, ω14, Design (B), Heteroscedasticity
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Figure C.8: Effect of ∆µ12, ∆µ23 and ∆µ13 on ω11, ω12, ω13, ω14, Design (B), Heteroscedasticity
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Figure C.9: Effect of n1, n2 and n3 on ω11, ω12, ω13, ω14, Design (C), Heteroscedasticity
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Figure C.10: Effect of σ2
1 , σ2

2 and σ2
3 on ω11, ω12, ω13, ω14, Design (C), Heteroscedasticity
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Figure C.11: Effect of ∆µ12, ∆µ23 and ∆µ13 on ω11, ω12, ω13, ω14, Design (C), Heteroscedasticity
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C.5. Proof of Proposition 3.2

Let ek be the k-th unit vector. Note that by definition of the minimization problem and

well-known properties of the OLS, we have that

0 ≤ MSE(µ̂P CS
k (Λ∗

k)) ≤ MSE(µ̂P CS
k (ek)) = MSE(µ̂k) = O(n−1).

Additional conclusion: Hence there exists an N, M such that MSE(µ̂k) ≤ M/n for all

n ≥ N , since the left hand side is an upper bound for MSE(µ̂P CS
k (Λ∗

k)) we have to have

that the latter is O(n−1). From the closed form of the MSE, we know that

MSE(µ̂P CS
k (Λ∗

k)) = O

(

(
J∑

j=1

ω∗
kj∆µkj)

2 +
1

n

J∑

j=1

ω∗
kj

2 σ2
j

pj

)

= O

(

max
j,l

ω∗
kjω

∗
kl∆µkj∆µkl

)

+ O

(
1

n
max

j
ω∗

kj
2
)

and hence a necessary condition in line with the PCS MSE rate is that O(max
j

ω∗
kj

2) = O(1)

which implies that ω∗
kj = O(1) for all k, j. �

C.6. Representation of ω̂kj

For this derivation, we work with the representation of the weighted average directly.

Recall that ω̂kj =
σ̂2

knj

/
σ̂2

j nk

âkj
. The estimators using the consistent plug-in yield the follow-

ing terms:

∆µ̂km∆µ̂jm = (µ̂k − µk)(µ̂j − µj) − (µ̂k − µk)(µ̂m − µm) − (µ̂m − µm)(µ̂j − µj)

+ (µ̂m − µm)2 + (µ̂k − µk)(µj − µm) − (µ̂m − µm)(µj − µm)

+ (µk − µm)(µ̂j − µj) − (µk − µm)(µ̂m − µm) + (µk − µm)(µj − µm)
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Let zm =
√

nm(µ̂m − µm)/σm. It follows that:

∆µ̂km∆µ̂jm

σ̂2
m

nm = zkzj
σkσjnm

σ̂2
m

√
nknj

− zkzm
σkσm

√
nm

σ̂2
m

√
nk

− zmzj
σmσj

√
nm

σ̂2
m

√
nj

+ z2
m

σ2
m

σ̂2
m

+ zk

√
n(µj − µm)

σknm

σ̂2
m

√
nkn

− zm

√
n(µj − µm)

σm
√

nm

σ̂2
m

√
n

+ zj

√
n(µk − µm)

σjnm

σ̂2
m

√
njn

− zm

√
n(µk − µm)

σm
√

nm

σ̂2
m

√
n

+ n(µk − µm)(µj − µm)
nm

σ̂2
mn

.

Applying the same manipulations to ˆ∆µkj
ˆ∆µkl and plugging all results into the estimate

for akl, one obtains the estimated weights:

ω̂kj =

[
Z ′m̂1Z +

√
n∆′m̂2Z + n∆′m̂3∆ + ĉ0

Z ′M̂1Z +
√

n∆′M̂2Z + n∆′M̂3∆ + 1
+ 1

]−1 njσ̂
2
k

nkσ̂2
j

with Z = (z1, . . . , zJ ), ∆ = (µ1−µ1, µ1−µ2, . . . , µJ −µJ) and m̂1, m̂2, m̂3, M̂1, M̂2, M̂3, (ĉ0)

being random matrices (scalar) that converge(s) in probability.

D. Supplementary Material for Section 4

D.1. Distribution under Distant Systems

µ̂P CS(Λ̂k) =
∑

ω̂kjµ̂j

=
∑

ω∗
kjµ̂j +

∑

(ω̂kj − ω∗
kj)µj +

∑

(ω̂kj − ω∗
kj)(µ̂j − µj)

⇔ √
n(µ̂P CS(Λ̂k) − µk −

∑

ω∗
kj∆µjk) =

∑

ω∗
kj

√
n(µ̂j − µj)

+
∑ √

n(ω̂kj − ω∗
kj)∆µjk + Op(n−1/2)

Let [] ≡ (µ̂P CS(Λ̂k) − µk − ∑
ω∗

kj∆µj,k) be the debiased estimator. Since the estimated

smoothing parameters are continuous functions of the same random vector as the OLS

estimator for the location variance and cell probabilities, asymptotic normality and joint

convergence in distribution is guaranteed. Hence, one can apply the Delta method to

obtain asymptotically valid confidence bounds. In general, let Σ be the joint asymptotic
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variance covariance matrix of the first stage estimated means, variances and cell proba-

bilites. We require that

√
n






























µ̂1 − µ1

...

µ̂J − µJ

σ̂2
1 − σ2

1

...

σ̂2
J − σ2

J

p̂1 − p1

...

p̂J − pJ






























d→ N(0, Σ).

It then follows that

√
n(µ̂P CS(Λ̂k) − µk −

∑

ω∗
kj∆µjk)

d→ N(0, G′ΣG)

where G = ∇[] is the gradient of the debiased estimator with respect to all the elements

(µ̂1 − µ1, . . . , p̂j − pj)
′.

Under homoskedasticity and first stage estimator being OLS, it simplifies to

√
n























µ̂1 − µ1

...

µ̂J − µJ

σ̂2 − σ2

p̂1 − p1

...

p̂J − pJ























d→ N

(

0,









σ2diag(pj)−1 [0] [0]

0 σ4(κ − 1) 0

[0] [0] diag(pj(1 − pj))









)

.

where kappa is a kurtosis of Yi. Applying the delta method, yields an asymptotic variance

covariance matrix that is identical to the OLS under homoskedasticity, i.e. G′ΣG =

σ2diag(pj)−1.
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D.2. Proof of Theorem 4.1

Note that tr(Π(Λ∗)) =
∑J

k=1 ω∗
kk. First assume equality of all means, it follows that

ω∗
kk =

1

1 +
σ2

k
pk

∑

l 6=k
pl

σ2
l

=

pk

σ2
k

∑J
l=1

pl

σ2
l

⇒
J∑

k=1

ω∗
kk = 1

If #{(k, j) : µk 6= µj, k = 1, . . . , J − 1, j > k} > 0, then

ω∗
kk =

(

1 + n
∑J

m=1 ∆µ2
km

pm

σ2
m

)

σ2
k

pk

(
∑J

l=1
pl

σ2
l

+ n
∑J

l=1
pl

σ2
l

∑J
m=1 ∆µkm∆µlm

pm

σ2
m

)

=

pk

σ2
k

∑J
m=1 ∆µ2

km
pm

σ2
m

∑J
l=1

pl

σ2
l

∑J
m=1 ∆µkm∆µlm

pm

σ2
m

+ O(n−1).

Note in general it holds that

J∑

l=1

pl

σ2
l

J∑

m=1

∆µkm∆µlm
pm

σ2
m

=
J∑

l=1

∑

m>l

∆µ2
lm

plpm

σ2
l σ2

m

=
1

2

J∑

l=1

J∑

m=1

∆µ2
lm

plpm

σ2
l σ2

m

and hence the denominator of w∗
kk is independent of k which yields

J∑

k=1

ω∗
kk =

J∑

k=1

pk

σ2
k

∑J
m=1 ∆µ2

km
pm

σ2
m

1
2

∑J
l=1

∑J
m=1 ∆µ2

lm
plpm

σ2
l
σ2

m

+ O(n−1) = 2 + O(n−1).

For the estimated smoothing parameters however the equality only holds for probability

limits and hence we have

ω̂kk =

(

1 +
∑J

m=1
ˆ∆µ2
km

nm
σ̂2

m

)

σ̂2
k

nk

(
∑J

l=1
nl

σ̂2
l

+
∑J

l=1
nl

σ̂2
l

∑J
m=1

ˆ∆µkm
ˆ∆µlm

nm
σ̂2

m

)

=

(

1 + n
∑J

m=1 ∆µ2
km

pm

σ2
m

)

σ2
k

pk

(
∑J

l=1
pl

σ2
l

+ n
∑J

l=1
pl

σ2
l

∑J
m=1 ∆µkm∆µlm

pm

σ2
m

) + Op(n−1/2)

which is equivalent to the expression for the optimal weights plus remainder. Hence the

results from above follow by adjusting the approximation order from O(n−1) to Op(n−1/2).
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E. Supplementary Material for Section 7

Table E.1: Means, Variances and Number of Observations in Card and Krueger (1994)
Data

Chain
NJ (treated) PEN (control)

Before After Before After
µ̄ σ2 n µ̄ σ2 n µ̄ σ2 n µ̄ σ2 n

All chains 20.44 82.92 321 21.03 86.36 319 23.33 140.57 77 21.17 68.5 77

Burger King 22.16 61.95 131 23.63 70.63 131 29.42 182.81 33 26.22 50.31 35
KFC 12.79 21.83 67 13.73 39.60 68 10.71 7.83 12 13.00 11.59 12
Roys 23.14 109.36 81 21.73 89.30 78 19.74 32.96 17 15.81 43.89 17

Wendys 22.08 79.99 42 23.40 96.64 42 24.12 61.20 15 22.10 39.35 13
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