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Volatility forecasting using global stochastic financial

trends extracted from non-synchronous data
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Abstract

This paper introduces a method based on various linear and nonlinear state space models that
are used to extract global stochastic financial trends (GST) out of non-synchronous financial data.
More specifically, these models are constructed to take advantage of the intraday arrival of clos-
ing information coming from different international markets to improve volatility description and
forecasting. A set of three major asynchronous international stock market indices is used in order
to empirically show that this forecasting scheme is capable of significant performance gains when
compared to standard models like the dynamic conditional correlation (DCC) family.
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1 Introduction

Many frameworks for the description of financial returns have as their first building block a factor model
of the form

rt = α+ βyt + ut with {ut} ∼WN(0, σ2),

where the instantaneous returns rt at time t of individual assets are presented as a mean-zero stochastic
stationary additive perturbation of an affine function of a common factor yt. This factor usually accounts
for a common market feature to which all the assets under study are exposed. Consequently, this
functional dependence allows to determine, for a given asset return rt, how much of it has to do with
the market situation (through the coefficient β, which is a function of the correlation between rt and
yt) and how much comes from an idiosyncratic perturbation ut specifically related to the individual
asset. In particular applications of this model, the factor values yt are sometimes computed by using
an index constructed out of a set of assets that represent the class to which rt is naturally associated.
An alternative to this approach consists of treating the common factor values as a non-observable
variable and of extracting them using observed individual returns via a Kalman-type state-space model.
This direction has already been profusely explored in the literature. In the early available works (see
for instance [Jeon 91, Kasa 92, Chun 94, Sikl 01, Rang 01, Rang 02, Phen 04]) the authors consider
low sampling frequencies in order to be able to neglect asynchronicity issues. In several more recent
references [Dung 01, Chou 07, Chan 09, Luce 11, Cart 11, Bae 11, Feli 12, Bent 15] daily quoted data
are used but always using a synchronized approach.

In this work we use a different point of view introduced in [Korh 13] and later on extended in [Durd 14,
Pere 15], in which the market returns are thought of as a non-observable global stochastic trend (GST)
whose value is ruled by the arrival of information coming from different local markets. In this framework,
the returns of the GST are estimated several times per day at time points that are synchronized with
the closing times of the markets that are assumed to drive it. This approach is implemented by setting
a state-space model in which the observation equation writes the different observable individual market
returns that we are interested in as a stochastic perturbation of an affine function of the estimated GST
return accumulated during the 24 hours that precede this quote. It is assumed that the observed returns
are those that drive the GST and hence its returns are estimated as many times per day as different
closing times are included in the list of markets considered.

This point of view has been studied in [Korh 13] using three different setups, namely: three world
indices (NIKKEI, MICEX, S&P500) with three different closing times, five world indices (NIKKEI,
MICEX, DAX, PX, S&P500) with four different closing times, and ten world indices (NIKKEI, HSI,
SENSEX, MICEX, DAX, PX, FTSE, IBOV, DJI, S&P500) with seven different closing times. The
estimates of the GST obtained in these different situations are remarkably similar. The robustness that
these results indicate allowed the authors to identify, for each market, the relative importance of local
with respect to global news in stock prices formation.

The main goal of our work is modifying this approach in order to make it amenable to volatility
forecasting and to prove the pertinence of the resulting method when compared to more standard
families of models designed to specifically carry out this task. The rationale behind this attempt is that
the error inherent to the filtering and forecasting of an unobserved variable like the GST is compensated
by the more frequent information updates that the use of asynchronous information carries in its wake.

Since the models introduced in [Korh 13, Pere 15] are intrinsically homoscedastic, they are not
appropriate to handle financial volatility modeling and forecasting. The heteroscedastic generalization
needed for this purpose can be naturally implemented by using two different approaches. The simplest
one consists of using the linear state-space approach in [Korh 13] in a first step to estimate the GST
and to subsequently model the volatility and conditional correlation of the resulting global trend and
idiosyncratic term using an adapted multivariate correlation model; for this purpose, we consider in
this work adapted scalar and non-scalar versions of the dynamic conditional correlation (DCC) model
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introduced in [Engl 02, Tse 02]. The non-scalar models are estimated using the techniques introduced
in [Chre 14, Bauw 15]. The adjustments of these standard models for the handling of the GST are
implemented at the level of the so called “deGARCHing” or “first estimation step” in which a model
for the conditional variances of the assets of interest is chosen; in our context, we put to work in this
step two different GARCH-type models that take into account in their specification the chronology with
which the different intraday trend returns are quoted.

A more sophisticated approach that we also study is the inclusion of the heteroscedasticity assump-
tion on the GST returns directly in the formulation of the state-space model by using a GARCH-type
and GST-adapted prescription of the type that we just described. The main complication that arises
in this setup is the nonlinearity of the resulting modeling scheme that we handle using the extended
Kalman filter (EKF) (see [Durb 12] and references therein).

The paper is organized as follows. In Section 2.1 we explain in detail the linear and nonlinear
state-space models that we propose. We give details on how they handle the asynchronous character
of the observable data and prove rigorous sufficient conditions that ensure their proper identification.
Section 2.2 contains details on the Kalman filter based model estimation techniques that we use in the
paper, as well as on the model specifications for the conditional variances incorporated in the nonlinear
state-space model, together with the positivity and stationarity constraints that need to be imposed at
the time of estimation. The GST-based volatility forecasting scheme is described in Section 3. Section 4
contains an empirical study using the adjusted closing values of three major indices (NIKKEI, FTSE,
and S&P500) that are quoted at different times due to the time zones in which they are geographically
based. In this experiment, we use the model confidence set (MCS) approach of [Hans 03, Hans 11]
and we implement it with loss functions constructed with the conditional covariance matrices implied
by the different models under consideration. The results show that the proposed forecasting scheme
exhibits excellent and statistically significant performance improvements when compared to the use of
standard multivariate parametric correlation models. Section 5 concludes the paper. The proofs of
various technical results in the paper are contained in the appendices in Section A. Additionally, the last
appendix in this section contains a replicate of the empirical study in Section 4 in which the estimation
period does not include the Fall 2008 volatility events and the out-of-sample forecasting period comprises
the Great Recession; this experiments aims at illustrating the robustness of our empirical results with
respect to the estimation period used and the pertinence in some situations of the nonlinear state-space
model.

Notation and conventions: column vectors are denoted by a bold lower case symbol like v and v>

indicates its transpose. Given a vector v ∈ Rn, we denote its entries by vi, with i ∈ {1, . . . , n}; we also
write v = (vi)i∈{1,...,n}. The symbols in,0n ∈ Rn stand for the vectors of length n consisting of ones
and zeros, respectively. We denote by Mn,m the space of real n ×m matrices with m,n ∈ N. When
n = m, we use the symbols Mn and Dn to refer to the space of square and diagonal matrices of order
n, respectively. Given a matrix A ∈ Mn,m, we denote its components by Aij and we write A = (Aij),
with i ∈ {1, . . . , n}, j ∈ {1, . . .m}. We use Sn to denote the subspace Sn ⊂Mn of symmetric matrices:

Sn =
{
A ∈Mn | A> = A

}
,

and we use S+n (respectively S−n ) to refer to the cone S+n ⊂ Sn (respectively S−n ⊂ Sn) of positive
(respectively negative) semidefinite matrices. When A ∈ S+n (respectively, A ∈ S−n ) we write A � 0
(respectively, A � 0). The symbol In ∈ Dn denotes the identity matrix. Given two matrices A,B ∈
Mn,m, we denote by A�B ∈Mn,m their elementwise multiplication matrix or Hadamard product, that
is:

(A�B)ij := AijBij for all i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} . (1.1)

We denote as Diag the operator Diag : Mn −→ Dn that sets equal to zero all the components of a square
matrix except for those that are on the main diagonal. The operator diag : Rn −→ Dn takes a given
vector and constructs a diagonal matrix with its entries in the main diagonal.
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2 State-space model for the global stochastic trend

We start by recalling the description of the global stochastic trend as the state variable in a state-space
model, as it was introduced in [Korh 13]. In order to keep the presentation simple, we will carry this
out for only three different non-synchronous assets, which is the framework in which our subsequent
empirical analysis takes place. The generalization to more assets and quoting times is straightforward.

Let rt ∈ R3 be a vector containing three non-synchronous stock market returns (typically based
on adjusted closing prices) quoted at different times of the same calendar date t ∈ N. The different
intraday quoting times have typically to do with lags in the closing times of the different markets. The
intraday moments of time ti, i ∈ {1, 2, 3} of the given day t at which the components of (r1,t, r2,t, r3,t)

>

of rt become available are labeled as ti := 3(t− 1) + i, t ∈ N.
We now assume the existence of an underlying and non-observable global stochastic trend and we

denote by sti , i ∈ {1, 2, 3}, its intraday log-values for the given calendar date t ∈ N. We now define
εt ∈ R3 as the vector that contains the intra-day stochastic trend log-return components of a given
calendar day t, that is,

εt =

 ε1,t
ε2,t
ε3,t

 :=

 st1 − s(t−1)3
st2 − st1
st3 − st2

 . (2.1)

Following the factor model scheme discussed in the introduction, for every t ∈ Z we write the log-returns
of the components of rt as excess returns with respect to an affine function of the entries of the vector
yt ∈ R3, which is constructed with the daily global stochastic trend returns computed at the moments in
time in which the components of rt are quoted. More specifically yt := (st1 − s(t−1)1 , st2 − s(t−1)2 , st3 −
s(t−1)3)> and

ri,t = αi + βiyi,t + ui,t, i = {1, 2, 3} , t ∈ Z, (2.2)

with the regression intercepts αi ∈ R, i = {1, 2, 3}, and the parameters β := (β1, β2, β3)> ∈ R3. For
the time being, in this relation we only assume that the residuals ut are serially uncorrelated (they
are a white noise) with mean zero and unconditional diagonal covariance matrix Σu ∈ S+3 , that is
{ut} ∼WN (03,Σu), Σu := diag

(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
with entries σu,1, σu,2, σu,3 ∈ R+.

Using the definition (2.1), we write the returns rt in (2.2) in terms of the global stochastic trend
returns in the preceding twenty-four hours. It is easy to verify that using (2.1) in the regression
expression (2.2) yields the following identity

rt = α+Bet + ut, (2.3)

with et := (ε1,t, ε2,t, ε3,t, ε2,t−1, ε3,t−1)
>

, where α ∈ R3, {ut} ∼WN (03,Σu) as in (2.2), and the matrix
B ∈M5,3 is of the form

B :=

 β1 0 0 β1 β1
β2 β2 0 0 β2
β3 β3 β3 0 0

 . (2.4)

This equation describes the returns dynamics in terms of the non-observable global stochastic trend
returns in the preceding twenty-four hours. In order to estimate this model and to filter out of it the
values of the GST, we will proceed by considering (2.3) as the observation equation of several linear and
nonlinear state-space models that we design in order make possible their subsequent use for volatility
forecasting.
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Figure 1: Diagram representing the different variables, time labels, and information sets used in the study as well as their
chronology.

2.1 The linear and nonlinear state-space models

The linear state-space model. The first model that we present in this subsection is identical to the
one originally considered in [Korh 13]:{

rt = α+Bet + ut, {ut} ∼WN (03,Σu) ,with Σu := diag
(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
, (2.5a)

et = Tet−1 +Rvt−1, {vt} ∼WN(03, I3), (2.5b)

where et ∈ R5, α ∈ R3, the matrix B ∈ M5,3 is provided in (2.4), the matrices R ∈ M3,5 and T ∈ M5

are given by

R :=


σv,1 0 0

0 σv,2 0
0 0 σv,3
0 0 0
0 0 0

 , T :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , (2.6)

and σu,1, σu,2, σu,3, σv,1, σv,2, σv,3 ∈ R+. We emphasize that (2.5a)-(2.5b) constitutes a linear state-space
model in which the dynamical behavior of the GST is prescribed by the corresponding state equation
and where the observation equation establishes a relation between the time evolution of the GST and
the observed returns.

In the following proposition, whose proof is provided in an appendix, we study the identification of
this model and state sufficient conditions that ensure it.

Proposition 2.1 The linear state-space model (2.5a)-(2.5b) is well identified with respect to the natural

invariance properties spelled out in the Appendix A.1 if one of the elements of the vector β = (β1, β2, β3)
>

that define the matrix B in (2.4) is set equal to a constant or, alternatively, when one of the unconditional
variances σ2

v,1, σ
2
v,2, σ

2
v,3 that define R in (2.5b) is set equal to a positive constant.
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The nonlinear state-space model. The dynamic specification (2.5b) does not introduce any depen-
dence between the components (ε1,t, ε2,t, ε3,t) of the GST εt, even though this feature is empirically
observed. This has motivated the introduction in [Durd 14, Pere 15] of a VAR-type prescription for
the dynamics of εt that allows for correlation between its components while preserving the linearity
of the corresponding state-space model. Since in this work we focus on volatility forecasting, we will
instead introduce dependence between the components of εt via a specific functional choice for the time
evolution of their conditional variances. This approach obliges us to formulate a nonlinear state-space
model which makes us use an extended Kalman filter (EKF) instead of a standard one.

There are many different approaches that can be taken in order to implement this strategy. The
most comprehensive one consists of building into the state-space model the entire conditional covariance
dynamics of both the GST and the residuals. In unreported numerical experiments, we observed that
the complexity of the resulting specification makes its estimation difficult to implement. This limitation
makes advisable the adoption of an intermediate two-steps solution in which the nonlinear state-space
model incorporates the modeling of the conditional variances and then the conditional covariances are
handled separately in a second step.

Consider the following modified nonlinear state-space model:{
rt = α+Bet + ut, {ut} ∼WN (03,Σu) , Σu := diag

(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
, (2.7a)

et = Tet−1 +Rt−1(et−1)vt−1, {vt} ∼WN(03, I3), (2.7b)

where et ∈ R5, α ∈ R3, the matrix B ∈M5,3 is provided in (2.4), σu,1, σu,2, σu,3 ∈ R+, and the matrices
R ∈M3,5 and T ∈M5 are defined as

Rt−1(et−1) :=


σ1,t(et−1) 0 0

0 σ2,t(et−1) 0
0 0 σ3,t(et−1)
0 0 0
0 0 0

 , T :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 . (2.8)

Additionally, we set
Qt := Rt−1(et−1)Rt−1(et−1)>. (2.9)

The choice of matrix forms of the type (2.8)-(2.9) has two important consequences: first, the resulting
model falls in the framework of the EKF, which can be hence put to work to estimate the GST. Second,
as it can be seen using the EKF iterations that we spell out later on in the text, the model provides a
dynamic description of the conditional variances that we are interested in forecasting, but it is static as
far as the covariances is concerned. These will be modeled in a second step.

Later on in the paper we describe two specific functional dependences for the specifications σi,t(et−1),
i ∈ {1, 2, 3} in (2.8) that we work with and that are consistent with the chronology with which the
components εi,t of the GST εt are quoted.

2.2 The linear and extended Kalman filters for state and parameter estima-
tion

We now recall the linear (LKF) and extended (EKF) Kalman filters corresponding to the models (2.5a)-
(2.5b) and (2.7a)-(2.7b), respectively. An in-depth treatment of this topic can be found in [Durb 12].

Let r := {r1, . . . , rT} be a sample containing T three-dimensional observed log-returns and for
any t ≤ T denote by Ft the information set generated by the observed returns up to time t, that
is, Ft = σ (r1, . . . , rt). The Kalman recursions yield minimum variance linear unbiased estimates of
the forecasted and updated (or filtered) state vectors and of their covariance matrices. We denote by
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εt|t := E [et|Ft] (respectively, εt+1 := E [et+1|Ft]) the updated or filtered (respectively, forecasted)

state vector and by Pt|t := E
[
ete
>
t |Ft

]
(respectively, Pt+1 := E

[
et+1e

>
t+1|Ft

]
) the corresponding

covariance matrices. Additionally, let Ht := E[(rt −α) (rt −α)
> | Ft−1] be the forecasted conditional

covariance matrices of the returns. The elements that we just introduced can be recursively obtained
out of the Kalman recursions (see [Durb 12]) once ε1 and P1 have been provided. More specifically:

ut = rt − (α+Bεt), (2.10)

Ht = BPtB
> + Σu, (2.11)

εt|t = εt +Ktut, with Kt := PtB
>H−1t , (2.12)

Pt|t = Pt −KtBPt, (2.13)

εt+1 = Tεt|t, (2.14)

Pt+1 = TPt|tT
> +Qt, with Qt := Rt(εt|t)Rt(εt|t)

>. (2.15)

The matrix Kt ∈ M5,3 is referred to as the Kalman gain, the relations (2.12)-(2.13) are called the
updating step, and (2.14)-(2.15) are the prediction step of the Kalman filter, respectively.

If the model parameters are known, the Kalman recursions make possible the filtering of the state
vectors for a given observed sample. Otherwise, the model parameters can be estimated via quasi-
maximum likelihood estimation using a log-likelihood constructed out of the innovations {ut}t∈{1,...,T},
namely,

logL(r;θ) = −nT

2
log2π − 1

2

T∑
t=1

[
log(det(Ht)) + u>t H

−1
t ut

]
, (2.16)

where θ ∈ Rs is a vector that contains the parameters of the state-space model, and the innovations
ut and the covariance matrices Ht are obtained out of the observed sample r := {r1, . . . , rT} using the

Kalman recursions (2.10)-(2.15). The vector θ̂ ∈ Rs of estimated parameters can be hence obtained by
maximizing the loglikelihood function logL(r;θ) in (2.16).

This optimization is subjected to various constraints that depend on the particular case that we are
handling. In the linear case (2.5a)-(2.5b) the only constraint is associated to the proper identification of
the model. As it is explained in Proposition 2.1, two possibilities are available: one of the elements of the
vector β = (β1, β2, β3)

>
that define the matrix B in (2.4) can be set equal to a constant or, alternatively,

one of the unconditional variances σ2
v,1, σ

2
v,2, σ

2
v,3 that define R in (2.5b) can be set equal to a positive

constant. In the nonlinear case, apart from the identification constraints that we specify later on in
Proposition 2.2, one has to make sure that the volatility specifications σi,t(et−1), i ∈ {1, 2, 3} in (2.9)
yield positive values and that the resulting process has stationary solutions. This obviously depends
on the specific parametric dependence chosen to define the functions σi,t(et−1). We will consider two
different models in the empirical work that we spell out in detail in the following paragraphs.

Model 1 for the conditional variances in the nonlinear state-space model. In this first model
we define recursively the values σi,t(et−1), i ∈ {1, 2, 3}, using a GARCH-type functional dependence
adapted to the chronology of the GST components. We set:

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1, (2.17)

σ2
2,t = a2 + δ2σ

2
1,t, (2.18)

σ2
3,t = a3 + δ3σ

2
2,t. (2.19)

In order to insure the positivity of the elements σ2
i,t, the model parameters are required to satisfy the

constraints γ1 ≥ 0 and ai > 0, δi ≥ 0, for all i ∈ {1, 2, 3}. In order to provide sufficient conditions for
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the stationarity of the process, we rewrite (2.17)-(2.19) as

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1, (2.20)

σ2
2,t = (a2 + a1δ2) + δ1δ2σ

2
3,t−1 + γ1δ2ε

2
3,t−1, (2.21)

σ2
3,t = (a3 + a2δ3 + α1δ2δ3) + δ1δ2δ3σ

2
3,t−1 + γ1δ2δ3ε

2
3,t−1. (2.22)

If we think of these relations as those defining a VEC model (see [Boll 88]), stationarity can be ensured
by imposing that the spectral radius of the matrix A given by

A :=

 0 0 δ1 + γ1
0 0 δ2(δ1 + γ1)
0 0 δ2δ3(δ1 + γ1)

 (2.23)

is smaller than one [Gour 97]. It is easy to verify that this results in the inequality

δ2δ3(δ1 + γ1) < 1, (2.24)

which we treat later on as a nonlinear parameter constraint imposed at the time of the model estimation.

Model 2 for the conditional variances in the nonlinear state-space model. Based on the
same arguments that we used for Model 1, we consider another GARCH-type variant for the functions
σi,t(et−1), i ∈ {1, 2, 3}, that determine the nonlinear state-space model (2.7a)-(2.7b) by allowing this
time the possibility of autoregressive behavior in the volatilities and in the components of the GST. We
set:

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε

2
1,t−1, (2.25)

σ2
2,t = a2 + δ2σ

2
1,t + ρ2σ

2
2,t−1 + τ2ε

2
2,t−1, (2.26)

σ2
3,t = a3 + δ3σ

2
2,t + ρ3σ

2
3,t−1 + τ3ε

2
3,t−1, (2.27)

where, again, we ensure positivity by requiring that γ1 ≥ 0 and ai > 0, δi, ρi, τi ≥ 0, for all i ∈ {1, 2, 3}.
In order to find sufficient stationarity conditions we proceed by rewriting Model 2 as

σ2
1,t =a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε

2
1,t−1, (2.28)

σ2
2,t =(a2 + a1δ2) + δ1δ2σ

2
3,t−1 + γ1δ2ε

2
3,t−1 + ρ1δ2σ

2
1,t−1 + τ1δ2ε

2
1,t−1 + ρ2σ

2
2,t−1 + τ2ε

2
2,t−1, (2.29)

σ2
3,t =(a3 + a2δ3 + a1δ2δ3) + (δ1δ2δ3 + ρ3)σ2

3,t−1 + (γ1δ2δ3 + τ3)ε23,t−1 + ρ1δ2δ3σ
2
1,t−1

+ τ1δ2δ3ε
2
1,t−1 + ρ2δ3σ

2
2,t−1 + τ2δ3ε

2
2,t−1. (2.30)

As for Model 1 we ensure stationarity by requiring that the spectral radius ρ(A) of the matrix A defined
by:

A :=

 ρ1 + τ1 0 δ1 + γ1
δ2(ρ1 + τ1) ρ2 + τ2 δ2(δ1 + γ1)
δ2δ3(ρ1 + τ1) δ3(ρ2 + τ2) δ2δ3(δ1 + γ1) + τ3 + ρ3

 , (2.31)

is smaller than one. Since in this case the general expression of the eigenvalues of A is very convoluted,
we take advantage of the fact that for any matrix norm || · || the inequality ρ(A) ≤ ||A|| is satisfied and
hence it suffices to require that ||A|| < 1 to ensure that ρ(A) < 1. We implement this condition by
using the so called maximum column and row sum norms (see [Horn 13]). In the case of the maximum
column sum norm, the inequality ||A|| < 1 amounts to the following three conditions

(ρ1 + τ1)(1 + δ2(1 + δ3)) < 1, (2.32a)

(ρ2 + τ2)(1 + δ2(1 + δ3)) < 1, (2.32b)

(δ1 + γ1)(1 + δ2(1 + δ3)) + τ3 + ρ3 < 1, (2.32c)
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while the use of the maximum row sum norm results in three other different conditions, namely,
δ1 + γ1 + ρ1 + τ1 < 1, (2.33a)

δ2(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2 < 1, (2.33b)

δ2δ3(δ1 + γ1 + ρ1 + τ1) + δ3(ρ2 + τ2) + τ3 + ρ3 < 1. (2.33c)

Any of these two sets of inequalities may be used as parameter constraints at the time of model estimation
in order to ensure stationarity. Nevertheless, imposing different parameter constraints may obviously
produce different estimation results.

We conclude by stating a result, whose proof can be obtained by mimicking that of Proposition 2.1,
that provides conditions that ensure the proper identification of the nonlinear state-space model.

Proposition 2.2 The nonlinear state-space model (2.7a)-(2.7b) is well identified with respect to the
natural invariance properties spelled out in the Appendix A.1 if one of the elements of the vector β =
(β1, β2, β3)

>
that define the matrix B in (2.4) is set equal to a constant or, alternatively, when one of

the components of the vector a := (a1, a2, a3)> that determine the models 1 or 2 is set equal to a positive
constant.

3 Volatility forecasting using the global stochastic trend

The objective of this section is producing one-step ahead forecasts for the covariance matrices of
the observed asset returns. The state-space models that we introduced in the previous section have
such a forecast naturally associated. Indeed, by expression (2.11), the conditional covariances Ht :=

E[(rt −α) (rt −α)
> | Ft−1] are given by Ht = BPtB

> + Σu and, moreover, expression (2.15) provides
the conditional covariance among the different components of the GST.

However, the values of the conditional covariance provided by these formulas are not compatible
with the empirically observed properties of estimates of the global trend {et} or of the innovations {ut}
obtained with both the linear (2.5a)-(2.5b) and the nonlinear (2.7a)-(2.7b) state-space models. These
processes are systematically heteroscedastic and exhibit time-varying correlation among its different
components. However, regarding the innovations, both models capture by construction only the uncon-
ditional covariance Σu. As to the time-varying correlation in the GST, we analyze separately the linear
and the nonlinear state-space models.

First, the linear model specification (2.5a)-(2.5b) is intrinsically homoscedastic, that is, the condi-

tional covariances Ht := E[(rt −α) (rt −α)
> | Ft−1] and Pt := E

[
ete
>
t | Ft−1

]
of both the returns {rt}

and the GST associated to it are asymptotically constant in time. Indeed, the time independence of the
matrices R and Σu implies that after a certain number of iterations, the model reaches a steady state so-
lution in which Pt converges to the constant matrix P determined by the matrix equation (see [Durb 12,
page 86]):

P = TPT> − TPB>H−1BPT> +RR>, with H = BPB> + Σu.

Second, in the nonlinear case (2.7a)-(2.7b), the matrix Qt has a nontrivial time evolution and hence
so does Pt. Nevertheless, a straightforward computation shows that the dynamics prescribed by either
Model 1 (2.17)-(2.19) or Model 2 (3.11)-(3.13) induces a non-trivial dynamical behavior of the conditional
variances of the components of the GST but makes zero the correlation between them.

These observations entail that the description of the GST associated to the models (2.5a)-(2.5b) or
(2.7a)-(2.7b) is not complete enough to be used for volatility forecasting. We solve this limitation by
using appropriate multivariate heteroscedastic models on both the filtered estimates {εt|t} of the GST
{εt} and on the associated residuals {ut}. This strategy comes down to using the state-space models
and the Kalman filters that go with them as a first step that provides an estimation of the GST and the
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residuals out of the observed returns; this allows us to construct a larger filtration whose elements F∗t
are the pseudo-information sets generated by both the observed returns and the filtered values ε̂t := εt|t
of the GST up to time t, that is,

F∗t := σ ({r1, . . . , rt} ∪ {ε̂1, . . . , ε̂t}) .

We refer to {F∗t } as the extended information set. We subsequently estimate multivariate volatility
models that are, first, designed to take into account the asynchronicity between the components of the
GST and, second, are predictable with respect to {F∗t }. More specifically, we will use adapted models
that will produce predictable matrix processes {P ∗t } and {Σ∗u,t} with respect to {F∗t } such that:

êt|F∗
t−1
∼WN(05, P

∗
t ) and ut|F∗

t−1
∼WN(03,Σ

∗
u,t).

Combining these ingredients together with the expression (2.3), we can easily produce a forecast for the
covariance H∗t of the returns based on the information set F∗t−1:

H∗t := E
[
(rt −α) (rt −α)

> | F∗t−1
]

= BP ∗t B
> + Σ∗u,t. (3.1)

In the following paragraphs we provide the implementation details of this forecasting scheme for the
linear and the nonlinear state-space models. Its empirical performance is evaluated later on in Section 4.

3.1 GST-based volatility forecasting using the nonlinear state-space model

The nonlinear state-space model (2.7a)-(2.7b) prescribes a conditionally heteroscedastic behavior on the
components of the GST with respect to the extended information set {F∗t }. Indeed, the relation (2.7b)
implies that

E
[
ε̂i,t

2 | F∗t−1
]

= σi,t (êt−1) , E
[
ε̂i,tε̂j,t | F∗t−1

]
= 0, for any i, j ∈ {1, 2, 3}. (3.2)

where the functional prescription σi,t (êt−1) is given by one of the models (2.17)-(2.19) or (3.11)-(3.13)
under consideration. The second identity in (3.2) shows that this model neglects the conditional corre-
lation between the components of the GST that is nevertheless empirically observed [Durd 14, Pere 15].
This leads us to refine the description by introducing a dynamic conditional correlation (DCC) model
for the filtered GST values {ε̂t} constructed out of GST returns that have been standardized using
the conditional covariances {σi,t (êt−1)}, i ∈ {1, 2, 3}. This strategy introduces time-varying correlation
between the components of the GST while preserving the conditional variance (3.2) captured by the
non-linear state-space model.

More specifically, construct the standardized return vector ζt ∈ Rn via the component-wise assign-
ment ζi,t := ε̂i,t/σi,t (êt−1) and let Dt := diag (σ1,t (êt−1) , . . . , σn,t (êt−1)) denote the corresponding
diagonal matrix of conditional standard deviations. We now specify the dynamics of the conditional
correlation matrix Rt of the standardized returns ζt as:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Q∗t := I3 �Qt, (3.3)

Qt = (i3i
>
3 −A−B)�Q+A� (ζt−1ζ

>
t−1) +B �Qt−1, (3.4)

where � denotes the Hadamard (or component wise) matrix product, the parameter matrices A and
B are symmetric of order 3, Q is a positive semidefinite parameter matrix of order three, and i3
is the column vector of three elements all equal to one. Equation (3.4) is the most general DCC
prescription proposed by [Engl 02]; we call it the Hadamard DCC model. A simplified and much
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more parsimonious version of this model is the scalar subfamily in which all the elements of A are
considered identical and likewise those of B; in that case the expression (3.4) is replaced by

Qt = (1− a− b)Q+ a(ζt−1ζ
>
t−1) + bQt−1, (3.5)

with a, b ∈ R+ such that a + b < 1. The matrix Q is obtained following an approximate targeting

procedure that consists in assuming that Q = E
[
ζtζ
>
t

]
and can thus be estimated by Q̂ :=

∑T
t=1 ζtζ

>
t /T

prior to estimating the model parameters. Despite the fact that Q is not equal to the second moment
matrix of {ζt} and, as a consequence, Q̂ is not a consistent estimator of Q (see [Aiel 13]), this targeting
procedure is used in almost all applications of the DCC model which, according to simulation results in
[Aiel 13], does not lead to strong biases in practice. The use of this model yields a conditional covariance
matrix

Σ∗ε̂,t := E
[
ε̂tε̂t

> | F∗t−1
]

= DtRtDt, (3.6)

and hence

P ∗t := E
[
êtêt

> | F∗t−1
]

=

 Σ∗ε̂,t 0

0
ε̂ 2
2,t−1 ε̂2,t−1ε̂3,t−1

ε̂2,t−1ε̂3,t−1 ε̂ 2
3,t−1

 (3.7)

Finally, we proceed analogously by modeling the conditional covariance {Σ∗u,t} of the residuals {ut} by
using another DCC model also based on standardized returns constructed using the conditional variances
associated to GARCH models of the type 1 or 2. The use of the resulting conditional covariance matrices
Σ∗u,t and P ∗t in (3.7) in the expression (3.1) leads to the required forecast for the covariance of the returns

H∗t|t−1 := E[(rt −α) (rt −α)
> | F∗t−1] = BP ∗t B

> + Σ∗u,t.

based on the information set {F∗t }.

3.2 GST-based volatility forecasting using the linear state-space model

As we already pointed out, the linear state-space model is intrinsically homoscedastic. We will hence
proceed again by estimating appropriate DCC models on the filtered estimates {ε̂t} of the GST and on
the associated residuals {ut} but, this time, the state space model does not produce any conditional
variance on the components of the GST that needs to be preserved in the correlation modeling stage.

Models for the conditional variances of the GST and the residuals. We will carry out this
construction for the estimates {ε̂t} of the GST but keeping in mind that the same approach is applicable
to the residuals. We proceed by using a DCC model constructed using a strategy that is reminiscent
of the one used for the nonlinear state-space model case, that is, we will use standardized returns
in the construction of the dynamical correlation model obtained out of conditional variances whose
parametric prescription respects the chronology with which the different components (ε1,t, ε2,t, ε3,t) of
the GST εt are disclosed. An important difference with respect to the approach taken in the nonlinear
state-space model is that, this time, we are not obliged to respect functional prescriptions for the
conditional variances of the form σi,t (ε̂t−1) that were imposed by the use of the extended Kalman
filter. In particular, we can use intraday dependences that will allow us to update more frequently the
information set and hence to improve the forecasts. More specifically, we use two parameter families of
conditional variance dynamics that generalize the models 1 and 2 that we used in the context of the
nonlinear state-space model, namely:
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• Model 1 for the conditional variances.

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε̂

2
3,t−1, (3.8)

σ2
2,t = a2 + δ2σ

2
1,t + γ2ε̂

2
1,t, (3.9)

σ2
3,t = a3 + δ3σ

2
2,t + γ3ε̂

2
2,t. (3.10)

• Model 2 for the conditional variances.

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε̂

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε̂

2
1,t−1, (3.11)

σ2
2,t = a2 + δ2σ

2
1,t + γ2ε̂

2
1,t + ρ2σ

2
2,t−1 + τ2ε̂

2
2,t−1, (3.12)

σ2
3,t = a3 + δ3σ

2
2,t + γ3ε̂

2
2,t + ρ3σ

2
3,t−1 + τ3ε̂

2
3,t−1. (3.13)

Now, for each trading date t we single out three different intraday extended information sets F∗t1 ,
F∗t2 , and F∗t3 defined by

F∗t1 := σ ({r1, . . . , rt} ∪ {ε̂1, . . . , ε̂t−1, ε̂t1}) , F∗t2 := F∗t1 ∪ σ (ε̂t2) , F∗t3 := F∗t . (3.14)

The importance of the filtrations determined by these information sets in the context of the models
that we just introduced lays in the fact that the conditional variances that they determine are such
that σ2

1,t = σ2
t1 is F∗t1 -predictable, σ2

2,t = σ2
t2 is F∗t2 -predictable, and σ2

3,t = σ2
t3 is F∗t3-predictable. This

observation will prompt us, at the time of carrying out forecasting using these intraday information
sets, to use subfamilies of the models 1 and 2 for which the entire volatility vectors (σ1,t, σ2,t, σ3,t) are
F∗t3−1, F∗t1 , or F∗t2 -predictable.

Positivity and stationarity of the conditional variance models. Before we proceed with the
implementation of a forecasting scheme using these models, we study the conditions that need to be
imposed in their parameters in order to ensure that the conditional variances that they produce are
positive and that they exhibit second order stationary solutions. A way to approach this question consists
of thinking of the three dimensional time series {εt} as the one-dimensional process {εti} obtained by
ordering the components of each element εt according to the intraday time at which they have been
disclosed. Using this point of view, the models 1 and 2 become one-dimensional GARCH models with
time varying (periodic in this case) coefficients that are usually designated with the acronym tvGARCH
(see [Dahl 06, Cize 09, Roha 13], and references therein). More specifically, they can be considered as
tvGARCH(1,1) and tvGARCH(3,3) models, respectively, if we rewrite them as:

σ2
ti = ati + δtiσ

2
ti−1 + γti ε̂

2
ti−1, and σ2

ti = ati + δtiσ
2
ti−1 + γti ε̂

2
ti−1 + ρtiσ

2
ti−3 + τti ε̂

2
ti−3, (3.15)

with i ∈ {1, 2, 3}, ati := ai, δti := δi, γti := γi, ρti := ρi, τti := τi, and where ti − 1 and ti − 3 are
defined by using recursively the convention

ti − 1 :=

{
(t− 1)3 when i = 1,
ti−1 when i ∈ {2, 3}.

The positivity of the conditional variances implied by these models can be obtained by using only
positive coefficients in the expressions that define them. Regarding stationarity, a sufficient condition of
widespread use in the tvGARCH context (see for example [Roha 13]) is that δti + γti < 1 for the model
1, and that δti +γti +ρti + τti < 1 for the model 2, with i ∈ {1, 2, 3}. Numerical experiments show that,
in our particular situation, these conditions lack sharpness and produce mediocre estimation results.
In the following proposition, whose proof is provided in Appendix A.2, we establish less restrictive
stationarity solutions that take advantage of the periodicity of the GARCH coefficients. In order to
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formulate them, we need to introduce the matrices Ati associated to the Markov representations of the
recursions in (3.15) corresponding to the second model, as well as their expectations Ai := E [Ati ] (see
Section 2.2.2 in [Fran 10] for the details). Let {vt} ∼WN(03, I3) be the innovations introduced in the
definition of the state-space model (2.5b). Then:

Ati :=


γtiv

2
ti 0 τtiv

2
ti δtiv

2
ti 0 ρtiv

2
ti

1 0 0 0 0 0
0 1 0 0 0 0
γti 0 τti δti 0 ρti
0 0 0 1 0 0
0 0 0 0 1 0

 and Ai := E [Ati ] =


γi 0 τi δi 0 ρi
1 0 0 0 0 0
0 1 0 0 0 0
γi 0 τi δi 0 ρi
0 0 0 1 0 0
0 0 0 0 1 0

 .

Proposition 3.1 Consider the GARCH models with time-varying coefficients defined by the recursions
in the expression (3.15). If the innovations {vt} that drive them are independent, then the following
conditions imply the existence of a unique periodic (with period equal to three) stationary solution:

(i) For Model 1: (δ1 + γ1)(δ2 + γ2)(δ3 + γ3) < 1.

(ii) For Model 2: ρ(A3A2A1) < 1, where ρ(·) denotes the spectral radius.

The stationarity condition ρ(A3A2A1) < 1 for Model 2 cannot be implemented as such at the time of
estimation due to the convoluted analytic expression of the spectrum of A3A2A1. Indeed, a straightfor-
ward computation shows that:

A3A2A1 =


γ1ζ2ζ3 + τ3 τ2ζ3 τ1ζ2ζ3 δ1ζ2ζ3 + ρ3 ρ2ζ3 ρ1ζ2ζ3

γ1ζ2 τ2 τ1ζ2 δ1ζ2 ρ2 ρ1ζ2
γ1 0 τ1 δ1 0 ρ1

γ1ζ2ζ3 + τ3 τ2ζ3 τ1ζ2ζ3 δ1ζ2ζ3 + ρ3 ρ2ζ3 ρ1ζ2ζ3
γ1ζ2 τ2 τ1ζ2 δ1ζ2 ρ2 ρ1ζ2
γ1 0 τ1 δ1 0 ρ1

 ,

with ζi := δi + γi, i = {2, 3}. Therefore, as we already did for (2.31), we take advantage of the fact that
for any matrix norm || · || the inequality ρ(A3A2A1) ≤ ||A3A2A1|| is satisfied and hence it suffices to
require that ||A3A2A1|| < 1 to ensure that ρ(A3A2A1) < 1. We implement this condition by using, for
example, the maximum row sum norm (see [Horn 13]), in which case the inequality ||A|| < 1 amounts
to the following three conditions:

δ1 + γ1 + ρ1 + τ1 < 1, (3.16a)

(δ2 + γ2)(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2 < 1, (3.16b)

(δ3 + γ3)((δ2 + γ2)(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2) + τ3 + ρ3 < 1. (3.16c)

Forecasting using the intraday extended information sets. In order to forecast using the different
intraday information sets, we start by estimating heteroscedastic models of the type 1 or 2 on the filtered
GST {ε̂t} and on the corresponding residuals {ut}, that yield predictable variance processes with respect
to them. More specifically, we distinguish three cases:

(i) Forecasting with respect to F∗t2 : when we carry this out, we assume that the index returns
r1,t and r2,t quoted at the instants t1 and t2 of day t have already been observed, that the
corresponding GST returns ε̂1,t, and ε̂2,t have been filtered, and that the corresponding residuals
u1,t and u2,t are hence available. If we construct models of the type 1 or 2 for {ε̂t} and {ut} we
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obtain F∗t3 -predictable conditional variance processes {σε̂
t } and {σu

t }, that is, for any fixed day t,

the components of σε̂
t and σu

t are F∗t3−1 = F∗t2-measurable and

var
(
ε̂t | F∗t2

)
= diag

(
ε̂ 2
1,t, ε̂

2
2,t, σ

ε̂ 2
3,t

)
and var

(
ut | F∗t2

)
= diag

(
u 2
1,t, u

2
2,t, σ

u 2
3,t

)
.

(ii) Forecasting with respect to F∗t1 : in this case we use models of the type 1 or 2 for {ε̂t} and {ut}
but we fix the coefficient γ3 = 0. These restrictions produce F∗t2-predictable conditional variance

processes {σε̂
t } and {σu

t } for which

var
(
ε̂t | F∗t1

)
= diag

(
ε̂ 2
1,t, σ

ε̂ 2
2,t , σ

ε̂ 2
3,t

)
and var

(
ut | F∗t1

)
= diag

(
u 2
1,t, σ

u 2
2,t , σ

u 2
3,t

)
.

(iii) Forecasting with respect to F∗(t−1)3 = F∗t−1: in this case we use models of the type 1 or 2 for

{ε̂t} and {ut} but we fix the coefficients γ3 = γ2 = 0. These restrictions produce F∗t1 -predictable

conditional variance processes {σε̂
t } and {σu

t } for which

var
(
ε̂t | F∗(t−1)3

)
= diag

(
σε̂ 2
1,t , σ

ε̂ 2
2,t , σ

ε̂ 2
3,t

)
and var

(
ut | F∗(t−1)3

)
= diag

(
σu 2
1,t , σ

u 2
2,t , σ

u 2
3,t

)
.

We subsequently use these conditional variance processes to construct standardized vectors out of which
we specify DCC models as in (3.3)-(3.4) or in (3.5). This procedure yields conditional covariance matrices
{H ε̂

t } and {Hu
t } that have the same predictability properties as the conditional variance processes used

to construct them. More specifically, they are in general F∗t2-measurable, if γ3 = 0 in the conditional
variance models then they are F∗t1 -measurable, and if γ2 = γ3 = 0, then they are F∗(t−1)3-measurable.
Additionally, these covariance matrices are such that

ε̂t = Lε̂
t ξ

ε̂
t and ut = Lu

t ξ
u
t , with {ξε̂t }, {ξ

u
t } ∼ IN (0, I3) ,

and Lε̂
t (respectively, Lu

t ) the lower triangular Cholesky factor of H ε̂
t (respectively Hu

t ), that is, H ε̂
t =

Lε̂
tL

ε̂>
t (respectively, Hu

t = Lu
t L

u>
t ). The lower triangularity of Lε̂

t and Lu
t imply that the extended

intraday information sets generated by the components of ε̂t are identical to those spanned by the
corresponding entries of ξε̂t . This important observation allows us to explicitly write down in the
following paragraphs covariance forecasting formulas with respect to the different intraday extended
information sets.

(i) Covariance forecasting with respect to F∗t2 using models 1 or 2 with no restrictions. In
that case:

E
[
ε̂tε̂
>
t | F∗t2

]
= E

[
Lε̂
t ξ

ε̂
t ξ

ε̂>
t Lε̂>

t | F∗t2
]

= Lε̂
t E
[
ξε̂t ξ

ε̂>
t | F∗t2

]
Lε̂>
t

= Lε̂
t

 ξε̂ 2
1,t ξε̂1,tξ

ε̂
2,t 0

ξε̂1,tξ
ε̂
2,t ξε̂ 2

2,t 0
0 0 1

Lε̂>
t =: Σ∗ε̂,t|t2 . (3.17)

Analogously,

E
[
utu

>
t | F∗t2

]
= Lu

t

 ξu 2
1,t ξu1,tξ

u
2,t 0

ξu1,tξ
u
2,t ξu 2

2,t 0
0 0 1

Lu>
t =: Σ∗u,t|t2 . (3.18)
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(ii) Covariance forecasting with respect to F∗t1 using models 1 or 2 with the restriction
γ3 = 0. In that case:

E
[
ε̂tε̂
>
t | F∗t1

]
= Lε̂

t

 ξε̂ 2
1,t 0 0
0 1 0
0 0 1

Lε̂>
t =: Σ∗ε̂,t|t1 , (3.19)

E
[
utu

>
t | F∗t1

]
= Lu

t

 ξu 2
1,t 0 0
0 1 0
0 0 1

Lu>
t =: Σ∗u,t|t1 . (3.20)

(iii) Covariance forecasting with respect to F∗(t−1)3 using models 1 or 2 with the restrictions
γ2 = γ3 = 0. In that case:

E
[
ε̂tε̂
>
t | F∗(t−1)3

]
= Lε̂

tL
ε̂>
t = H ε̂

t =: Σ∗ε̂,t|(t−1)3 , (3.21)

E
[
utu

>
t | F∗(t−1)3

]
= Lu

t L
u>
t = Hu

t =: Σ∗u,t|(t−1)3 . (3.22)

A straightforward computation shows that in all three cases, these forecasts of the covariance matrices of
the processes {ε̂t} and {ut} yield the following forecasts for the covariance matrices H∗t|ti of the returns
based on the different intraday extended information sets:

H∗t|ti := E[(rt −α) (rt −α)
> | F∗ti ] = BP ∗t|tiB

> + Σ∗u,t|ti , (3.23)

where

P ∗t|ti := E
[
êtêt

> | F∗ti
]

=

 Σ∗ε̂,t|ti 0

0
ε̂ 2
2,t−1 ε̂2,t−1ε̂3,t−1

ε̂2,t−1ε̂3,t−1 ε̂ 2
3,t−1

 , (3.24)

Σ∗ε̂,t|ti is given by (3.17), (3.19), or (3.21), and Σ∗u,t|ti is provided in (3.18), (3.20), and (3.22).

4 Empirical performance of the GST-based volatility forecast-
ing schemes

In this section we carry out an empirical study in order to evaluate the one-day ahead volatility fore-
casting performances of the proposed linear and nonlinear state-space models concerning the log-returns
of three major market indices with non-synchronous closing times.

4.1 Dataset and competing models

Dataset. We use as dataset the daily closing values of three major stock market indices, namely,
NIKKEI 225, FTSE, and S&P5005. These markets are geographically located in different time zones
and have asynchronous closing times: NIKKEI 225 is an index based on the quotes of the Tokyo Stock
Exchange that closes at 6:00 UTC. FTSE and S&P500 are based on the quotes of the London and
the New York stock exchanges that close at 16:30 and 21:00 UTC, respectively. The closing values are
adjusted for dividend payments and stock splits and the resulting data is synchronized by taking into
account all the holidays of the different markets. The daily log-returns for the three indices are computed
between January 5, 1996 and April 1, 2015 which yields a dataset with T := 4581 observations. The

5Data were downloaded from the Yahoo Finance database
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whole log-returns sample is demeaned and it is divided into two parts. The first one corresponds to
the period between January 5, 1996 and April 1, 2013; it has length Test := 4095 and it is reserved for
estimation purposes. The remaining Tout := 486 observations from April 2, 2013 to April 1, 2015 are
reserved for an out-of-sample study consisting on one-day ahead volatility forecasting.

In order to illustrate the robustness of the results obtained in this empirical study, we have included
in the technical appendix in Section A.3 a similar analysis based on the same dataset but using a shorter
estimation period (January 5, 1996 – December 4, 2006) that does not contain the volatility events in
the Fall 2008. The out-of-sample study in that case comprises the entire Great Recession (December 5,
2006 – April 1, 2015).

Figure 2: Diagram representing the different variables, time labels, and chronology corresponding to the indices used in
the empirical study.

Competing models. We consider three groups of models whose comparative one-day ahead volatility
forecasting performance will be assessed, namely:

(i) Linear state space model combined with Models 1 and 2 (LSS Model 1/Model 2):
We use the linear state-space setup (2.5a)-(2.5b) and we estimate the components {ε̂t} of the
GST via the Kalman recursions (2.10)-(2.15), together with the model parameters by minimizing
minus the log-likelihood function provided in (2.16) associated with the considered Test in-sample
observations. The model has been properly identified using Proposition 2.1 by setting β1 = 1.
We proceed by estimating Hadamard DCC models on the filtered estimates {ε̂t} of the GST and
on the associated linear state-space model residuals {ut}. In order to construct the standardized
returns for the estimates {ε̂t} that are needed in the first step of the DCC estimation, we use
either Model 1 in (3.8)-(3.10) or Model 2 in (3.11)-(3.13). These dynamical prescriptions model
the conditional variances of the GST components taking into account the particular temporal
dependance between them due to the chronology of the market closings they originate from. In
this particular empirical experiment, the conditional variances of the residuals {ut} are modeled
using standard individual GARCH(1,1) models even though an approach analogous to the one
followed for the GST estimates based on Model 1 or Model 2 could be adopted. Hadamard DCC
models of the type (3.4) are used at the time of modeling the conditional variances of both for the
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GST components {ε̂t} and of the residuals {ut}. These are subsequently used in the construction
the one-day ahead forecast of the covariance matrix (3.1) of the indices log-returns.

(ii) Nonlinear state space model combined with Models 1 (NSS Model 1): A procedure
identical to the one presented in the previous point is followed but, in this case, using the nonlinear
state-space model (2.7a)-(2.7b) for the GST components {ε̂t} in which the Model 1 (2.17)-(2.19)
prescribes their conditional variances using a GARCH-type functional dependence adapted to their
chronology. The model has been properly identified using Proposition 2.2 by setting β1 = 1. As
in the previous case, two Hadamard DCC models are then used for both the filtered {ε̂t} and the
residuals {ut}. The deGARCHing of the GST components is performed by using the conditional
deviations implied by the Model 1 in (2.17)-(2.19). Again, as in the linear state-space model case,
a standard GARCH(1,1) model prescription is used to determine the conditional variances of the
residuals {ut} that is subsequently used to standardize them.

(iii) Scalar and Hadamard DCC models: These families of models are designed and widely used
for volatility forecasting and we hence choose them to serve as a benchmark for the forecasting
tasks that we perform in this empirical section. We proceed in a standard way by construct-
ing and estimating both scalar and Hadamard three dimensional models that use exclusively
the daily quoted information on the closing values of the indices under consideration and ignore
their non-synchronicity. The first stage of the model construction is common for both the scalar
and the Hadamard setups. The deGARCHing of the returns is accomplished with the condi-
tional deviations provided by standard one-dimensional GARCH(1,1) models that are estimated
on the individual daily returns. The estimation procedure in the case of the scalar DCC (3.5) is
straightforward (see for instance [Engl 09]), while the Hadamard prescription (3.4) presents some
complications due to the presence of positivity constraints to which the model parameters are
subjected and that we handle using the tools presented in [Bauw 15].

4.2 Volatility forecasting study

We now carry out volatility forecasting using the Tout observations reserved for the out-of-sample study
following the indications provided in Section 3. The one-step ahead volatility forecast is constructed in
a different way for each groups of models. More specifically,

(i) Volatility forecasting with the scalar/Hadamard DCC models: the value of the one-day
ahead forecast of the conditional covariance matrix Ht of the returns (r1,t, r2,t, r3,t), t ∈ {Test +
1, . . . , Test +Tout}, with respect to the information set Ft−1 is computed by setting Ht := DtRtDt,
with Rt given by (3.3)-(3.4) and Dt := diag(σ1,t, σ2,t, σ3,t) a diagonal matrix containing the
conditional standard deviations obtained out of the GARCH(1,1) model that has been previously
fit to the log-returns during the first stage of the DCC model construction.

(ii) GST based volatility forecasting with the nonlinear state-space models: the one-day
ahead forecast for the conditional covariance H∗t of the returns (r1,t, r2,t, r3,t) with respect to the
extended information set F∗t−1 is obtained out of the relation (3.1), namely H∗t|t−1 := BP ∗t B

> +

Σ∗u,t. In this expression B is the parameter matrix of the observation equation (2.7a) in the
nonlinear state-space model, P ∗t is the forecast with respect to F∗t−1 of the covariance matrix
of the state variables provided in (3.7), and Σ∗u,t is the forecast of the covariance matrix of the
nonlinear state-space model residuals (u1,t, u2,t, u3,t) with respect to the same information set.
The covariance matrix P ∗t in (3.7) is computed using the relation (3.6) and taking into account
the specific prescription imposed by Model 1 (2.20)-(2.22) on the elements of the diagonal matrix
Dt := diag (σ1,t (êt−1) , σ2,t (êt−1) , σ3,t (êt−1)).
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(iii) GST based volatility forecasting with the linear state-space models: Since in the linear
setup the extended information sets can be updated more frequently, we use this feature to improve
the forecasts. As it has been discussed earlier, we distinguish three separate cases in the context
of the LSS Model 1/Model 2 depending on the extended intraday information sets involved:

1. Forecasting with respect to extended information set F∗t2 : Estimation of models 1
and 2 subjected to no parametric restrictions. The forecast H∗t|t2 is computed using the

expression (3.23) together with (3.17) and (3.18).

2. Forecasting with respect to extended information set F∗t1 : Estimation of models 1
and 2 is subjected to the parametric restriction γ3 = 0. The forecast H∗t|t1 is computed using

the expression (3.23) together with (3.19) and (3.20).

3. Forecasting with respect to extended information set F∗(t−1)3 = F∗t−1: Estimation of
models 1 and 2 is subjected to the parametric restrictions γ2 = γ3 = 0. The forecast H∗t|t−1
is computed using the expression (3.23) together with (3.21) and (3.22).

4.3 Model confidence sets based on covariance and KLIC loss functions

The different models are compared using the model confidence set (MCS) approach introduced in
[Hans 03, Hans 11] with loss functions that involve the daily log-returns of the three indices under
consideration and the forecasts of the conditional covariance matrices associated to each of the models
under consideration.

Covariance loss functions. We will use three different covariance loss functions in the implementation
of the MCS approach depending on the specific intraday extended information set used at the time of
forecasting, namely:

dcovF∗
t2

:=
(
r23,t − h33,t

)2
, (4.1)

dcovF∗
t1

:=
1

3

∑
i≤j=2,3

(ri,trj,t − hij,t)2 , (4.2)

dcovF∗
(t−1)3

:=
1

6

∑
i≤j=1,2,3

(ri,trj,t − hij,t)2 , (4.3)

where t ∈ {Test +1, . . . , Test +Tout} and hij,t are the (i, j)-entries of the corresponding model dependent
forecasts for the conditional covariance matrices at t. More specifically, when using the scalar/Hadamard
DCC model, we will consider the conditional covariance matrix Ht at t with respect to the information
set Ft−1. In the nonlinear state-space model case, we will consider H∗t|t−1 associated to F∗t−1 and

determined by (3.1). Finally, when dealing with the linear state-space model case, we will use the
forecasts H∗t|ti determined by (3.23) and based on the different intraday extended information sets.

The MCS approach identifies, from a set of competing models, the subset of models that are equiv-
alent in terms of out-of-sample conditional covariance predictive ability and which outperform all the
other models at a considered significance level α for the so called equivalence test. We set this signifi-
cance level at 10% and 25%, and use 100 000 block bootstrap replicates with block length two in order
to obtain the distribution of the relevant test statistic under the null of the equal predictive ability.

Tables 4.1 and 4.2 contain the MCS results associated to the values of the covariance loss functions
obtained in 36 different out-of-sample time intervals of the form {Test + 1, . . . , Test + 136 + 10k} with ,
k = {0, 1, . . . , 35}. The first 136 elements in the out-of-sample period are included in all these intervals
in order to ensure that there are enough values available for the bootstrapping process that is necessary
in the estimation of the distribution of the model equivalence test statistic. The date corresponding to
the end of this offset interval is October 18, 2013.



Volatility forecasting using global stochastic financial trends extracted from non-synchronous data 20

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dcovF∗
t2

4 4 36 8 4 36 8 4 0

Sum p-values 1.0384 1.0384 36.0000 1.8603 1.2836 16.6883 1.7096 1.2841 0

MCS dcovF∗
t1

4 4 —– 32 8 —– 22 36 0

Sum p-values 1.4948 1.4948 —– 29.5786 2.2696 —– 9.8610 31.1728 0.0013

MCS dcovF∗
(t−1)3

34 34 —– —– 34 —– —– 36 2

Sum p-values 16.3389 17.2042 —– —– 11.9633 —– —– 35.2726 0.4470

Table 4.1: Model confidence sets (MCS) constructed using the covariance based loss functions (4.1), (4.2), and (4.3),
respectively, for 36 different out-of-sample lengths l(k), namely for l(k) = Test + 136 + 10k, k ∈ {0, 1, . . . , 35}.
For each model and information set under consideration the corresponding value indicates the number of times
that model has been included in the MCS at a 90% confidence level; the value underneath indicates the sum of
all the MCS p-values obtained by a given model in the 36 tests. The best performing models for the considered
information set are marked in bold red.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dcovF∗
t2

0 0 36 0 0 16 0 0 0

Sum p-values 1.0579 1.0579 36.0000 1.8893 1.3104 9.5121 1.7355 1.3109 0

MCS dcovF∗
t1

0 0 —– 29 0 —– 16 36 0

Sum p-values 1.4963 1.4963 —– 29.5771 2.2736 —– 9.8608 31.1885 0.0013

MCS dcovF∗
(t−1)3

22 22 —– —– 22 —– —– 36 1

Sum p-values 16.3370 17.1966 —– —– 11.9473 —– —– 35.2788 0.4492

Table 4.2: Model confidence sets (MCS) constructed using the covariance based loss functions (4.1), (4.2), and (4.3),
respectively, for 36 different out-of-sample lengths l(k), namely for l(k) = Test + 136 + 10k, k ∈ {0, 1, . . . , 35}.
For each model and information set under consideration the corresponding value indicates the number of times
that model has been included in the MCS at a 75% confidence level; the value underneath indicates the sum of
all the MCS p-values obtained by a given model in the 36 tests. The best performing models for the considered
information set are marked in bold red.

These tables report, for each model, the number of times that it is included in the model confidence
set with the a significance level of 10% or 25%. The second figure represents the total sum of the
36 obtained MCS p-values corresponding to each model. Figures 3-5 depict the evolution of the MCS
p-values when the number of the out-of-sample observations considered grows with a step equal to ten
observations. These results show that:

(i) The group of Kalman-based models significantly outperforms the standard DCC models
regardless the information sets involved.

(ii) The linear state-space models significantly outperform their nonlinear state-space
counterparts regardless the information sets involved.

The appendix A.3 contains the results of an analogous experiment with a shorter estimation period
that does not contain the high volatility events of the Fall 2008 period. In that situation the empirical
study shows that: first, the conclusion (i) above holds and, second, the nonlinear state-space model
based approach outperforms the linear one when the information set involved is the largest
available.
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Figure 3: Evolution of the p-values of the MCS test based on the covariance loss function dcovF∗
t2

in (4.1) in terms of the

out-of-sample length. The significance level of the MCS test is α = 0.25.
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in (4.2) in terms of the

out-of-sample length. The significance level of the MCS test is α = 0.25.
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Figure 5: Evolution of the p-values of the MCS test based on the covariance loss function dcovF∗
(t−1)3

in (4.3) in terms of the

out-of-sample length. The significance level of the MCS test is α = 0.25.

KLIC loss functions. We also implement the MCS approach using loss functions based on the
Kullback-Leibler Information Criterion (KLIC) [Kull 51]. We recall that the KLIC divergenceDTest,t(φ‖ψ)
of a density ψ that depends on the parameters θ from another density φ, is defined as:

DTest,t(φ‖ψ) =
1

t− Test

t∑
i=Test+1

ln

[
φi(ri)

ψi(ri;θ)

]
, t ∈ {Test + 1, . . . , Test + Tout} (4.4)

where φi(ri) is the real underlying conditional density associated to the data under consideration and
ψi(ri;θ) is the one coresponding to the competing model of interest.

We use this information criterion in order to construct a loss function to evaluate the out-of-sample
density forecasting abilities of the considered models, that we subsequently use in the MCS context
(see [Bao 06] and [Banu 15]). Since the terms having to do with the real density φ(r) are common
to all the models and appear as an additive constant, we then disregard the numerator in (4.4) at
the time of constructing the KLIC loss functions. Additionally, in order to account for the specific
intraday extended information sets used at the time of forecasting, we use again three different KLIC
loss functions adapted to these different filtrations, namely:

dKLIC
F∗

t2
:= − 1

t− Test

t∑
i=Test+1

ln

[
1√

2πh33,i
exp

(
−

r23,i
2h33,i

)]
, (4.5)
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dKLIC
F∗

t1
:=− 1

t− Test

t∑
i=Test+1

ln

[
1

2π

[
det

(
h22,i h23,i
h32,i h33,i

)]− 1
2

×

× exp

(
−1

2

(
r2,i
r3,i

)>(
h22,i h23,i
h32,i h33,i

)−1(
r2,i
r3,i

))]
, (4.6)

dKLIC
F∗

(t−1)3

:= − 1

t− Test

t∑
i=Test+1

ln

[
1

(2π)3/2det(Hi)1/2
exp

(
−1

2
r>i H

−1
i ri

)]
, (4.7)

where t ∈ {Test+1, . . . , Test+Tout} and hij,t are the (i, j)-entries of the model dependent forecasts for the
conditional covariance matrices at t explained above in the context of the covariance loss functions (4.1)-
(4.3).

Tables 4.3 and 4.4 contain the MCS results at significance levels 10% and 25% associated to the
values of the covariance loss functions obtained in 36 different out-of-sample time intervals of the form
{Test + 1, . . . , Test + 136 + 10k} with k = {0, 1, . . . , 35}.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dKLIC
F∗

t2

0 0 0 0 0 36 0 0 0

Sum p-values 0 0 0 0 0 36.0000 0 0 0

MCS dKLIC
F∗

t1

0 0 —– 36 0 —– 0 0 0

Sum p-values 0 0 —– 36.0000 0 —– 0 0 0

MCS dKLIC
F∗

(t−1)3

0 0 —– —– 0 —– —– 36 0

Sum p-values 0 0 —– —– 0 —– —– 36.0000 0

Table 4.3: Model confidence sets (MCS) constructed using the KLIC loss functions (4.5), (4.6), and (4.7), for 36 different
out-of-sample lengths l(k), namely for l(k) = Test+136+10k, k ∈ {0, 1, . . . , 35}. For each model and information
set under consideration the corresponding value indicates the number of times that model has been included in
the MCS at a 90% confidence level; the value underneath indicates the sum of all the MCS p-values obtained
by a given model in the 36 tests. The best performing models for the considered information set are marked in
bold red.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dKLIC
F∗

t2

0 0 0 0 0 36 0 0 0

Sum p-values 0 0 0 0 0 36.0000 0 0 0

MCS dKLIC
F∗

t1

0 0 —– 36 0 —– 11 2 0

Sum p-values 0 0 —– 34.4943 0 —– 9.9140 1.2591 0

MCS dKLIC
F∗

(t−1)3

0 0 —– —– 0 —– —– 36 0

Sum p-values 0 0 —– —– 0 —– —– 36.0000 0

Table 4.4: Model confidence sets (MCS) constructed using the KLIC loss functions (4.5), (4.6), and (4.7), for 36 different
out-of-sample lengths l(k), namely for l(k) = Test+136+10k, k ∈ {0, 1, . . . , 35}. For each model and information
set under consideration the corresponding value indicates the number of times that model has been included in
the MCS at a 75% confidence level; the value underneath indicates the sum of all the MCS p-values obtained
by a given model in the 36 tests. The best performing models for the considered information set are marked in
bold red.
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Figure 6: The values of the KLIC loss function dKLIC
F∗
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in (4.5) for the competing models in terms of the out-of-sample

length.
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Figures 6-8 depict the evolution of the loss function values (4.5)-(4.7) with 10 observations stepwise
increase in the out-of-sample length. The lowest values correspond to the best performing models. The
results are robust with respect to the number of the out-of-sample observations and as for the previous
MCS experiment we can conclude that:

(i) The group of Kalman-based models significantly outperforms the standard DCC models
regardless the information sets involved.

(ii) The linear state-space models significantly outperform their nonlinear state-space
counterparts regardless the information sets involved.

The appendix A.3 contains the results of an analogous experiment with a shorter estimation period
that does not contain the high volatility events of the Fall 2008 period. In that situation the empirical
study shows that: first, the conclusion (i) above holds and, second, the nonlinear state-space model
based approach significantly outperforms the linear one when the information set involved
is the largest available.

5 Conclusions

In this work we have used linear and nonlinear state-space models that extract global stochastic financial
trends out of asynchronous daily data. These models are specifically constructed to take advantage of
the intraday arrival of closing information coming from different international markets located in lagged
time zones in order to enhance volatility and correlation forecasting performance.

The state-space models considered incorporate nonlinearities at various levels capable of capturing
the heteroscedasticity that global trends empirically exhibit. This feature is of much importance since
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correlation forecasting is the main application developed. The identification of these models, as well as
the constraints that their parameters need to satisfy in order to exhibit stationary solutions and positive
semidefinite conditional correlation matrices, are carefully studied.

A volatility forecasting empirical study using the adjusted closing values of three major indices
(NIKKEI, FTSE, and S&P500) has been conducted using the models introduced in the theoretical
part and two different estimation periods. In this experiment, we use the model confidence set (MCS)
approach of [Hans 03, Hans 11] implemented with loss functions constructed with the conditional co-
variance matrices implied by the different models under consideration. The results show that the
proposed Kalman-based forecasting scheme exhibits excellent and statistically significant
performance improvements when compared to the use of standard multivariate parametric correla-
tion models (scalar and non-scalar DCC).

References

[Aiel 13] G. P. Aielli. “Dynamic Conditional Correlation: on Properties and Estimation”. Journal of
Business & Economic Statistics, Vol. 31, No. 3, pp. 282–299, July 2013.
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A Appendices and supplementary material

A.1 Proof of Proposition 2.1

Let A be an element of the general linear group of order five, that is, A ∈ GL5(R). Consider the model
prescription (2.5a)-(2.5b) and transform it according to the following prescription. First, replace the
parameter B by BA−1A in (2.5a) and second, apply A to both sides of (2.5b). This yields:{

rt = α+BA−1Aet + ut, (A.1a)

Aet = ATet−1 +ARvt−1. (A.1b)

The model (2.5a)-(2.5b) remains invariant under this transformation if the following conditions hold:

(i) BA−1 has the same entries structure as B.

(ii) The matrices A and T commute, that is, AT = TA.

(iii) Q̄ := AQA> with Q := RR> is a matrix of the same entries structure as Q, namely, Q̄ =
diag(σ̄2

v,1, σ̄
2
v,2, σ̄

2
v,3, 0, 0), for some σ̄2

v,1, σ̄
2
v,2, σ̄

2
v,3 ∈ R+.
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Indeed, under these hypotheses, the transformed equations (A.1a)-(A.1b) become:{
rt = α+ (BA−1)(Aet) + ut, (A.2a)

(Aet) = T (Aet−1) +ARvt−1. (A.2b)

It is hence easy to see that the model (A.2a)-(A.2b) has the same structure as the original model (2.5a)-
(2.5b) with the variables et replaced by (Aet), provided that BA−1 has the same entries structure as B
and that the covariance matrix Σ(v̄t) of v̄t := ARvt is of the form Q̄ = diag(σ̄2

v,1, σ̄
2
v,2, σ̄

2
v,3, 0, 0), with

some σ̄v,1, σ̄v,2, σ̄v,3 ∈ R+. This covariance matrix equals

Σ(v̄t) := E
[
v̄tv̄t

>] = E
[
ARvtv

>
t R
>A>

]
= ARR>A> = AQA> (A.3)

with Q := RR>.
We first study what the implications that conditions (i)-(iii) have in the structure of A ∈ GL5(R).

First, by point (iii) suppose that A ∈ GL5(R) is such that for any σv,1, σv,2, σv,3 ∈ R+ there exist
σ̄v,1, σ̄v,2, σ̄v,3 ∈ R+ such that

A ·


σ2
v,1 0 0 0 0
0 σ2

v,2 0 0 0
0 0 σ2

v,3 0 0
0 0 0 0 0
0 0 0 0 0

 ·A> =


σ̄2
v,1 0 0 0 0
0 σ̄2

v,2 0 0 0
0 0 σ̄2

v,3 0 0
0 0 0 0 0
0 0 0 0 0

 . (A.4)

Define now Σv :=

 σ2
v,1 0 0
0 σ2

v,2 0
0 0 σ2

v,3

, Σ̄v :=

 σ̄2
v,1 0 0
0 σ̄2

v,2 0
0 0 σ̄2

v,3

, and let K,P ∈ M3, C,W ∈

M3,2, D,X ∈ M2,3, E,U ∈ M2 be such that A =

(
K C
D E

)
, A> =

(
K> D>

C> E>

)
, and A−1 =(

P W
X U

)
. Condition (A.4), namely, AQA> = Q̄ is equivalent to A−1AQA> = A−1Q̄ or to QA> =

A−1Q̄ which in the notation that we just introduced amounts to(
Σv 0
0 0

)(
K> D>

C> E>

)
=

(
P W
X U

)(
Σ̄v 0
0 0

)
. (A.5)

Expression (A.5) is equivalent to the following three conditions:

ΣvK
> = P Σ̄v, (A.6)

ΣvD
> = 0, (A.7)

XΣ̄v = 0. (A.8)

We continue by noticing that since Σv and Σ̄v are invertible, the expressions (A.7) and (A.8) amount

to D> = 0 and X = 0, respectively. This shows that A =

(
K C
0 E

)
and A−1 =

(
P W
0 U

)
. We

now impose the condition (ii), that is, AT = TA:(
K C
0 E

)(
0 0
M 0

)
=

(
0 0
M 0

)(
K C
0 E

)
(A.9)
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with M :=

(
0 1 0
0 0 1

)
. This relation implies that

CM = 0, (A.10)

EM = MK, (A.11)

0 = MC. (A.12)

The expressions (A.10) and (A.12) imply that C = 0, which yields that

A =

(
K 0
0 E

)
. (A.13)

As A is by definition invertible, in view of (A.13) so are the submatrices K and E, and hence in the
block structure of A−1 we can set W = 0, P = K−1, and U = E−1, respectively, that is,

A−1 =

(
K−1 0

0 E−1

)
. (A.14)

At the same time it is easy to verify that the relation (A.11) implies that

K =

 k11 k12 k13
0

E0

 . (A.15)

Let now denote by k∗ij and by e∗ij with i, j ∈ {1, 2, 3} the generic entries of the matrices K−1 and E−1,
respectively. We may hence write by (A.15) that

K−1 =


1

k11
k∗12 k∗13

0
E−10

 =


1

k11
k∗12 k∗13

0 e∗11 e∗12
0 e∗21 e∗22

 . (A.16)

We now use the fact that condition (i) requires that the matrix BA−1 has the same structure as B,
that is, there exist some β̄1, β̄2, β̄3 ∈ R such that

BA−1 =

 β̄1 0 0 β̄1 β̄1
β̄2 β̄2 0 0 β̄2
β̄3 β̄3 β̄3 0 0

 . (A.17)

We first partition the matrix B and write it as B := (B1|B2), with

B1 =

 β1 0 0
β2 β2 0
β3 β3 β3

 , B2 =

 β1 β1
0 β2
0 0

 . (A.18)

We now use (A.14), (A.18) and write

BA−1 = (B1|B2) ·
(
K−1 0

0 E−1

)
= (B1K

−1|B2E
−1)

which by (A.17) requires both β1 0 0
β2 β2 0
β3 β3 β3

 ·


1

k11
k∗12 k∗13

0 e∗11 e∗12
0 e∗21 e∗22

 =

 β̄1 0 0
β̄2 β̄2 0
β̄3 β̄3 β̄3

 (A.19)
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and  β1 β1
0 β2
0 0

( e∗11 e∗12
e∗21 e∗22

)
=

 β̄1 β̄1
0 β̄2
0 0

 . (A.20)

The relations implied by the matrix equation (A.19) for the entries (1,2), (1,3), and (2,3) yield that
k∗12 = 0, k∗13 = 0, and e∗12 = 0, respectively. At the same time, the relation for the component (2,1) of the
matrix equation (A.20) yields that e∗21 = 0. Consequently, both K−1 and E−1 are diagonal matrices.
Finally, the relation (A.19) computed for the corresponding diagonal elements of K−1 implies that that

e∗11 =
1

k11
, e∗22 =

1

k11
and we can hence write that

K = λI3, λ ∈ R.

Consequently, by (A.15)
E = λI2,

which automatically guarantees by (A.13) that A = λI5, necessarily. This implies that the matrix B
in the model (2.5a)-(2.5b) is defined up to multiplication by a homothety and hence the model is well
identified provided that one of the elements βi or σ2

v,i, i ∈ {1, 2, 3} is set to a constant (positive in the

case of σ2
v,i). �

A.2 Proof of Proposition 3.1

Proof of part (i). The recursion that defines the tvGARCH(1,1) model in (3.15) implies that (see for
example formula (2.2) in [Ambr 08]):

σ2
ti =

∞∑
j=0

ati−j

j∏
k=1

(
γti−k+1v

2
ti−k + δti−k+1

)
=

∞∑
j=0

ati−j [btibti−1 · · · bti−j+1] , (A.21)

where bti−k+1 :=
(
γti−k+1v

2
ti−k + δti−k+1

)
. We notice that the process {bti} is made of positive inde-

pendent random variables. Moreover, by the Cauchy rule for series with non-negative terms, expres-
sion (A.21) converges if

λ := lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

< 1.

We therefore compute:

lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

= lim
j→∞

exp

[
1

j

j∑
k=1

log (bti−k+1)

]
= exp lim

j→∞

[
1

j

j∑
k=1

log (bti−k+1)

]

= exp
1

3

3∑
l=1

E
[
log
(
γlv

2
t + δl

)]
≤ exp

1

3

3∑
l=1

log
(
E
[(
γlv

2
t + δl

)])
(A.22)

= [(δ1 + γ1)(δ2 + γ2)(δ3 + γ3)]
1/3

, (A.23)

where the first equality in (A.22) follows from the strong law of large numbers and the relation that
follows it is a consequence of Jensen’s inequality. The inequality in the statement implies hence by (A.23)

that λ := lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

< 1. A strategy mimicking, for example, the proof of Theorem

2.1 in [Fran 10], shows that in that situation model 1 has a unique stationary solution.
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Proof of part (ii). By Theorem 2.4 in [Fran 10], it suffices to show that the top Lyapunov exponent
γ of the sequence {Ati} is smaller than zero. By Theorem 2.3 in [Fran 10]:

γ = lim
ti→∞

1

ti
E [log ‖AtiAti−1 · · ·A1‖] ,

with ‖ · ‖ any matrix norm. We now use the norm ‖A‖ =
∑

i,j |aij | and notice that if all the elements
of A are positive then

E [‖A‖] = ‖E [A] ‖. (A.24)

Consequently,

γ = lim
ti→∞

1

ti
E [log ‖AtiAti−1 · · ·A1‖] ≤ lim

ti→∞

1

ti
log (E [‖AtiAti−1 · · ·A1‖]) (A.25)

= lim
ti→∞

1

ti
log (‖E [AtiAti−1 · · ·A1] ‖) = lim

ti→∞

1

ti
log (‖E [Ati ] E [Ati−1] · · ·E [A1] ‖) (A.26)

=
1

3
lim
t→∞

1

t
log
(
‖A3A2A1‖t

)
=

1

3
log (ρ(A3A2A1)) = log

(
ρ(A3A2A1)1/3

)
. (A.27)

The relation in (A.25) follows from Jensen’s inequality, the first equality in (A.26) is a consequence
of (A.24) and the second one of the independence of the elements in the process {Ati}. Finally, in (A.27)
we use Gelfand’s formula for the characterization of the spectral radius of a matrix. The inequality
γ ≤ log

(
ρ(A3A2A1)1/3

)
that we just proved guarantees that the condition in the statement ensures

that log
(
ρ(A3A2A1)1/3

)
< 0 and hence γ < 0, as required.

In both cases, the arguments that we provided show that the unconditional variance E
[
σ2
ti

]
depends

only on i and hence establishes the periodic stationarity claimed in the statement. �

A.3 Empirical performance of the GST-based volatility forecasting schemes
using a smaller estimation sample

In this appendix we illustrate the robustness of the results obtained in the empirical study in Section 4 by
performing a similar analysis based on the same dataset but using a shorter estimation period (January
5, 1996 – December 4, 2006) that does not contain the volatility events in the Fall 2008. The out-of-
sample study in that case comprises the entire Great Recession (December 5, 2006 – April 1, 2015).
This choice yields a dataset with a length of T := 4581 observations and for which Test := 2600 and
Tout := 1981.

The study follows the same scheme as the one in Section 4. In particular, we consider the same
competing models and the same loss functions at the time of implementing the MCS strategy. In
the case of the covariance loss functions (4.1)-(4.3), the results of the corresponding MCS comparison
are contained in the Tables A.5 and A.6. These results correspond to the values of the covariance loss
functions obtained in 185 different out-of-sample time intervals of the form {Test+1, . . . , Test+141+10k}
with , k = {0, 1, . . . , 184}. The first 141 elements in the out-of-sample period are included in all these
intervals in order to ensure that there are enough values available for the bootstrapping process that
is necessary in the estimation of the distribution of the model equivalence test statistic. The date
corresponding to the end of this offset interval is July 10, 2007.

Figures 9-11 depict the evolution of the MCS p-values when the number of the out-of-sample ob-
servations considered grows with a step equal to 10 observations and the significance level is set to
α = 0.25. Notice that only the figures corresponding to the DCC benchmarks and to the models that
exhibit the best performances for each of the intraday extended information sets are represented in the
relevant figures.
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It is worth to be noted that the most visible changes in the behavior of the models illustrated in
Figures 9-11 takes place in the interval given by the observations 431 and 481, which corresponds to the
period of time between September 25, 2008 and December 10, 2008 in which well-known market events
created high levels of volatility and noticeable dynamical changes.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dcovF∗
t2

21 21 185 39 15 40 39 12 15

Sum p-values 13.6606 13.6606 177.9308 22.1921 11.5341 29.0059 20.4807 11.2417 12.7414

MCS dcovF∗
t1

16 16 —– 185 18 —– 184 19 27

Sum p-values 14.3331 14.3888 —– 184.2558 14.0385 —– 45.4232 15.9279 16.1003

MCS dcovF∗
(t−1)3

165 166 —– —– 22 —– —– 176 185

Sum p-values 120.2549 120.3713 —– —– 12.5710 —– —– 157.3145 174.6149

Table A.5: Model confidence sets (MCS) constructed using the covariance based loss functions (4.1), (4.2), and (4.3),
respectively, for 185 different out-of-sample lengths l(k), namely for l(k) = Test +141+10k, k ∈ {0, 1, . . . , 184}.
For each model and information set under consideration, the corresponding value indicates the number of times
that that model has been included in the MCS at a 90% confidence level; the value underneath indicates the
sum of all the MCS p-values obtained by a given model in the 185 tests. The best performing models for the
considered information set are marked in bold red.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dcovF∗
t2

7 7 183 29 1 33 28 2 6

Sum p-values 13.5594 13.5594 177.9236 22.0953 11.4554 28.9149 20.3553 11.1596 12.7184

MCS dcovF∗
t1

5 5 —– 185 4 —– 62 10 11

Sum p-values 14.3411 14.4063 —– 184.2549 14.0456 —– 45.4273 15.9334 16.0872

MCS dcovF∗
(t−1)3

155 155 —– —– 1 —– —– 156 185

Sum p-values 120.2530 120.3687 —– —– 12.5903 —– —– 157.3078 174.6051

Table A.6: Model confidence sets (MCS) constructed using the covariance based loss functions (4.1), (4.2), and (4.3),
respectively, for 185 different out-of-sample lengths l(k), namely for l(k) = Test +141+10k, k ∈ {0, 1, . . . , 184}.
For each model and information set under consideration the corresponding value indicates the number of times
that model has been included in the MCS at a 75% confidence level; the value underneath indicates the sum
of all the MCS p-values obtained by a given model in the 185 tests. The best performing models for the
considered information set are marked in bold red.

The results corresponding to the KLIC loss functions (4.5)-(4.7) are contained in Tables A.7 and A.8
at a significance levels 10% and 25%, respectively. These values are obtained out of 185 different out-of-
sample time intervals of the form {Test+1, . . . , Test+141+10k} with k = {0, 1, . . . , 184}. As the previous
MCS experiment constructed using covariance based loss functions already showed, the forecasting
approaches based on the linear state-space Model 1/Model 2 and nonlinear state-space
Model 1 setups significantly outperform the standard DCC models in this context. Figures
12-8 depict the evolution of the loss function values (4.5)-(4.7) using a 10 observations stepwise increase
in the out-of-sample length. The lowest values correspond to the best performing models. The results
that we just obtained show the robustness of the study conducted in Section 4.3 with respect to the
choice of estimation period and the number of the out-of-sample observations.
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Figure 9: Evolution of the p-values of the MCS test based on the covariance loss function dcovF∗
t2

in (4.1) in terms of the

out-of-sample length. The significance level of the MCS test is α = 0.25.
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Figure 10: Evolution of the p-values of the MCS test based on the covariance loss function dcovF∗
t1

in (4.2) in terms of the

out-of-sample length. The significance level of the MCS test is α = 0.25.
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Figure 11: Evolution of the p-values of the MCS test based on the covariance loss function dcovF∗
(t−1)3

in (4.3) in terms of

the out-of-sample length. The significance level of the MCS test is α = 0.25.

DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dKLIC
F∗

t2

22 23 0 0 0 167 0 0 0

Sum p-values 9.8074 22.7378 0 0 0 165.9413 0 0 0

MCS dKLIC
F∗

t1

0 3 —– 0 0 —– 185 0 0

Sum p-values 0 1.6090 —– 0 0 —– 185.0000 0 0

MCS dKLIC
F∗

(t−1)3

0 16 —– —– 0 —– —– 0 175

Sum p-values 0 13.3927 —– —– 0 —– —– 0 175.0000

Table A.7: Model confidence sets (MCS) constructed using the KLIC loss functions (4.5), (4.6), and (4.7), for 185 different
out-of-sample lengths l(k), namely for l(k) = Test + 141 + 10k, k ∈ {0, 1, . . . , 184}. For each model and
information set under consideration the corresponding value indicates the number of times that model has
been included in the MCS at the 90% confidence level; the value underneath indicates the sum of all the MCS
p-values obtained by a given model in the 185 tests. The best performing models for the considered information
set are marked in bold red.
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DCC models Linear Nonlinear
state-space models state-space model

Scalar Hadamard Model 1 Model 1 Model 1 Model 2 Model 2 Model 2 Model 1
(γ3 = 0) (γ3, γ2 = 0) (γ3 = 0) (γ3, γ2 = 0)

MCS dKLIC
F∗

t2

18 23 0 0 0 167 0 0 0

Sum p-values 9.8125 22.7399 0 0 0 165.9375 0 0 0

MCS dKLIC
F∗

t1

0 3 —– 0 0 —– 185 0 0

Sum p-values 0 1.6073 —– 0 0 —– 185.0000 0 0

MCS dKLIC
F∗

(t−1)3

0 15 —– —– 0 —– —– 0 175

Sum p-values 0 13.3896 —– —– 0 —– —– 0 175.0000

Table A.8: Model confidence sets (MCS) constructed using the KLIC loss functions (4.5), (4.6), and (4.7), for 185 different
out-of-sample lengths l(k), namely for l(k) = Test + 141 + 10k, k ∈ {0, 1, . . . , 184}. For each model and
information set under consideration the corresponding value indicates the number of times that model has
been included in the MCS at the 75% confidence level; the value underneath indicates the sum of all the MCS
p-values obtained by a given model in the 185 tests. The best performing models for the considered information
set are marked in bold red.
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Figure 12: The values of the KLIC loss function dKLIC
F∗

t2

in (4.5) for the competing models in terms of the out-of-sample

length.
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Figure 13: The values of the KLIC loss function dKLIC
F∗

t1

in (4.6) for the competing models in terms of the out-of-sample

length.
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Figure 14: The values of the KLIC loss function dKLIC
F∗

(t−1)3

in (4.7) for the competing models in terms of the out-of-sample

length.
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