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Abstract

We propose a regularized factor-augmented vector autoregressive (FAVAR) model that allows

for sparsity in the factor loadings. In this framework, factors may only load on a subset of variables

which simplifies the factor identification and their economic interpretation. We identify the factors

in a data-driven manner without imposing specific relations between the unobserved factors and

the underlying time series. Using our approach, the effects of structural shocks can be investi-

gated on economically meaningful factors and on all observed time series included in the FAVAR

model. We prove consistency for the estimators of the factor loadings, the covariance matrix of

the idiosyncratic component, the factors, as well as the autoregressive parameters in the dynamic

model. In an empirical application, we investigate the effects of a monetary policy shock on a broad

range of economically relevant variables. We identify this shock using a joint identification of the

factor model and the structural innovations in the VAR model. We find impulse response functions

which are in line with economic rationale, both on the factor aggregates and observed time series level.
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1 Introduction

In this paper, we propose a regularized factor-augmented vector autoregressive (FAVAR) model

to investigate the effects of a structural macroeconomic shock on the economy in the presence

of many observed time series. Since the seminal work of Sims (1980), small scale vector

autoregressive (VAR) models are conventionally used to analyze the dynamic effects of structural

shocks on economic systems. Structural shocks arise as linear combinations of the reduced form

innovations which depend on the variables included. Since VAR models typically incorporate

only relatively few variables, the information set spanned by those models is rather limited

and important characteristics on the underlying economy may be omitted. This problem is

known as “non-fundamentalness”, which implies that there is no direct mapping between the

reduced form and structural innovations and misspecified structural shocks are obtained.1 In

an empirical application, this informational deficiency may e.g. result in misleading impulse

response patterns in the form of price puzzles as described in Sims (1992) and Ramey (2016).

Hence, in order to span the entire space of the structural shocks, it is crucial to incorporate

all relevant variables. However, as the number of parameters increases with the square of the

number of included variables, the extent to which a VAR model can be enlarged is limited by

the number of observations.

To circumvent these drawbacks, dimension reduction techniques that enable the use of

the informational content of many time series for structural analysis have obtained increasing

attention. A frequently used approach is the FAVAR model introduced by Bernanke, Boivin,

and Eliasz (2005). FAVAR models have been used to investigate structural monetary policy,

fiscal or oil price shocks. An incomplete list comprises the studies by Del Negro and Otrok

(2007), Boivin and Giannoni (2007), Boivin, Giannoni, and Mihov (2009), Mumtaz and Surico

(2009), Kilian and Lewis (2011) and Stock and Watson (2016).

A FAVAR model decomposes the co-movement of the observed time series into a common

and idiosyncratic component. The common component is composed of latent and observed

factors that affect the underlying time series according to the corresponding weights represented

by the factor loadings matrix. The observable factors behave similar to the latent factors,

but they are measured without estimation error. The idiosyncratic innovations allow for weak

1 An overview of the literature is provided in a review paper by Alessi, Barigozzi, and Capasso (2011).
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cross-sectional and serial correlation in the spirit of Chamberlain and Rothschild (1983). As the

number of latent and observed factors is much smaller than the number of time series included,

the information contained in a large panel of variables is condensed into a small number of

factors. Hence, the FAVAR framework can be used as a dimension reduction strategy. To allow

for dynamics, the FAVAR model incorporates an autoregressive structure in both types of factors.

The vector autoregressive system based on the FAVAR model has a rich information set but

involves only a small number of factors that need to be estimated. Due to the large number

of time series incorporated in the high-dimensional FAVAR process, the model accommodates

enough variables to span many macroeconomic shocks without an omitted variable bias.

There is an identification problem associated with the FAVAR approach. In contrast to the

observed factors that can be structurally interpreted as they are not subject to an identification

problem, only the common component corresponding to the latent factors can be estimated

consistently. To identify the latent factor and factor loadings estimates, restrictions have

to be imposed on the FAVAR model. In the context of structural analysis, it is crucial to

introduce a scheme that allows an economic interpretation of the factors. The named factors

identification scheme is used in the factor literature which deals with the analysis of structural

shocks. Examples of named factor identification schemes can be found in Bernanke et al. (2005),

Stock and Watson (2016) or Bai, Li, and Lu (2016). This scheme associates each latent factor

with a unique observed time series, by which the factor is defined. However, these time series

may not represent an entire economic sector appropriately. Furthermore, the naming time series

potentially impose implausible relations between the factors and the remaining observed time

series that affect the structure of the factor model and its dynamics.

In this paper, we propose a regularized FAVAR model that allows for sparsity in the factor

loadings matrices of the latent and observed factors. In this framework, factors may only load

on a subset of variables which represent different economic sectors. This allows to identify

and interpret the factors economically without imposing restrictive identification restrictions

through a named factors scheme. Our estimation procedure relies on a penalized quasi-maximum

likelihood approach and is based on L1-norm regularization of the factor loadings. The estimation

of the factor loadings for the latent and observed factors is conducted in a single step. This

allows for a similar degree of shrinkage for both type of factors, which is necessary to retain
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their structural interpretation.

In the theoretical part of the paper, we prove the consistency for the estimators of the factor

loadings, the factors and the covariance matrix of the idiosyncratic component under the average

Frobenius norm. Moreover, the autoregressive parameters in the dynamic model are as well

consistently estimated.

Using our approach, the impact of structural shocks can be investigated on economically

meaningful factors and observed time series using impulse response functions. Moreover, we

propose a joint identification scheme of the factor model and the structural innovations in the

VAR model that identifies a shock in the observed factors. In a monetary policy application,

the key interest lies in the monetary policy shock which amounts to a shock in the structural

innovation of the Federal Funds rate (FFR). As many time series react contemporaneously to

changes in the FFR, it is commonly treated as an observed factor, see e.g. Bernanke et al. (2005)

or Boivin et al. (2009).

Using monthly US macroeconomic data, we use our framework to investigate the effects of a

monetary policy shock on the factors and the underlying time series. We are able to identify

the factors in a data-driven manner and extract five latent factors that relate to the labor

market, prices, industrial production, the stock market and credit spreads. The impulse response

functions are in line with economic rationale both on the factor aggregates and the observed time

series level. More specifically, we do not observe a price puzzle and the obtained impulse response

patterns are economically plausible. In particular, following a tight monetary policy, industrial

production falls, credit conditions deteriorate and the level of employment decreases. These

results are similar to those obtained by Forni and Gambetti (2010) in a structural dynamic factor

model framework. However, the latter is very sensitive to changes in the model specification in

comparison to our regularized FAVAR model.

The remainder of this paper is organized as follows. In Section 2 we describe the regularized

FAVAR approach and propose an estimation procedure, where we impose shrinkage on the factor

loadings of both the observed and unobserved factors. We further provide an identification

scheme that jointly identifies the factor model and the structural innovations in the dynamic

equation. In Section 3 the large sample properties of the sparse factor loadings, the latent factor

estimator, the covariance matrix of the idiosyncratic innovations, as well as the coefficients of
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the dynamic equation are provided. The implementation issues are outlined in Section 4. In

Section 5 our empirical application investigates the effects of a monetary policy shock on the US

economy. Finally, Section 6 concludes.

The following notation is used throughout the paper: πmax(A) and πmin(A) are the maximum

and minimum eigenvalue of a matrix A. Further, ‖A‖ and ‖A‖F denote the spectral and

Frobenius norm, respectively. They are defined as ‖A‖ =
√
πmax(A′A) and ‖A‖F =

√
tr (A′A).

For some constant c > 0 and a non-random sequence bN , we use the notation bN = O(N), if

N−1bN → c, for N → ∞. Moreover, bN = o(N), if N−1bN → 0, for N → ∞. Similarly, for

a random sequence dN , we say dN = Op(N), if N−1dN
p→ c, for N → ∞ and dN = op(N), if

N−1dN
p→ 0, for N →∞, where

p→ denotes convergence in probability.

2 Econometric modeling framework

2.1 Regularized factor-augmented vector autoregressive model

We define the factor-augmented vector autoregressive (FAVAR) model as

xt = Λfft + Λggt + et, (2.1)

ft
gt

 =

Φff (L) Φfg(L)

Φgf (L) Φgg(L)


ft−1

gt−1

+

ηft
ηgt

 , t = 1, . . . , T, (2.2)

where xt is a (N × 1) vector of the observable time series, ft is a (r1 × 1) vector of latent factors,

gt is a (r2× 1) vector of observed factors, Λf is a (N × r1) matrix of factor loadings of the latent

factors, and Λg is a (N × r2) matrix of factor loadings of the observed factors. et is a (N × 1)

vector of idiosyncratic innovations which may be cross-sectionally and serially correlated, as in

the approximate factor model framework. Their covariance matrix is given by Σe = E
[
ete
′
t

]
.

Moreover, ηft denotes a (r1 × 1) and ηgt a (r2 × 1) vector of factor innovations associated with

the unobserved and observed factors, respectively, and Φff (L), Φfg(L), Φgf (L) and Φgg(L) are

lag polynomials of order p. We define the vector of latent and observed factors as ht =
[
f ′t , g

′
t

]′
.

In the FAVAR specification the latent factors are not identified without further restrictions.

Their interpretability hinges on the identification restrictions imposed on the factor model.

For an exact identification of the model, r2
1 + r1r2 restrictions have to be imposed see e.g.
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Bernanke et al. (2005) or Bai et al. (2016). Among alternative identification schemes, Bai et al.

(2016) analyze the named factor scheme which yields estimated factors that can be interpreted

economically. Intuitively, the idea is to re-order the underlying observed time series such that

the first r1 time series define the latent factors. It is assumed that these time series only load

onto one factor.2 Hence, the ordering of the time series is crucial for the structure of the factor

model. To circumvent this a priori selection of the factors, we introduce a regularized FAVAR

model where we impose sparsity on the factor loadings matrices. This leads to a factor loadings

matrix which is economically interpretable and enables us to attribute economic meaning to the

estimated factors.

A second issue that we target is the estimation of the regularized factor-augmented vector

autoregressive model. The complication in this model arises because it consists of latent and

observable factors. This implies that the conventionally used methodologies to extract the latent

factors do not work in presence of the observed factors. The effect of the observed factors in

explaining the covariance structure of the observed data has to be accounted for. The approaches

introduced in the literature have tackled this problem in various ways. Bernanke et al. (2005)

propose a two-step principal components approach to estimate the FAVAR model which does

not take into account that the observed factors also contribute to the factor space used to

estimate the latent factors. Bai et al. (2016) address this issue by introducing a two-step quasi

maximum likelihood (QML) approach to estimate the FAVAR model. In a first step the impact

of the observed factors is linearly projected out. They extract the latent factors and their factor

loadings using QML. In a second step, they estimate the factor loadings of the observed factors

by linear projection.

We propose a procedure for the joint estimation of the factors loadings of both types of

factors. Hence, we do not need to project out the informational content explained by the

observed factors prior to estimating the latent factors. This allows us to jointly impose shrinkage

on the factor loadings estimates which leads to a similar degree of shrinkage for both types of

factors.

2 The resulting factor loadings matrix is given by ΛfNF =
[
Ir1 ,Λ

f ·′
]′

, where Ir1 is a (r1 × r1) identity matrix

and Λf · = Λf2

(
Λf1

)−1

, with Λf =
[
Λf

′

1 ,Λ
f ′

2

]′
.
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2.2 Estimation of the regularized FAVAR model

The factors and factor loadings in equation (2.1) can be estimated by either principal component

analysis (PCA)3 or quasi maximum likelihood estimation under normality.4 In the following we

pursue estimating the factor model by QML, which allows us to introduce sparsity in the factor

loadings by penalizing the likelihood function. Moreover, contrary to PCA all model parameters

including the covariance matrix Σe can be estimated jointly, while PCA-based second stage

estimates of Σe require consistent estimation of Λ and F in the first stage, see e.g. Bai and Li

(2016).

We propose a penalized likelihood approach to estimate the regularized FAVAR model.

Intuitively, we can estimate the factor loadings of the observed and latent factors, Λf and Λg,

jointly using the covariance matrix of the observed time series, xt. In matrix notation, the

observation equation of the model is defined as

X = ΛfF ′ + ΛgG′ + e =

[
Λf Λg

]F ′
G′

+ e = ΛH + e, (2.3)

where X = [x1, . . . , xT ] and e = [e1, . . . , eT ] are (N × T ) matrices, F =
[
f1t, . . . , fr1t

]
and

G =
[
g1t, . . . , gr2t

]
are (T × r1) and (T × r2) matrices, respectively. The covariance matrix of the

observed time series X based on the factor model in (2.3) can be written as Σ = ΛΣHΛ′ + Σe,

where ΣH is the composite covariance matrix of the observed and unobserved factors and Σe

denotes the covariance matrix of the idiosyncratic component.

Using the previous result, we obtain the following expression for the negative quasi log-

likelihood function for the covariance matrix of the data in the FAVAR model

L(Λ,ΣH ,Σe) = log
∣∣∣det

(
ΛΣHΛ′ + Σe

)∣∣∣+ tr
[
Sx
(
ΛΣHΛ′ + Σe

)−1
]
, (2.4)

where Sx = 1
T

∑T
t=1 xtx

′
t is the sample covariance matrix of the observed data. In the first step

of our model estimation, we treat Σe as a diagonal matrix and define Φe = diag (Σe) denoting

a diagonal matrix that contains only the main diagonal elements of Σe to reduce the number

3 See e.g. Bai and Ng (2002) or Stock and Watson (2002b) for a detailed treatment of the PCA, in approximate
factor models.

4 Bai and Li (2012) deal with the consistent estimation of the strict factor model, whereas Bai and Li (2016)
analyze the approximate factor model estimation by QML.
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of parameters in the estimation. As the number of parameters in Σe is potentially of order

O(N2), the joint estimation with the factor loadings and factors becomes intractable. Thus, our

unpenalized objective function reduces to

L(Λ,ΣH ,Φe) = log
∣∣∣det

(
ΛΣHΛ′ + Φe

)∣∣∣+ tr
[
Sx
(
ΛΣHΛ′ + Φe

)−1
]
. (2.5)

As Σe incorporates correlations of general form, equation (2.5) may be seen as a quasi log-

likelihood function, since it imposes the innovation term structure of a strict factor model.

However, Bai and Li (2016) show in the approximate factor model framework that imposing

this restrictions on Σe does not affect the consistency of the QML estimator. The diagonality

assumption on Σe is relaxed in a second step based on the soft-thresholding estimator introduced

in Section 2.3.

In order to introduce sparsity in the factor loadings matrix Λ, we shrink each element of

Λ towards zero. This is incorporated based on a penalized maximum likelihood estimation

(MLE) of the objective function in (2.5) by separate L1-norm penalties on the factor loadings

associated with the observed and unobserved factors, respectively. More specifically, we focus on

the following penalized optimization problem

min
{Λ,Φe}

log
∣∣∣det

(
ΛΣHΛ′ + Φe

)∣∣∣+ tr
[
Sx
(
ΛΣHΛ′ + Φe

)−1
]

+ µ1

N∑
i=1

r1∑
k=1

∣∣∣λfik∣∣∣+ µ2

N∑
i=1

r∑
l=r1+1

∣∣λgil∣∣ , (2.6)

where µ1 and µ2 determine the degree of penalization of the factor loadings corresponding to the

unobserved and observed factors, respectively. A clear separation of both sets of factor loadings

has the advantage of offering a more flexible treatment of both components.

The latent factors ft can be estimated by generalized least squares (GLS)

f̃t =
(

Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e xt , (2.7)

where the estimates Λ̃f and Φ̃e are the ones obtained from the optimization of the objective

function in (2.6).
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2.3 Estimation of the idiosyncratic component covariance matrix Σe

As the diagonality assumption on Σe that we impose in the first step of our estimation is

restrictive, we introduce a procedure that relaxes the assumption and allows for the estimation

of a possibly dense idiosyncratic innovation covariance matrix. More specifically, we re-estimate

Σe by means of the principal orthogonal complement thresholding (POET) estimator introduced

by Fan, Liao, and Mincheva (2013). The POET estimator allows for sparsity in the idiosyncratic

error covariance matrix by shrinking the off-diagonal elements of the sample covariance matrix

of the residuals obtained from the estimation of our regularized FAVAR model towards zero

using the soft-thresholding method. The estimated idiosyncratic error covariance matrix Σ̃τ
e

based on the POET method is defined as

Σ̃τ
e = sτij , sτij =

 se,ii, i = j

S(se,ij , τ), i 6= j
,

where se,ij is the ij-th element of the sample covariance matrix Se = 1
T

∑T
t=1(xt− Λ̃h̃t)(xt− Λ̃h̃t)

′

of the estimated factor model residuals, h̃t =
(
f̃ ′t , g

′
t

)′
are the estimated factors, τ = 1√

N
+
√

logN
T

is a threshold and S(·) denotes the soft-thresholding operator defined as

S(σe,ij , τ) = sign(σe,ij)(|σe,ij | − τ)+ . (2.8)

2.4 Identification restrictions

The FAVAR model in (2.1) and (2.2) is not identified, as it can be expressed as

xt = ΛA−1 ·Aht + et

Aht = AΦ1A
−1 ·Aht−1 + · · ·+AΦpA

−1 ·Aht−p +Aηt,

where ht =
(
f ′t , g

′
t

)′
and A denotes an invertible

[
(r1 + r2)× (r1 + r2)

]
matrix. Moreover,

Λ∗ = ΛA−1, h∗t−j = Aht−j for all j = 0, . . . , p, Φ∗i = AΦiA
−1 for all i = 1, . . . , p and η∗t = Aηt

are the uniquely identified quantities given a specific choice of A. Bai et al. (2016) show that

r2
1 + r1r2 restrictions are necessary to uniquely identify the FAVAR model. Hence, we impose

restrictions on the factor model and the dynamics of the factors.
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The covariance matrix of the VAR innovations η∗t =
(
η∗ft
′
, η∗gt

′
)′

is given by

Ω∗ =

 E
[
η∗ft η

∗f
t

′]
E
[
η∗ft η

∗g
t
′
]

E
[
η∗gt η

∗f
t

′]
E
[
η∗gt η

∗g
t
′
]
 =

 Ω∗ff Ω∗fg

Ω∗gf Ω∗gg

 . (2.9)

We consider the following sets of identification restrictions on the covariance matrix of the factor

innovations and the factor model.5

IRa: Ω∗fg = 0 and ΣF = Ir1 .

IRb: Ω∗fg = 0 and Λ1 = Ir1 , where Λ1 is the upper r1 × r1 submatrix of Λ.

Both identification schemes share the restriction that Ω∗fg = 0. This restriction assures

that the observed factors gt are not rotated. Moreover, as this assumption is imposed on the

covariance matrix of the structural factor innovations this implies that the structural shocks

associated with the observed factors are contemporaneously uncorrelated with those of the

unobserved ones.

The first set of identifying restrictions IRa is used for our regularized FAVAR model. As long

as some degree of sparsity is imposed on the factor loadings (i.e. µ1, µ2 > 0), the regularized

FAVAR model is identified up to a unitary generalized permutation matrix,6 by the combination

of IRa and the L1-norm penalties on Λ. Hence, the regularized FAVAR model is fully identified,

by ordering the columns of the estimated factor loadings matrix Λ̃ according to their sparsity

and by fixing the sign of each column. We choose the sign of the estimated factors such that

they align to the corresponding observable time series.

However, if there is no sparsity imposed on the factor loadings matrix (i.e. µ1 = µ2 = 0), we

need restrictions in addition to IRa to identify the FAVAR model. For this case, we further use

the normalization 1
NΛ′Σ−1

e Λ = Q, where the diagonal entries of Q are assumed to be distinct and

arranged in a decreasing order. These restrictions are usually imposed in the MLE framework

for the approximate factor model (see e.g. Lawley and Maxwell (1971)).7 The second restriction

5 Similar identification restrictions are common in the factor model literature, see e.g. Bai and Ng (2013) or Bai
and Wang (2014).

6 A unitary generalized permutation matrix is the only isometry for the L1-norm penalty (see Horn and Johnson
(2012)).

7 Alternatively, we could also impose the restriction Ω∗ff = Ir1 ,Ω
∗
fg = 0 and 1

N
Λ′Σ−1

e Λ = Q (see e.g. identification
restriction IRa in Bai et al. (2016)). This imposes an orthogonality restriction on the covariance matrix of the
dynamic factor innovations. However, this version implies that the factor loadings of the unobserved factors are
rotated.
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IRb is conventionally8 referred to as named factor identification. The first r1 time series offer

a direct identification for the unobserved factors and are assumed to only load on the specific

factors, respectively. However, as a consequence the ordering of the observed time series matters

crucially for this set of restrictions.

Based on the different sets of identification schemes the resulting estimates change. In scheme

IRa, the identification restrictions are chosen to have no impact on the rotation of the factor

loadings corresponding to the unobserved factors Λ̃f . Hence, the interpretation of Λ̂f is not

distorted by any rotation and the factor loadings estimates are unchanged Λ̂f = Λ̃f . The factor

loadings associated with the observed factors are transformed according to Λ̂g = Λ̃g + Λ̃f Ω̃fgΩ̃
−1
gg .

Moreover, we rotate the estimated factors by F̂ = F̃−Ω̃fgΩ̃
−1
gg G and the autoregressive parameters

by Φ̂i = ÃΦ̃iÃ
−1, for i = 1, . . . , p, with the rotation matrix Ã =

 Ir1 −Ω̃fgΩ̃
−1
gg

0 Ir2

. In case of

IRb, let Λ̃1 be the first r1×r1 block of Λ̃. The resulting estimated factor loadings are Λ̂f = Λ̃Λ̃−1
1

and Λ̂g = Λ̃g + Λ̃f Ω̃fgΩ̃
−1
gg . The estimated factors are given by F̂ =

(
F̃ − Ω̃fgΩ̃

−1
gg G

)
Λ̃′1 and

the autoregressive parameters are obtained as Φ̂i = ÃΦ̃iÃ
−1, for i = 1, . . . , p, where we use the

rotation matrix Ã =

 Λ̃1 −Λ̃1Ω̃fgΩ̃
−1
gg

0 Ir2

. Note that quantities with a ’ˆ’ are estimates of the

identified quantities denoted by a ’∗’.

2.5 Impulse responses

Starting from the VAR representation of the factors in equation (2.2), we obtain the vector

moving average representation of the model and the impulse response functions. By rewriting

the dynamic equation of the factors as
(
Ir − Φ1L− · · · − ΦpL

p
)
ht = ηt and using the inverted

lag polynomial to write the factors ht as a function of their innovations ηt, we obtain

ht =
(
Ir − Φ1L− · · · − ΦpL

p
)−1

ηt = Ψ(L)ηt,

where Ψ(L) = Ir + Ψ1L+ Ψ2L
2 + · · · and the Ψi are moving average coefficients. Hence, Ψ(L)

is the conventional inverted lag polynomial and the Ψi can be interpreted as the matrices of

responses to the innovations ηt. In our setting, we transform the latent and observed factors to

stationary time series, if necessary. Furthermore, we accumulate the moving average parameters

8 Restriction IRb is also employed by Bai et al. (2016).
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to analyze the effect of a shock in the factor innovations on the level of the factors, when the

underlying observed time series xt are given in first-differences.

In the factor-augmented VAR model, we can also calculate the responses of the observed

time series by employing

xt = ΛΨ(L)ηt.

In addition, we can investigate the impact of a shock in the factor innovations on all time

series included in the factor model. Impulse responses on the individual time series in levels are

obtained by pre-multiplying the moving average coefficients Ψi by the factor loadings matrix Λ

and accumulating them, when necessary.

Shocks to the factor innovations ηt cannot be interpreted as structural shocks as they are

contemporaneously correlated. However, as we identify the factor model and the structural

innovations jointly by the schemes described in Section 2.4, we obtain innovations with a block

diagonal structure. The structural innovations are given by pre-multiplying the factors and

factor innovations by the rotation matrix. The contemporaneous impact matrix is obtained by

inverting the rotation matrix and is given by

A−1 =

 Ir1 ΩfgΩ
−1
gg

0 Ir2

 , (2.10)

where Ωfg and Ωgg are the corresponding elements of the covariance matrix of the factor

innovations ηt, which is denoted as Ω =

 Ωff Ωfg

Ωgf Ωgg

. The covariance matrix of the structural

innovations η∗t is given by the block diagonal matrix Ω∗ =

 Ωf ·g 0

0 Ωgg

, where Ωf ·g =

Ωff − ΩfgΩ
−1
gg Ωgf . This implies that a structural shock in the innovation of the observed

factors are contemporaneously uncorrelated with those of the latent factors. Shocks to the

structural innovation of gt can impact all latent factors contemporaneously. We do not impose

zero restrictions on the last r2 columns of the impact matrix A−1 in (2.10). For the named

factor identification scheme (IRb), we obtain a block diagonal covariance matrix of the following

form Ω∗ =

 Λ1Ωf ·gΛ
′
1 0

0 Ωgg

.
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In case of only one observable factor, i.e. r2 = 1, the covariance of the structural innovations

Ωgg is a scalar. Hence, in the FAVAR context the structural innovations of the observed factors

are identified by the factor model identification irrespective of the identification scheme used.

For more than one observable factor, i.e. r2 > 1, we can generalize our model. The inverse of

the contemporaneous impact matrix can be written as A =

 A11 A12

0 A22

 and the structural

innovations of the observed factors are given by η∗g,t = A22ηg,t. Hence, their covariance matrix is

expressed as

Ω∗gg = E
[
η∗g,tη

∗
g,t
′
]

= A22ΩggA
′
22. (2.11)

In this setting, we impose restrictions on A22 to achieve identification of the structural innovations

with respect to the observable factors gt. For example, a recursive structure within the observable

factors could be used.

Moreover, we derive the impact matrix for the observed data xt. It describes the contem-

poraneous impact of an exogenous structural shock on the observed time series. Starting from

the implied structural moving average representation for the observed data in lag operator

notation, xt = ΛΨ(L)A−1η∗t where Ψ(L) = Ir + Ψ1L + Ψ2L
2 + · · · , the model in period t

reads xt = ΛA−1η∗t + ΛΨ1A
−1η∗t−1 + ΛΨ2A

−1η∗t−2 + · · · . The impact matrix is denoted as

B0 = Λ∗ = ΛA−1. Using the estimated quantities, the impact matrix is given by

B̂0 =
[
Λ̃f Λ̃f Ω̃fgΩ̃

−1
gg + Λ̃g

]
= Λ̂. (2.12)

Hence, the sparsity in Λ̂ provides structure to the contemporaneous impact matrix. The zeros

in the factor loadings yield timing restrictions which are data-driven but can be explained

economically. Moreover, the strength and direction of the effect is guided by the regularized

factor loadings.

Inference on the impulse response functions of the regularized FAVAR model is conducted

using a residual-bootstrap based on the dynamic factor equation (2.2). As shown in the following

section, all estimators based on the regularized FAVAR are consistent. Hence, the estimated

factors are taken as given in the VAR bootstrap. This approach is in the spirit of the factor

augmented regression literature as in Bai and Ng (2006) and Gonçalves and Perron (2014).
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3 Asymptotic properties

In this section we establish the consistency of the first step estimators of the regularized FAVAR

model introduced in equation (2.6). The proofs of the stated theorems are similar to those in

Daniele, Pohlmeier, and Zagidullina (2018) and Bai et al. (2016). Subsequently, we state the

necessary assumptions.

Assumption 3.1 (Data generating process).

(i) {et, ht}t≥1 are strictly stationary, for ht = (f ′t , g
′
t)
′. In addition, 1

T

∑T
t=1 ftg

′
t = 0 and

E [eit] = E [eithkt] = 0, for all i ≤ N , k ≤ r and t ≤ T .

(ii) There exists a constant c > 0 such that, for all N ,

c−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< c, where 1/2 ≤ β ≤ 1.9

(iii) There exists r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ N and k ≤ r,

P
(
|eit| > s

)
≤ exp(−(s/b1)r1), P

(
|hkt| > s

)
≤ exp(−(s/b2)r2)

(iv) Define the mixing coefficient:

α(T ) = sup
A∈F0

−∞,B∈F∞T

∣∣P (A)P (B)− P (AB)
∣∣ ,

where F0
−∞ and F∞T denote the σ-algebras generated by {(ht, et) : −∞ ≤ t ≤ 0} and

{(ht, et) : T ≤ t ≤ ∞}

Strong mixing: There exist r3 > 0 and C > 0 satisfying: for all T ∈ Z+,

α(T ) ≤ exp(−CT r3)

(v) There exist constants c1, c2, c3 > 0 such that c2 ≤ πmin (Σe0) ≤ πmax (Σe0) ≤ c1 and

maxi≤N maxk≤r |λik0| < c3.

9 The lower limit 1/2 for β is necessary for a consistent estimation of the factors. See Lemma A.4 in Section A.1
in the Appendix A.
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The assumptions in 3.1 impose regularity conditions on the data generating process and are

similar to those imposed by Bai and Liao (2016). Condition (i) induces strict stationarity for et

and ht and requires that both terms are uncorrelated. Furthermore, it implies that the observed

and unobserved factors are orthogonal, which simplifies our technicalities. Condition (ii) relaxes

the pervasiveness assumption commonly imposed in the approximate factor model literature

and allows for weak factors. Condition (iii) requires exponential-type tails, which allows to

use large deviation theory for 1
T

∑T
t=1 eitejt − σe,ij and 1

T

∑T
t=1 hjteit. Condition (iv) imposes

a strong mixing condition to allow for weak serial dependence. Further, Condition (v) implies

bounded eigenvalues of the idiosyncratic error covariance matrix, which is a common identifying

assumption in the factor model framework.

To control the sparsity in both Λ and Σe, we impose the following sparsity assumptions

Assumption 3.2 (Sparsity).

(i) LN =
∑N

i=1 1l {λik 6= 0} = O (N) , ∀k = 1, . . . , r

(ii) SN = maxi≤N
∑N

j=1 1l
{
σe,ij 6= 0

}
, S2

NdT = op(1) and SN max(µ1, µ2) = o(1),

where 1l {·} defines an indicator function that is equal to one if the boolean argument in braces is

true.

Condition (i) defines the quantity LN that represents the number of non-zero elements in

the factor loadings matrix Λ. As the number of factors r are assumed to be constant, (i) upper

bounds the number of non-zero elements in each column of Λ by N . Condition (ii) specifies SN

that corresponds to the maximum number of non-zero elements in each row of Σe, following the

definition in Fan et al. (2013).

Theorem 3.1 (Consistency of the first step estimators of the regularized FAVAR model).

Under Assumptions 3.1 and 3.2 the regularized FAVAR model in (2.6) satisfies for T and N →∞,

the following properties

1

N

∥∥∥Λ̃− Λ
∥∥∥2

F
= Op

max(µ1, µ2) +

√
N(dT + max(µ1, µ2))

LN

 ,

1

N

∥∥∥Φ̃e − Φe

∥∥∥2

F
= Op

(
logNβ

N
+

logN

T

)
,
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where dT = logNβ

N + 1
Nβ

logN
T , for 1/2 ≤ β ≤ 1.

Hence, for log(N) = o(T ) and the regularization parameters µ1 = o(1), µ2 = o(1), we obtain

1

N

∥∥∥Λ̃− Λ
∥∥∥2

F
= op(1),

1

N

∥∥∥Φ̃e − Φe

∥∥∥2

F
= op(1).

Furthermore, for all t ≤ T :

∥∥∥f̃t − ft∥∥∥ = op(1)

For the second step estimator of the idiosyncratic error covariance matrix, specified in Section

2.3, we get

∥∥∥Σ̃τ
e − Σe

∥∥∥ = Op

SN
√

max(µ1, µ2)2 +
N(dT + max(µ1, µ2))

LN

 .

Moreover, for the autoregressive matrices in the dynamic equation (2.2) we have

∥∥∥Φ̃i − Φi

∥∥∥
F

=

 T∑
t=p̄

utψ
′
t

 1

T̄

T∑
t=p̄

ψtψ
′
t

−1

(ιi ⊗ Ir) + op(1),

where ιi is the i-th column of the r × r identity matrix.

The proof of Theorem 3.1 is given in Appendix A.1. Under the imposed regularity conditions

Theorem 3.1 establishes the average consistency in the Frobenius norm of the first step estimators

of the factor loadings matrix and idiosyncratic error covariance matrix based on our regularized

FAVAR model. More specifically, we can see that Λ and Φ are estimated consistently, even

though we impose the strict factor model structure on Σe in the first step of our estimation

procedure. Consequently, the latent factors ft estimated based on GLS are consistent as long as

1/2 ≤ β ≤ 1. Intuitively, the lower limit on β ensures that the factors are not too weak such that

there is still a clear distinction between the common and idiosyncratic component. Furthermore,

the second step estimator for the idiosyncratic error covariance matrix introduced in Section 2.3 is

consistent under the spectral norm as long as S2
NdT = op(1) and SN max(µ1, µ2) = o(1). Finally,

the autoregressive parameter matrices in the dynamic VAR equation in (2.2) are consistently

estimated under the Frobenius norm as well.
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The following theorem summarizes the consistency results for the complete set of esti-

mators based on our regularized FAVAR model after rotating them with the matrix Ã = Ir1 −Ω̃fgΩ̃
−1
gg

0 Ir2

.

Theorem 3.2 (Consistency of the rotated estimators based on the regularized FAVAR model).

Under Assumptions 3.1 and 3.2 the regularized FAVAR model in (2.6) satisfies for T and N →∞,

the following

max
i≤N

∥∥∥λ̂gi − λ∗gi ∥∥∥ = Op
(√

µ1 +
√
µ2 +

√
dT

)
∥∥∥f̂t − f∗t ∥∥∥ = Op

(
N−β/2

)
+Op

(
µ1

√
LN

Nβ
+

√
N(dT + µ2)

N2β

)
,

∥∥∥Φ̂i − Φ∗i

∥∥∥
F

=

 T∑
t=p̄

utψ
′
t

 1

T̄

T∑
t=p̄

ψtψ
′
t

−1

(ιi ⊗ Ir)

+Op

(
µ1

√
LN

Nβ
+

√
N(dT + µ2)

N2β

)
,

where ιi is the i-th column of the r × r identity matrix and 1/2 ≤ β ≤ 1.

The proof of Theorem 3.2 is given in Appendix A.1. Theorem 3.2 shows that the estimators

of the factor loadings of the observed factors, of the unobserved factors and of the coefficients of

the dynamic equation in (2.2) are consistently estimated under the Euclidean and Frobenius

norm after rotating them based on the matrix Ã. Note that a further analysis of the estimated

factor loadings of the unobserved factors λ̃i is redundant, as they are unaffected by the rotation.

4 Implementation of the regularized FAVAR estimator

4.1 Majorize-minimize EM algorithm

For the implementation of the regularized FAVAR model, we employ the majorize-minimize

EM algorithm by Bien and Tibshirani (2011). The idea of this algorithm is to replace the

optimization of the nonconvex objective function in equation (2.4) by a sequence of convex

problems that are numerically easy to solve by algorithms for convex optimization. In that

respect, we majorize the log-likelihood function in (2.4) by the tangent plane of the concave part
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log

∣∣∣∣det
(

Σ̃
)∣∣∣∣, which leads to the following expression

L∗m = log

∣∣∣∣det
(

Σ̃m

)∣∣∣∣+ tr

[(
2Σ̃H,mΛ̃′m

)
Σ̃−1
m

(
Λ− Λ̃m

)]
+ tr

[
SxΣ−1

]
, (4.1)

where Σ̃m = Λ̃mΣ̃H,mΛ̃′m + Φ̂e,m and Σ = ΛΣ̃H,mΛ′ + Φ̂e,m with Σ̃H,m =

Ir1 0

0 Σ̃G,m

. F̃

denotes a initial estimate for the latent factors that can be obtained by unpenalized MLE and

the subscript m is the m-th step in the iterative procedure. As we use standardized time series,

the covariance matrix of the observed factors reduces to an identity matrix and Σ̃H,m = Ir1+r2 .

In the following, we augment the majorized log-likelihood function in (4.1) by L1-penalty terms

for the factor loadings Λf and Λg, which leads to the following optimization problem for our

regularized FAVAR model:

min
{Λ}

log

∣∣∣∣det
(

Σ̃m

)∣∣∣∣+ tr

[(
2Λ̃′m

)
Σ̃−1
m

(
Λ− Λ̃m

)]
+ tr

[
SxΣ−1

]
+ µ1

N∑
i=1

r1∑
k=1

∣∣∣λfik∣∣∣+ µ2

N∑
i=1

r∑
l=r1+1

∣∣λgil∣∣ . (4.2)

As the optimization problem in equation (4.2) has the appealing property of being entirely

convex it can be easily solved by a convex optimizer. In this respect, we rely on an efficient

projected gradient descent algorithm proposed by Bien and Tibshirani (2011) and optimize the

following minimization problem

min
{Λ}

1

2c

N∑
i=1

r∑
j=1

(
λij − λ̃ij,m + c · Ãij,m

)2
+ µ1

N∑
i=1

r1∑
k=1

∣∣∣λfik∣∣∣+ µ2

N∑
i=1

r∑
l=r1+1

∣∣λgil∣∣ , (4.3)

where c determines the depth of the projection in the gradient decent algorithm10 and

Ãm =
[
Σ̃−1
m − Σ̃−1

m SxΣ̃−1
m

] (
2Λ̃′m

)
,

which corresponds to the first-derivative of L∗m with respect to each element of Λ. The mini-

mization of the objective function (4.3) leads to the following first order conditions with respect

10 In all our applications we set c = 0.01.
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to each element of the quantities Λf and Λg

∂

∂λfik
=

N∑
i=1

r1∑
k=1

(
λik − λ̃ik + c · Ãik,m

)
+ c · µ1

r1∑
k=1

N∑
i=1

νfik
!

= 0,

∂

∂λgil
=

N∑
i=1

r∑
l=r1+1

(
λil − λ̃il + c · Ãil,m

)
+ c · µ2

r∑
l=r1+1

N∑
i=1

νgil
!

= 0,

where νfik and νgil are the subgradients of
∣∣∣λfik∣∣∣ and

∣∣λgil∣∣, respectively. Hence, solving for a specific

λ̃fik or λ̃gik leads to the following updating formulas for the factor loadings estimates

λ̃fik,m+1 = S
(
λ̃fik,m − c · Ãik,m, c · µ1

)
, for i = 1, . . . , N ; k = 1, . . . , r1 (4.4)

λ̃gil,m+1 = S
(
λ̃gil,m − c · Ãil,m, c · µ2

)
, for i = 1, . . . , N ; l = r1 + 1, . . . , r, (4.5)

where S( · ) is the soft-thresholding function defined in (2.8).

To obtain an update for the estimate of the covariance matrix of the idiosyncratic error Φe,

we use the formula in the EM algorithm suggested by Bai and Li (2012)

Φ̃e,m+1 = diag

[
Sx − Λ̃m+1Λ̃′m

(
Λ̃mΛ̃′m + Φ̃e,m

)−1
Sx

]
.

Our iterative estimation procedure for the regularized FAVAR model is therefore described

by the following steps:

Starting from the FAVAR model X = ΛfF ′ + ΛgG′ + e

Step 1: Transform the data by linearly projecting the observed factors G from the observed

data. This is achieved by post-multiplying M = IT −G(G′G)−1G′ and obtain the

transformed data XM = ΛfF ′M + eM or X̃ = Λf F̃ ′ + ẽ.

Step 2: Set m = 1 and obtain an initial estimate for the factor loading matrix Λ̃fm, factors F̃m

and the diagonal idiosyncratic error covariance matrix Φ̃e,m, e.g. by using unpenalized

MLE on X̃. Get an initial estimate of the factor loadings of the observed factor by

Λ̃gm =
(
X − Λ̃fmF̃ ′m

)
G
(
G′G

)−1
.

Step 3: Update λ̃fik,m by λ̃fik,m+1 = S
(
λ̃fik,m − c · Ãik,m, c · µ1

)
, for i = 1, . . . , N ; k =

1, . . . , r1 and λ̃gil,m by λ̃gil,m+1 = S
(
λ̃il,m − c · Ãil,m, c · µ2

)
, for i = 1, . . . , N ; l =
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r1 + 1, . . . , r.

Step 4: Update Φ̃e using the EM algorithm in Bai and Li (2012), according to

Φ̃e,m+1 = diag

[
Sx − Λ̃m+1Λ̃′m

(
Λ̃mΛ̃′m + Φ̃e,m

)−1
Sx

]
Step 5: If

∥∥∥Λ̃fm+1 − Λ̃fm

∥∥∥ and
∥∥∥Φ̃e,m+1 − Φ̃e,m

∥∥∥ are sufficiently small, stop the procedure,

otherwise set m = m+ 1 and return to Step 3.

Step 6: Estimate the unobserved factors by f̃t =
(

Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e xt , where Λ̃f and

Φ̃e are the parameter estimates after convergence.

Step 7: Re-estimate the covariance matrix of the idiosyncratic errors based on the procedure

introduced in Section 2.3.

Step 8: Based on the estimated and observed factors, h̃t =
(
f̃ ′t , g

′
t

)′
, we estimate the following

VAR regression: h̃t = Φ1h̃t−1 + Φ2h̃t−2 + · · ·+ Φph̃t−p + ηt, we obtain the residuals

η̃t from the previous regression and calculate Ω̃ = 1
T−p

∑T
t=p+1 η̃tη̃

′
t.

Step 9: For the identification of our regularized FAVAR model, we use the identification

restriction IRa. Thus, the factor loadings estimates for the unobserved factors are

unchanged Λ̂f = Λ̃f . Further, we estimate Λ̂g = Λ̃g +Λ̃f Ω̃fgΩ̃
−1
gg , F̂ = F̃ −GΩ̃−1

gg Ω̃gf

and the autoregressive parameters by Φ̂i = AΦ̃iA
−1, for i = 1, . . . , p, with the

rotation matrix A =

 Ir1 −Ω̃fgΩ̃
−1
gg

0 Ir2

.

4.2 Selection of the regularization parameters

We provide a selection criterion to estimate the regularization parameters µ1 and µ2. The

information criterion is based on an adaptation of the Bayesian information criterion, comparable

to the criteria in Bai and Ng (2002), and takes the following form

IC(µ1, µ2) = L
(

Λ̃, SH̃ , Σ̃
τ
e

)
+ κµ1,µ2

√
log(2N)

N
+

logN

NT
, (4.6)

where κµ1,µ2 denotes the number of non-zero elements in the factor loadings matrix Λ̃ for specific

µ1 and µ2. L
(

Λ̃, SH̃ , Σ̃
τ
e

)
is the value of the log-likelihood function in equation (2.4) evaluated

at the estimates of the factor loadings Λ̃, the sample covariance matrix of the factors SH̃ and the
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covariance matrix of the idiosyncratic component Σ̃τ
e . The penalty function in (4.6) relates to the

convergence rate of the estimator Λ̃ and vanishes for N,T →∞. In order to select the optimal

penalty parameters, we calculate the information criterion in (4.6) for a grid of different values

for µ1 and µ2 and select the ones that minimize the criterion. The grids for the regularization

parameters are set to µ1 =
[
0, 0.05, µ1,max

]
and µ2 =

[
0, 0.1, µ2,max

]
, where µ1,max and µ2,max

denote the highest values of the penalty parameters such that we do not select an empty loadings

matrix and the Assumptions 3.2 in Section 3 are still fulfilled.

5 Empirical illustration: The effects of monetary policy shocks

In this section we use our regularized FAVAR model to investigate the effects of a monetary

policy shock on economic variables. We use the Federal Funds rate (FFR) as the monetary

policy instrument. The monetary policy shock is defined as a shock to the innovation of the

FFR. In our FAVAR setting, we treat the FFR as an observable factor.

5.1 Data description

The data set xt consists of 126 macroeconomic and financial time series on monthly frequency.

It spans the period from January 1985 until December 2016 which results in 384 monthly

observations. The data set is mainly based on the FRED-MD database by McCracken and Ng

(2016). To represent a broad range of economic sectors we augment the data set by manufacturing

data, stock market data and various short-term interest rate spreads. The resulting data set

is comparable to the one used by Forni and Gambetti (2010), Stock and Watson (2016) and

Kerssenfischer (2019). A detailed overview can be found in Table B.1 in Appendix B. We

transform the data such that xt contains only stationary time series.11 Furthermore, without

loss of generality we standardize xt.

5.2 Overview of models

This section provides an overview of the models that are compared in the empirical analysis.

The regularized FAVAR (RFAVAR) leads to a data driven identification of the unobserved

factors. We obtain an economic structure by shrinking single elements in the factor loadings

11 The specific transformations can be found in Table B.1 in Appendix B.
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matrix to zero. Hence, the estimated factors load only on a subset of the observed time series

that correspond to different sectors of the economy. For the identification of our model we use

scheme IRa in Section 2.4 that relies on a statistical identification of the FAVAR model that

is invariant to the ordering of the data. Hence, we circumvent imposing a restrictive a priori

assumption on the structure of the model. We initialize our model with eight unobserved factors

according to the IC1 selection criterion by Bai and Ng (2002) and are left with five unobserved

factors after the regularization.

We set the lag order for our regularized FAVAR model to p = 12. In a dynamic factor model

setting, this lag order captures the dynamics in the observed and estimated factors sufficiently.

Concerning the choice of the regularization parameters we use the procedure described in Section

4.2.12

The commonly used scheme in the literature to obtain economically identified factors is

based on the named factor identification. This corresponds to the IRb identification scheme as

pointed out in Section 2.4, which implies that the first r1 time series drive the dynamics of the

unobserved factors. In our analysis we denote this model as FAVAR-NF and the following

time series are used as naming variables: civilian unemployment rate, consumer price index,

industrial production index, S&P 500 composite index and Baa corporate bond yield (see Table

B.2). This specific choice of time series is guided by the selection of our regularized FAVAR

model. More specifically, these are the time series with the highest loadings in absolute value on

the estimated factors. Moreover, the selection is also economically sensible as relevant sectors

of the economy are represented by those time series. We use p = 12 lags in the named factor

FAVAR model.

In the following, we introduce two additional models that are restricted versions of the

general dynamic factor model proposed by Forni, Hallin, Lippi, and Reichlin (2000). Closely

related models are studied by Stock and Watson (2002b, 2002a, 2005). More specifically, the

12 Different robustness checks in our empirical application reveal that the structure of the regularized FAVAR
model does not change much for different values of µ2. Hence, to reduce the computational time, one could fix
µ2 to a value in the interval [0.7, 1.3] and optimize only for values of µ1.
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DFM is given by

xt = Λfft + et, (5.1)

f ‡t = Θ(L)f ‡t−1 + ut, (5.2)

where ft in equation (5.1) is a (q × 1)-vector of latent static factors and Θ(L) is a p-th order lag

polynomial. The first model we consider is the pure dynamic factor model (DFM) by Forni and

Gambetti (2010). In this model f ‡t = ft, ut = Rεt, R is a (q × q1)-dimensional matrix and εt is

(q1 × 1)-vector of primitive shocks.

In the second model, we augment the factors in equation (5.2) by observable variables yt.

Hence, in this setting f ‡t = [f ′t , y
′
t]
′. We denote this model as VAR-F in what follows. In

comparison to the FAVAR model introduced in equations (2.1) and (2.2), the model specification

in (5.1) only includes latent variables on the right hand side.

For the model specification of the DFM, we follow Forni and Gambetti (2010) by setting

q = 16, q1 = 4 and p = 12.13 The identification of the structural shocks relies on a recursive

Cholesky scheme, which includes industrial production (IP), consumer prices (CPI), the FFR

and the excess bond premium (EBP). A tight monetary policy shock increases the FFR and

has no contemporaneous effect on IP and CPI. The FFR can only be affected by industrial

production, consumer prices and itself contemporaneously, whereas EBP reacts to shocks to the

three others. The model settings for the VAR-F are comparable to Kerssenfischer (2019) and

are set to q1 = 9 and p = 12. As observable variables, we include IP, CPI and the FFR. For

the identification of the structural shocks corresponding to the observable variables we use a

recursive Cholesky scheme. As above, IP and CPI are not affected by a contractionary monetary

policy shock on impact, whereas the FFR increases.

5.3 Results for the factor model analysis

To get some insights on the data, we start with an unregularized factor model estimated by

PCA. The number of included factors is determined by the Bai and Ng (2002) IC1 criterion,

where we set the maximum number of allowed factors (rmax) to ten.

Figure C.1 shows R2 of univariate regressions of the latent factors on the observed time

13 The selection criterion by Bai and Ng (2007) also suggests 4 dynamic factors for our dataset.
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series. Of the eight factors that are selected by the criterion, only five factors have blocks with

high explanatory power. It is well documented in the literature that the information criteria

of Bai and Ng (2002) tend to overestimate the true number of factors when there is remaining

correlations in the idiosyncratic component (see e.g. Ahn and Horenstein (2013) and Caner

and Han (2014)). Furthermore, the standard factor model is only identified statistically and

the estimated factors may not be economically meaningful. For the structural analysis we are

interested in the dynamics of a model that is economically interpretable. Hence, it is crucial to

economically identify the unobserved factors in the FAVAR model.

In our regularized FAVAR model we enhance the economic interpretability by shrinking

elements of the factor loadings matrix to zero. We illustrate the R2 results of univariate

regressions associated with a sparse factor structure in Figure C.2. The separation of the

unobserved factors is notably more distinct compared to the factors estimated by PCA. More

specifically, we obtain a block structure in the factor loadings which leads to factors that are

linked to different sectors in the economy. Furthermore, the RFAVAR model estimates five latent

factors. Hence, it shrinks the factors that do not add additional explanatory power to zero.

The economic groups associated to the latent factors are: the labor market, prices, industrial

production, the stock market and credit spreads. In our context, the labor market factor is

mostly linked to employment time series. The corresponding time series plots are shown in

Figure C.3. The obtained factors are closely aligned with the underlying economic time series

which is due to the fact that the informational content of various time series is used to construct

the latent factor estimates. Table B.1 provides an overview of which factor drives each variable.

A comparable number of factors has been found by Stock and Watson (2016).

The same analysis is repeated for the named factor FAVAR (FAVAR-NF) model. The

resulting R2 are plotted in Figures C.4. The choice of the naming variables in the FAVAR-NF

model leads to factors that have a comparable allocation to economic sectors as the RFAVAR

model. This result is anticipated as the selection of the naming variables is guided by the

RFAVAR. However, the obtained factor time series in Figures C.5 are less aligned to the observed

time series in comparison to the RFAVAR. This effect is more pronounced for naming variables

that do not represent the entire sector. In these cases the resulting factors are distorted by

sector unrelated variables, as in the labor market and credit spread factors.
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It is important to note that the model identification crucially depends on the ordering of the

observed time series. For example, Stock and Watson (2016) use the following naming scheme in

an oil price application: Real personal consumption expenditures, industrial production index,

civilian employment rate, S&P 500 composite index, trade weighted US dollar index major

currencies and producer price index.14 The resulting R2 are plotted in Figures C.6. Even though

the naming variables are chosen based on economic reasoning the selection is rather arbitrary

and leads to very different results. Hence, the selection of the naming variables constitutes a

restrictive assumption on the structural model.

We omit this analysis for the DFM and VAR-F models because these frameworks are not

concerned with the interpretability of the factors.

5.4 Results from the impulse response analysis

In the following, we analyze the effects of a monetary policy shock on the observed time series

based on our model specification (RFAVAR). Additionally, we compare the results to the ones

obtained for the FAVAR-NF, DFM and VAR-F. Hence, our focus lies on the dynamic responses

to a shock in the monetary policy instrument (FFR). This corresponds to a partial identification

of the structural model, where we identify the monetary policy shock. More specifically, the

innovations corresponding to the FFR are contemporaneously uncorrelated with the latent factor

innovations, whereas the latter can be contemporaneously correlated. Our RFAVAR framework

allows for the structural analysis of the dynamics for both the factors and the underlying observed

time series as pointed out in Section 2.5.

In a first step, we elaborate on the effect on the estimated factors for the RFAVAR and the

FAVAR-NF model. In both settings, the obtained factors are economically identified and serve

as proxies of economic aggregates. The contemporaneous structural effect on the factors are

depicted in Table B.3, where the last column in both panels is associated with the monetary

policy shock.

For our RFAVAR model, the strength of the impact is given in Panel A of Table B.3. The

sign of the contemporaneous impact is in line with economic reasoning. More specifically, the

price, industrial production and the labor market factors react negatively on impact in response

14 As Stock and Watson (2016) work on quarterly frequency they can use data that is not available on monthly
frequency. We deviate by using a different proxy for employment and by omitting government spending.
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Figure 1: Accumulated impulse responses to a monetary policy shock on the factors for the
regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals.

to a tight monetary policy shock.

The impulse responses of the factors to a 100bp shock in the innovation of the Federal Funds

rate are illustrated in Figure 1. The responses of all factors are transitory and stabilize to a new

level after one or two years. More precisely, the labor market reacts significantly negative on

impact and no longer reacts after 12 months. Moreover, as expected by economic rationale, the

price level, the level of industrial production and the credit spread factor are impacted negatively

by an exogenous increase in the monetary policy rate. The stock market factor does not react

significantly to a monetary policy shock for most of the periods. It slightly increases after five

months for about one month.

For the FAVAR-NF model, the impact matrix is reported in Panel B in Table B.3. Note that

we only provide standard errors for the estimates in the last column of Panel B. This follows

from the structure of the rotation matrix Ã given at the end of Section 2.4. As the first r1 × r1

block of Ã depends on Λ̃1, which is kept fixed in the residual-bootstrap based on the dynamic

factor equation (2.2), we cannot compute bootstrap-based standard errors for the estimated

quantities in the first r1 × r1 block of the impact matrix. However, this is not harmful for the

upcoming analysis, as we are interested in the dynamic effects of a monetary policy shock, whose

contemporaneous impacts are given by the last column of the impact matrix.

Furthermore, in Figure C.7, we plot the impulse response functions associated with the named

factor scheme. Both, the contemporaneous impacts and the resulting impulse responses on the
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estimated factors are not always in line with the economic theory. For example, unemployment

reacts negatively in response to a tight monetary policy shock, whereas industrial production

increases for about ten months. Moreover, we obtain relatively large confidence intervals for the

remaining factors leading to statistically insignificant impulse responses. Even though the choice

of the naming variables is economically motivated, the implied structural dynamics fail to span

the monetary policy shock.

In a second step, we investigate the impulse responses on the observable variables xt for all

models. For the RFAVAR and FAVAR-NF models the contemporaneous impact matrix on xt is

given by Λ̂ corresponding to the rotated factor loadings estimate, as outlined in Section 2.5. The

impact matrix for our regularized FAVAR model is given in Figure 2. The contemporaneous

impact of a tightening monetary policy shock is in accordance with economic reasoning. Following

an exogenous increase in the FFR, the short term interest rates go up on impact. Further, price

and IP as well as employment time series react negatively, whereas unemployment series rise.

The stock market plummets and credit conditions deteriorate.

The contemporaneous impact matrices for the FAVAR-NF model is depicted in Figure C.8.

The economic implications are implausible, as the sign of the effects is often incorrect. For

example, the labor market, industrial production and prices react positively on impact for a

contractionary monetary policy shock. In contrast to our RFAVAR model, the factor loadings

matrix of the FAVAR-NF model is more dense and an economic sector association is not possible.

Hence, even though the R2 plot of univariate regressions of the named factors on the observed

time series in Figure C.6 shows a high explanatory power of the latent factors, the implied

rotation scheme yields a factor loadings matrix which we can no longer explain economically.

In the following, we analyze the impulse responses for selected time series, i.e. we concentrate

on the effects of a tight monetary policy shock on the consumer price index (CPI), the civilian

unemployment rate, the IP index and the three months Treasury bill. Figure 3 shows the level

effects for our RFAVAR model on the specific variables. CPI and the IP index series react

negatively for around two years, respectively and stabilize to a new level for the remaining

periods. The unemployment rate increases for approximately 24 months, whereas the short-term

interest rate reacts positively on impact for 12 months.

The impulse responses for the FAVAR-NF are provided in Figure C.9. Overall, the results
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Figure 2: Impact matrix on the observed variables xt for the regularized FAVAR
This graph shows the contemporaneous impact matrix of a 100bp shock in the factor innovations to the observed
time series for the regularized FAVAR model. The factors are abbreviated as follows: ’LM’ labor market, ’P’ price,
’IP’ industrial production, ’SM’ stock market, ’CS’ credit spread and ’FFR’ Federal Funds rate.
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Figure 3: Accumulated impulse responses to a monetary policy shock on the observed variables
xt for the regularized FAVAR
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show contradicting effects contemporaneously as well as over time for the unemployment rate

and the IP index.

For the DFM, the impulse responses for CPI, unemployment, industrial production and the

three month Treasury bill rate are illustrated in Figure C.10. The point estimates for CPI, the

IP index and unemployment are economically not reasonable. Moreover, the DFM is sensitive to

the number of included latent factors and lags, which leads to a high degree of estimation noise.

The accumulated impulse responses for the VAR-F model are given in Figure C.11. The

responses of unemployment and IP are in line with economic rationale. Moreover, the impulse

response of CPI is very volatile and statistically insignificant. The three month Treasury bill rate

reacts negatively over all horizons. The results are very sensitive to the number of included factors

and lags. If we do not include enough factors or lags, the impulse response patterns are hardly

interpretable (e.g. a price puzzle is obtained). Similar results are obtained by Kerssenfischer

(2019).

5.5 Robustness checks

We evaluate the robustness of our findings in various ways: First, we use the shadow rate

provided by Wu and Xia (2016) instead of the Federal Funds rate when the policy rate is at the

zero lower bound between December 16, 2008 and December 15, 2015.15 Figure C.12 shows both,

the shadow rate and the Federal Funds rate, in one graph. The replacement of the policy rate

does not affect the results qualitatively for our regularized FAVAR model. In Figure C.13 we

plot the impulse responses of the observed variables to a shock in the innovation of the shadow

rate. The impulse response patterns are very similar to those in Figure 3. For the named factor

scheme, the positive impact on the IP index is not significant in Figure C.14 and the other

three impulse responses are not substantially different. The impulse response patterns of the

DFM model in Figure C.15 are similar to those obtained in the previous section. Finally, for the

VAR-F model in Figure C.16, the impulse responses of CPI, the unemployment rate and the IP

index remain economically plausible when we use the shadow rate instead of the FFR. More

precisely, CPI reacts significantly negative for the first 6 months, whereas the IP index decreases

significantly for approximately three years. Overall, using the shadow rate in periods where the

15 The shadow rate is retrieved from Jing Cynthia Wu’s website https://sites.google.com/view/

jingcynthiawu/shadow-rates.
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FFR is at the zero lower bound improves the results of our competing models slightly but does

not affect our RFAVAR model qualitatively.

Second, we augment the maximum number of latent factors used in the initial steps to

rmax = 20. Figure C.17 contains the R2 of univariate regressions of the principal components

factors on the observed time series. Qualitatively, it is similar to the one obtained for r∗ = 10

factors depicted in Figure C.1. In both settings, there are five factors which have separate

block-wise explanatory power. Once we employ shrinkage onto the factor loadings, we obtain

five latent factors for both initial number of factors. Our method is robust against alternative

initial number of factors. This can be seen in Figures C.2 and C.18 which are based on different

starting points for the shrinkage but yield similar latent factors and factor loadings estimates.

Third, we alter the lag order of the regularized FAVAR model to allow for different dynamics

in the impulse responses. The resulting response functions of the factors and observed time

series of a RFAVAR(2) model can be found in Figures C.19 and C.20. Moreover, the results

for a RFAVAR(3) and RFAVAR(6) model are depicted in Figures C.21, C.22 and C.23, C.24,

respectively. The shape of the impulse responses and the evolution over the horizons does not

change qualitatively. However, for the first six to twelve months an increasing lag order leads to

impulse response functions that react less smoothly to structural shocks.

Forth, we shorten the time span to the period prior to the global financial crisis. Hence, the

data set spans a period for January 1985 to December 2006. We set the initial number of factors

to rmax = 10. Based on the Bai and Ng (2002) IC1 criterion, we initialize the factor model with

r∗ = 9 factors. The R2 of univariate regressions of the PCA based factors onto the observed

time series can be found in Figure C.25. For the pre-crisis period, the block-wise dependence

is pronounced for four or five factors. When we impose sparsity onto the factor loadings, we

retrieve four latent factors: prices, credit spreads, real activity, and the stock market. Figure

C.26 shows the R2 of univariate regressions of the regularized factors on the observed time

series and Figure C.27 shows the time series of the latent factors. A block-structure is still

present, however, the real activity sector is represented by the industrial production sector. The

labor market sector is no longer a separate latent factor in the pre-crisis period because the two

real activity proxies covary heavily. For the entire sample, the labor market factor reacts more

sluggish in comparison to industrial production which leads to two separate real activity factors
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(i.e. Figure C.3). Our regularized factor model yields economically sensible latent factors and

factor loadings estimates in the pre-crisis period. Figure C.28 contains the contemporaneous

effects of a 100bp structural shock to the FFR onto the observed time series. The direction of

the impact is economically plausible for all cases. Lastly, Figure C.29 shows impulse responses

of four observed time series: the consumer price index and the industrial production index

react negatively in response to a tight monetary policy shock, the level of employment in the

manufacturing sector plummets, whereas the three months Treasury bill increases.

6 Conclusions

In this paper, we propose a regularized factor-augmented vector autoregressive model that

simplifies the factor identification and their economic interpretation. Our estimation procedure

relies on a penalized quasi-maximum likelihood approach and is based on a L1-norm regularization

of the factor loadings matrix. The named factor identification scheme conventionally used in

the FAVAR literature to identify the factors, imposes specific relations between the factors and

observed time series. More specifically, the ordering of the variables determines the structure of

the model. The sparse factor loadings structure in our regularized FAVAR model allows for a

direct factor identification. Hence, we are able to identify the estimated factors in a data-driven

manner without implicitly assuming their form a priori in our identification scheme. In this

framework, the effects of structural shocks can be investigated on economically meaningful

estimated factors and on all observed time series included in the model.

We prove the average consistency under the Frobenius norm for the estimators of the factor

loadings and the covariance matrix of the idiosyncratic component based on the regularized

FAVAR model. The factors estimated based on GLS are shown to be consistent. Moreover, the

autoregressive parameters in the dynamic equation are consistently estimated as well.

In an empirical application, we investigate the effects of structural monetary policy shocks on

a broad range of economically relevant variables. We choose to identify this shock using a joint

identification of the factor model and the structural innovations in the vector autoregressive

model. We extract five latent factors that relate to the labor market, prices, industrial production,

the stock market and credit spreads. Furthermore, the Federal Funds rate is used as an observed

factor. We find impulse response functions which are in line with economic rationale both on the
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factor aggregates and the observed time series level. More specifically, we do not observe a price

puzzle and the obtained impulse response patterns are economically plausible. In particular,

following a tight monetary policy, industrial production falls, credit conditions deteriorate and

the level of employment decreases.
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Appendix

A Proofs

A.1 Consistency of the regularized FAVAR Model Estimator

Proof. Theorem 3.1 (Consistency of the first step estimators of the regularized FAVAR model)

To establish the consistency of the regularized FAVAR process, we proceed in a similar fashion

as in Daniele et al. (2018). Initially, we define the following penalized log-likelihood

Lp(Λ,Σe) = Q1(Λ,Σe) +Q2(Λ,Σe) +Q3(Λ,Σe), (A.1)

where
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and Λ =
[
Λf Λg

]
. Hence, the penalized log-likelihood in (A.1) can be written as
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Consider the following set,

Ψδ =
{

(Λ,Σe) : δ−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< δ,

δ−1 < πmin (Σe) ≤ πmax (Σe) < δ
}
, for 1/2 ≤ β ≤ 1.

Further, we define Φe = diag (Σe), which corresponds to a covariance matrix that contains only

the diagonal elements of Σe on its main diagonal. To control the sparsity in both Λ and Σe, we

impose the following sparsity assumptions:

LN =
r∑

k=1

N∑
i=1

1l {λik 6= 0} = O (N) ,

SN = max
i≤N

N∑
j=1

1l
{
σe,ij 6= 0

}
,

where 1l {·} denotes the indicator function that is equal to one if the boolean argument in braces

is true. Hence, LN is the number of non-zero elements in the factor loadings matrix Λ and SN

denotes the maximum number of non-zero elements in each row of Σe.

The following lemma will useful for the forthcoming derivations.

Lemma A.1.

(i) maxi,j≤N

∣∣∣ 1
T

∑T
t=1 uitujt − E

[
uitujt

]∣∣∣ = Op
(√

(logN)/T
)

,

(ii) maxi≤r,j≤N

∣∣∣ 1
T

∑T
t=1 fitujt

∣∣∣ = Op
(√

(logN)/T
)

.

Proof. See Lemmas A.3 and B.1 in Fan, Liao, and Mincheva (2011).

Under Assumptions 3.1 and 3.2 and Lemma S.1.2. in Daniele et al. (2018), we have that

sup
(Λ,Σe)∈Ψδ

∣∣Q3(Λ,Σe)
∣∣ = Op

(
logNβ

N
+

1

Nβ

logN

T

)
.

Furthermore, by Lemma S.1.3. in Daniele et al. (2018), we obtain

Q1

(
Λ̃, Σ̃e

)
+Q2

(
Λ̃, Σ̃e

)
≤ dT , (A.3)

where dT = logNβ

N + 1
Nβ

logN
T .
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In the following, we establish the consistency results for the diagonal idiosyncratic error

covariance matrix estimator Φ̃e and the factor loadings estimator Λ̃.

Lemma A.2.

1

N

∥∥∥Φ̃e − Φe

∥∥∥2

F
= Op

(
logN

T
+ dT

)
= op(1).

Proof. By the definition of Q1

(
Λ̃, Σ̃e

)
and Q2

(
Λ̃, Σ̃e

)
and equation (A.3) we define

B1 +B2 ≤ dT , (A.4)

where

B1 =
1

N
log
∣∣∣Σ̃e

∣∣∣+
1

N
tr
(
SeΣ̃

−1
e

)
− 1

N
log |Σe| −

1

N
tr
(
SeΣ

−1
e

)
,

B2 =
1

N
tr

[(
Λ̃− Λ

)′
Σ̃−1
e

(
Λ̃− Λ

)
−
(

Λ̃− Λ
)′

Σ̃−1
e Λ̃

(
Λ̃′Σ̃−1

e Λ̃
)−1

Λ̃′Σ̃−1
e

(
Λ̃− Λ

)]
+

1

N
µ1

N∑
i=1

r1∑
k=1

∣∣∣λ̃fik∣∣∣− ∣∣∣λfik∣∣∣+
1

N
µ2

N∑
i=1

r∑
l=r1+1

∣∣∣λ̃gil∣∣∣− ∣∣λgil∣∣ .
The result follows by the same argument as in Lemma S.1.4. in Daniele et al. (2018).

To establish the consistency of the factor loadings matrix Λ̃, we analyze both sets of factor

loadings corresponding to the latent and observed factors separately. Initially, we lower bound

the first term in B2 as in Lemma S.1.5. in Daniele et al. (2018) and obtain

1

N
tr

[(
Λ̃− Λ

)′
Σ̃−1
e

(
Λ̃− Λ

)
−
(

Λ̃− Λ
)′

Σ̃−1
e Λ̃

(
Λ̃′Σ̃−1

e Λ̃
)−1

Λ̃′Σ̃−1
e

(
Λ̃− Λ

)]
≥ Op

(
LN
N

)
max
i≤N

∥∥∥λ̃i − λi∥∥∥2
.

(A.5)

Furthermore, the consistency results for Λ̃f and Λ̃g are summarized in the following lemma.
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Lemma A.3.

max
i≤N

∥∥∥λ̃i − λi∥∥∥ = Op

max(µ1, µ2) +

√
N(dT + max(µ1, µ2))

LN

 ,

where dT = logNβ

N + 1
Nβ

logN
T .

Proof. By the definition of B2, and equations (A.4) and (A.5) we have

Op
(
LN
N

)
max
i≤N

∥∥∥λ̃i − λi∥∥∥2
+

1

N
µ1

N∑
i=1

r1∑
k=1

∣∣∣λ̃fik∣∣∣− ∣∣∣λfik∣∣∣+
1

N
µ2

N∑
i=1

r∑
l=r1+1

∣∣∣λ̃gil∣∣∣− ∣∣λgil∣∣ ≤ dT .
(A.6)

We start by analyzing Λ̃f . The left hand side of (A.6) can be further lower bounded by

Op
(
LN
N

)
max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
− 1

N
µ1

N∑
i=1

r1∑
k=1

∣∣∣λfik∣∣∣− ∣∣∣λ̃fik∣∣∣ ≤ dT + µ2r2

Op
(
LN
N

)
max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
− 1

N
µ1

N∑
i=1

r1∑
k=1

∣∣∣λ̃fik − λfik∣∣∣ ≤ dT + µ2r2

Op
(
LN
N

)
max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
−O

(
LN
N

)
µ1
√
r1

√
max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
≤ dT + µ2r2

Solving for maxi≤N

∥∥∥λ̃fi − λfi ∥∥∥ yields

max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥ ≤ µ1 +

√
µ2

1 +Op
(
N(dT + µ2)

LN

)

≤ Op

µ1 +

√
N(dT + µ2)

LN

 .

Equivalently, by the same argument as above for Λ̃g, we obtain

max
i≤N

∥∥∥λ̃gi − λgi ∥∥∥ = Op

µ2 +

√
N(dT + µ1)

LN

 ,

which completes the proof.
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The consistency of the latent factor estimator is established in the following lemma.

Lemma A.4.

1

T

T∑
t=1

∥∥∥f̃t − ft∥∥∥2
= op(1).

Proof. The latent factor estimator in equation (2.7) yields

f̃t − ft = −
(

Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e

(
Λ̃f − Λf

)
ft +

(
Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e et. (A.7)

As LN = O (N), the first term on the right-hand side is upper bounded by

Op
(
N−β

)√√√√ N∑
i=1

∥∥∥∥(Λ̃f ′Φ̃−1
e

)
i

(
λ̃fi − λ

f
i

)∥∥∥∥2

‖ft‖

≤ Op
(
N−β

)√√√√√Op
 N∑
i=1

∥∥∥λ̃fi − λfi ∥∥∥2


≤ Op

(
N−β

)√
Op
(
LN max

i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
)

= Op

(√
LN
Nβ

)
Op

µ1 +

√
N(dT + µ2)

LN

 = op(1). (A.8)

In the following, we bound the second term on the right-hand side of (A.7). For this we analyze

the term Λ̃f
′
Φ̃−1
e et.

Op
(
N−β

)∥∥∥∥(Λ̃f
′
Φ̃−1
e − Λf

′
Φ−1
e

)
et

∥∥∥∥
F

≤

Op
(
N−β

)∥∥∥∥(Λ̃f − Λf
)′

Φ̃−1
e et

∥∥∥∥
F

+Op
(
N−β

)∥∥∥∥Λf
′
(

Φ̃−1
e − Φ−1

e

)
et

∥∥∥∥
F

.
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By Lemma A.3., the first term is bounded by

Op
(
N−β

)√√√√ N∑
i=1

∥∥∥∥(λ̃fi − λfi )(Φ̃−1
e et

)
i

∥∥∥∥2

≤ Op
(
N−β

)√
LN max

i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
Op(1)

= Op

(√
LN
Nβ

)
op(1) = op(1). (A.9)

The second term can be bounded using Lemma A.2. according to

Op
(
N−β

)∥∥∥∥Λf
′
(

Φ̃−1
e − Φ−1

e

)
et

∥∥∥∥
F

= Op
(
N−β

)√√√√ N∑
i=1

∥∥∥∥(Λf ′Φ−1
e

)
i

(
φie − φ̃ie

)(
Φ̃−1
e et

)
i

∥∥∥∥2

= Op
(

logN

Nβ

∥∥∥Φ̃e − Φe

∥∥∥
F

)
= op(1). (A.10)

Hence, equations (A.8), (A.9) and (A.10) yield

∥∥∥f̃t − ft∥∥∥ = Op
(
N−β

) N∑
i=1

∥∥∥∥(Λf
′
Φ−1
e

)
i
eit

∥∥∥∥+Op

(
µ1

√
LN

Nβ
+

√
N(dT + µ2)

N2β

)

= Op
(
N−β/2

)
+ op(1) = op(1).

To establish the consistency of the second step estimator of the idiosyncratic error covariance

matrix Σ̃τ
e , we first compute the convergence rate of idiosyncratic errors eit.

Lemma A.5.

max
i≤N

1

T

T∑
t=1

|ẽit − eit|2 = Op
(

max(µ1, µ2)2 +
N(dT + max(µ1, µ2))

LN

)
.
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Proof. As ẽit−eit =
(
λ̃i − λi

)
f̃ ′t +λi

(
f̃t − ft

)′
, we obtain by Lemma A.3. and Lemma A.4.

max
i≤N

1

T

T∑
t=1

|ẽit − eit|2 ≤ 2 max
i≤N

∥∥∥λ̃i − λi∥∥∥2 1

T

T∑
t=1

∥∥∥f̃t∥∥∥2
+ 2 max

i≤N
‖λi‖2

1

T

T∑
t=1

∥∥∥f̃t − ft∥∥∥2

≤ Op
(

max
i≤N

∥∥∥λ̃i − λi∥∥∥2
)

+Op

 1

T

T∑
t=1

∥∥∥f̃t − ft∥∥∥2


= Op

(
max(µ1, µ2)2 +

N(dT + max(µ1, µ2))

LN

)
.

By Lemma A.5 we have shown that maxi≤N
1
T

∑T
t=1 |ẽit − eit|

2 = op(1). Hence, by a similar

argument as in Lemma S.1.9. in Daniele et al. (2018), we have

max
i,j≤N

∣∣σ̃ij − σij∣∣ = Op

√max(µ1, µ2)2 +
N(dT + max(µ1, µ2))

LN

 . (A.11)

In what follows, we are going to determine the convergence rate of the idiosyncratic error

covariance matrix estimator based on second step soft-thresholding estimator introduced in

Section 2.3.

Lemma A.6.

∥∥∥Σ̃τ
e − Σe

∥∥∥ = Op

SN
√

max(µ1, µ2)2 +
N(dT + max(µ1, µ2))

LN

 .

Proof. The result follows from equation (A.11) and Theorem A.1. of Fan et al. (2013).

In the following, we continue with deriving the convergence rates for the autoregressive

matrices Φi, for i = 1, . . . p, in the dynamic equation (2.2). We proceed in the same fashion as

in Proposition A.2. in Bai et al. (2016). In order to improve the upcoming technicalities, we

define p̄ = p+ 1 and T̄ = T − p− 1.

Lemma A.7. For N logN
T = o(1), we have

(a) 1
T̄

∑T
t=p̄ h̃t−qh̃

′
t−s− 1

T̄

∑T
t=p̄ ht−qh

′
t−s = Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
, for q, s = 0, . . . , p.
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(b) 1
T̄

∑T
t=p̄

(
h̃t−q − ht−q

)
h̃′t−s = Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
, for q, s = 0, . . . , p.

(c) 1
T̄

∑T
t=p̄ uth̃

′
t−q − 1

T̄

∑T
t=p̄ uth

′
t−q = Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
, for q = 0, . . . , p.

Proof. We start with expression (a). As h̃t =
[
f̃ ′t , g

′
t

]′
and ht =

[
f ′t , g

′
t

]′
, the left hand side

of (a) can be expresses as

 W11 W12

W21 0

, where W11 = 1
T̄

∑T
t=p̄

(
f̃t−q − ft−q

)(
f̃t−s − ft−s

)′
+

1
T̄

∑T
t=p̄

(
f̃t−q − ft−q

)
f ′t−s + 1

T̄

∑T
t=p̄ ft−q

(
f̃t−s − ft−s

)′
, W12 = 1

T̄

∑T
t=p̄

(
f̃t−q − ft−q

)
g′t−s and

W21 = 1
T̄

∑T
t=p̄ gt−q

(
f̃t−s − ft−s

)′
. Now, we analyse each of the three quantities separately.

Based on Lemma A.4, we can see that the first term on the right hand side of W11 is

Op
(
µ21LN+N(dT+µ2)

N2β

)
.

Using equation (A.7), we obtain the following expression for the second term in W11

1

T̄

T∑
t=p̄

(
f̃t−q − ft−q

)
f ′t−s =−

(
Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e

(
Λ̃f − Λf

) 1

T̄

T∑
t=p̄

ft−qf
′
t−s

+
(

Λ̃f
′
Φ̃−1
e Λ̃f

)−1
Λ̃f
′
Φ̃−1
e

1

T̄

T∑
t=p̄

et−qf
′
t−s.

(A.12)

The first term on the right hand side of equation (A.12) is bounded by the expression

Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
, similarly as in Lemma A.4, as 1

T̄

∑T
t=p̄ ft−qf

′
t−s = Op(1). To

bound the second term in equation (A.12), we first analyze the expression Λ̃f
′
Φ̃−1
e

1
T̄

∑T
t=p̄ et−qf

′
t−s.

Op
(
N−β

)∥∥∥∥∥∥
(

Λ̃f
′
Φ̃−1
e − Λf

′
Φ−1
e

) 1

T̄

T∑
t=p̄

et−qf
′
t−s

∥∥∥∥∥∥
F

≤

Op
(
N−β

)
∥∥∥∥∥∥
(

Λ̃f − Λf
)′

Φ̃−1
e

1

T̄

T∑
t=p̄

et−qf
′
t−s

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥Λf
′
(

Φ̃−1
e − Φ−1

e

) 1

T̄

T∑
t=p̄

et−qf
′
t−s

∥∥∥∥∥∥
F

 .
(A.13)

Based on Lemma A.1 and Lemma A.3, the first term in (A.13) is upper bounded by

Op

(√
LN
Nβ

)√
max
i≤N

∥∥∥λ̃fi − λfi ∥∥∥2
Op

(√
N logN

T

)
.

Hence, as N logN
T = o(1), the first term of equation (A.13) is op(1). Using Lemma A.2, the
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second term in (A.13) is upper bounded by

Op
(
N−β

)∥∥∥Φ̃e − Φe

∥∥∥
F

∥∥∥∥∥∥ 1

T̄

T∑
t=p̄

et−qf
′
t−s

∥∥∥∥∥∥
F

≤ op(1)

√
N logN

T
= op(1).

Finally, the second term on the right hand side of equation (A.12) is bounded by

Op
(
N−β

)√
max
i≤N

(
Λf ′Φ−1

e

)
i

∥∥∥∥∥∥ 1

T̄

T∑
t=p̄

et−qf
′
t−s

∥∥∥∥∥∥
F

≤ Op
(
N−β

)√N logN

T
= op(1).

Thus, the second term in W11 is Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
. It can be shown that the

last term in W11 is of the same order. By summarizing these results, we have that W11 =

Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
. By similar arguments as for W11, it can be shown that W12

and W21 are as well Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
. Hence, (a) follows by this.

Similar as in Bai et al. (2016), expression (b) can be written as

 1
T̄

∑T
t=p̄

(
f̃t−q − ft−q

)
f̃ ′t−s

1
T̄

∑T
t=p̄

(
f̃t−q − ft−q

)
g′t−s

0 0

 .

Both above terms are of order Op

(
√
LN
Nβ

(
µ1 +

√
N(dT+µ2)

LN

))
, as shown in (a). (b) follows by

this result.

The left hand side of part (c) can be expressed as

 1
T̄

∑T
t=p̄ ut

(
f̃t−q − ft−q

)′
0

 .
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By using equation (A.7), 1
T̄

∑T
t=p̄ ut

(
f̃t−q − ft−q

)′
can be written as

1

T̄

T∑
t=p̄

ut

(
f̃t−q − ft−q

)′
=− 1

T̄

T∑
t=p̄

utf
′
t−q

(
Λ̃f − Λf

)′
Φ̃−1
e Λ̃f

(
Λ̃f
′
Φ̃−1
e Λ̃f

)−1

+
1

T̄

T∑
t=p̄

ute
′
t−qΦ̃

−1
e Λ̃f

(
Λ̃f
′
Φ̃−1
e Λ̃f

)−1
,

which is bounded by

∥∥∥∥∥∥ 1

T̄

T∑
t=p̄

utf
′
t−q

(
Λ̃f − Λf

)′
Φ̃−1
e Λ̃f

(
Λ̃f
′
Φ̃−1
e Λ̃f

)−1

∥∥∥∥∥∥
F

≤ Op
(
N−β

)√√√√ N∑
i=1

∥∥∥∥(Λ̃fi − Λfi

)′∥∥∥∥ = Op

√LN
Nβ

µ1 +

√
N(dT + µ2)

LN


 = op(1)

Hence, (c) follows from this result.

Lemma A.8.

∥∥∥Φ̃i − Φi

∥∥∥
F

=

 T∑
t=p̄

utψ
′
t

 1

T̄

T∑
t=p̄

ψtψ
′
t

−1

(ιi ⊗ Ir) +Op

√LN
Nβ

µ1 +

√
N(dT + µ2)

LN


 ,

where Φ =
(
Φ1, . . . ,Φp

)
and ψ =

(
h′t−1, . . . , h

′
t−p

)′
.

Proof. We denote Φ̃ the estimator of Φ, which is obtained by estimating the regression

h̃t = Φ1h̃t−1 + · · ·+ Φph̃t−p + error,

which yields the estimator

Φ̃ =

 T∑
t=p̄

h̃tψ̃
′
t

 T∑
t=p̄

ψ̃tψ̃
′
t

−1

,

with ψt =
(
h′t−1, . . . , h

′
t−p

)′
.

By Lemma A.7 and the same arguments as in the proof of Proposition A.2. in Bai et al.
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(2016), we have that

∥∥∥Φ̃− Φ
∥∥∥
F

=

 T∑
t=p̄

utψ
′
t

 1

T̄

T∑
t=p̄

ψtψ
′
t

−1

+Op

√LN
Nβ

µ1 +

√
N(dT + µ2)

LN


 .

The result follows by post-multiplying ιi ⊗ Ir on both sides.

In the following, we will focus on the consistency of the parameter estimates after rotation. As

the rotation matrix A in Section 2.4 depends on the covariance matrix Ω of the VAR innovations

ηt in equation (2.2), we first concentrate on the consistency of Ω. For this, we introduce the

following two lemmas that are similarly established by Bai et al. (2016).

Lemma A.9. For any two compatible matrices B and C and the corresponding estimates B̃ and

C̃, we have

B̃C̃−1B̃′ − BC−1B′ =
(
B̃ − B

)
C−1B′ + BC−1

(
B̃ − B

)′
− BC−1

(
C̃ − C

)
C−1B′ +R,

where

R =−
(
B̃ − B

)
C̃−1

(
C̃ − C

)
C−1B′ +

(
B̃ − B

)
C̃−1

(
B̃ − B

)′
+ BC̃−1

(
C̃ − C

)
C−1

(
C̃ − C

)
C−1B̃′ − BC̃−1

(
C̃ − C

)
C−1

(
B̃ − B

)′
.

Proof. See Lemma B.1. in Bai et al. (2016).

Lemma A.10.

1

T̄
H̃ ′MΦ̃H̃ −

1

T̄
H ′MΦH = Op

√LN
Nβ

µ1 +

√
N(dT + µ2)

LN


 ,

where

1

T̄
H̃ ′MΦ̃H̃ =

1

T̄

T∑
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h̃th̃
′
t −
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T̄
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t

 1

T̄

T∑
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ψ̃tψ̃
′
t

−1 1

T̄

T∑
t=p̄

ψ̃th̃
′
t

 ,
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and 1
T̄
H ′MΦH is defined similarly.

Proof. The proof is identically conducted as in Bai et al. (2016). Hereby, we consider the

following three expressions that are bounded using Lemma A.7 (a).

1

T̄

T∑
t=p̄

h̃th̃
′
t −

1

T̄

T∑
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hth
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√
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
 ,

1
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 ,

1

T̄
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ψtψ
′
t = Op
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Nβ
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
 .

The result follows based on the above results and Lemma A.9.

The covariance matrix estimator of the innovations ηt can be bounded according to the

following lemma.

Lemma A.11.

∥∥∥Ω̃− Ω
∥∥∥
F

= Op

√LN
Nβ

µ1 +

√
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 .

Proof. The estimator of η̃t is defined as

Ω̃ =
1

T̄

T∑
t=p̄

η̃tη̃
′
t,

where η̃t are the residuals of the regression h̃t = Φ1h̃t−1 + · · ·+ Φph̃t−p + error. Hence,

η̃t = h̃t −

 T∑
t=p̄

h̃tψ̃
′
t

 T∑
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ψ̃tψ̃
′
t

−1

ψ̃t,
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where ψ̃t =
(
h̃′t−1, . . . , h̃

′
t−p

)′
. Based on the previous result we have
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 . (A.14)

Hence, given (A.14) we obtain
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(A.15)

The expression (A.15) is bounded by Lemma A.10. These results yield

∥∥∥Ω̃− Ω
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F

= Op

√LN
Nβ

µ1 +

√
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 .

The estimated rotation matrix Ã =

 Ir1 −Ω̃fgΩ̃
−1
gg

0 Ir2

 can be bounded using the following

lemma.

Lemma A.12.

∥∥∥Ã21 −A21

∥∥∥
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Nβ
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√
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
 ,

where Ã21 = −Ω̃fgΩ̃
−1
gg and A21 = −ΩfgΩ

−1
gg .

Proof. Given the definitions of Ã21 and A21, we obtain

Ã21 −A21 = ΩfgΩ
−1
gg − Ω̃fgΩ̃

−1
gg

= −
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)(
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)
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(
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)
−
(
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Based on Lemma A.11, we can upper bound the expression (A.16) by

∥∥∥Ã21 −A21
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Lemma A.13.

max
i≤N

∥∥∥λ̂gi − λ∗gi ∥∥∥ = Op
(√

µ1 +
√
µ2 +

√
dT

)
.

Proof. The rotated factor loadings of the observed factors are defined as λ̂gi = λ̃gi + λ̃fi Ã21

and λ∗gi = λgi + λfi A21. Hence, their difference can be expressed as

λ̂gi − λ
∗g
i = λ̃gi − λ

g
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f
i

)
A21 + λfi

(
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)
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(
λ̃fi − λ

f
i

)(
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)
. (A.17)

The above expression can be bounded using Lemma A.3 and Lemma A.12 according to

max
i≤N

∥∥∥λ̂gi − λ∗gi ∥∥∥ ≤ max
i≤N
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= Op
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√
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Lemma A.14.

∥∥∥f̂t − f∗t ∥∥∥ = Op
(
N−β/2

)
+Op

(
µ1

√
LN

Nβ
+

√
N(dT + µ2)

N2β

)
.

Proof. The rotated unobserved factors are defined as f̂t = f̃t − Ã21gt and f∗t = ft −A21gt.

48



Thus, the difference of both terms is given by

f̂t − f∗t = f̃t − ft −
(
Ã21 −A21

)
gt. (A.18)

Using the euclidean norm, we determine the upper bound of (A.18), using Lemma A.4 and

Lemma A.12, by

∥∥∥f̂t − f∗t ∥∥∥ ≤ ∥∥∥f̃t − ft∥∥∥− ∥∥∥Ã21 −A21
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)
= op(1).

Finally, for the rotated coefficient matrices of the dynamic equation in (2.2) we establish the

following lemma.

Lemma A.15.
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where ιi is the i-th column of the r × r identity matrix.

Proof. Given the definitions Φ̂i = ÃΦ̃iÃ
−1 and Φ∗i = AΦiA

−1, we obtain
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Ã−1 −A−1

)
+A

(
Φ̃− Φ

)(
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Based on Lemma A.8 and Lemma A.12, we get the expression
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∥∥∥Ã−1 −A−1
∥∥∥
F

+A
∥∥∥Φ̃− Φ

∥∥∥
F
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The result follows by post-multiplying ιi ⊗ Ir on both sides.
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B Tables

Table B.1: Data and Transformations

Description of the variables
Transformation Latent

FFR
code factor

1 real personal income 5 0

2 real personal income ex transfer receipts 5 0

3 real personal consumption expenditures 5 0

4 real manufacturing and trade industries sales 5 5 -0.0025

5 retail and food services sales 5 0

6 IP index 5 1,5 -0.0444

7 IP final products and nonindustrial supplies 5 1,5 -0.0494

8 IP final products 5 5 -0.0473

9 IP consumer goods 5 5 -0.0362

10 IP durable consumer goods 5 5 -0.0267

11 IP nondurable consumer goods 5 5 -0.0103

12 IP business equipment 5 1,5 -0.0283

13 IP materials 5 1,5 -0.0230

14 IP durable materials 5 1,5 -0.0300

15 IP nondurable materials 5 5 -0.0026

16 IP manufacturing 5 1,5 -0.0445

17 IP residuential utilities 5 0

18 IP fuels 5 0

19 capacity utilization 2 1,5 -0.0402

20 US ISM Manufacturers survey: production index 1 1 -0.0110

21 US ISM Manufacturers survey: employment index 1 1 -0.0119

22 US ISM Purchasing Managers Index 1 1 -0.0138

23 US ISM Manufacturers survey: supplier delivery index 1 1 -0.0038

24 US ISM Manufacturers survey: new orders index 1 1 -0.0096

25 US ISM Manufacturers survey: inventories index 1 1 -0.0075

26 US ISM Manufacturers survey: prices paid index 1 1,2 -0.0021

27 help wanted index 2 0

28 ratio of help wanted/number unemployed 2 1 -0.0005

29 civilian labor force 5 0

30 civilian employment 5 1 -0.0041

31 civilian unemployment rate 2 1 0.0060

32 average duration of unemployment 2 0

33 civilians unemployed - less than 5 weeks 5 0

34 civilians unemployed for 5-14 weeks 5 0

Continued on next page
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Table B.1 – cont.

Description of the variables
Transformation Latent

FFR
code factor

35 civilians unemployed - 15 weeks and over 5 1 0.0050

36 civilians unemployed for 15-26 weeks 5 0

37 civilians unemployed for 27 weeks and over 5 1 0.0030

38 initial claims 5 0

39 All employees: total nonfarm 5 1 -0.0194

40 All employees: goods-producing industries 5 1 -0.0222

41 All employees: mining 5 0

42 All employees: construction 5 1 -0.0120

43 All employees: manufacturing 5 1,5 -0.0217

44 All employees: durable goods 5 1,5 -0.0219

45 All employees: nondurable goods 5 1 -0.0130

46 All employees: service-providing industries 5 1 -0.0139

47 All employees: trade, transportation and utilities 5 1 -0.0152

48 All employees: wholesale trade 5 1 -0.0159

49 All employees: retail trade 5 1 -0.0098

50 All employees: financial activities 5 1 -0.0044

51 All employees: government 5 0

52 Average hourly earnings: goods-producing 1 1 -0.0110

53 Average weekly overtime hours: manufacturing 2 0

54 Average weekly hours: manufacturing 1 1 -0.0121

55 Housing starts: total new privately owed 5 0

56 Housing starts: NE 5 0

57 Housing starts: MW 5 0

58 Housing starts: S 5 0

59 Housing starts: W 5 0

60 New private housing permits 5 0

61 New private housing permits: NE 5 0

62 New private housing permits: MW 5 0

63 New private housing permits: S 5 0

64 New private housing permits: W 5 0

65 Moodys Seasoned Aaa Corporate Bond Yield, Percent 1 3 -0.0912

66 Moodys Seasoned Baa Corporate Bond Yield, Percent 2 3,4 -0.0722

67 30-Year Fixed Rate Mortgage Average in the United

States, Percent

2 3 -0.0644

68 Excess Bond Premium 1 1 0.0119

69 Spread UK-US 2 0

70 Spread CAN-US 2 0

Continued on next page
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Table B.1 – cont.

Description of the variables
Transformation Latent

FFR
code factor

71 Spread SW-US 2 0

72 Spread JPN-US 2 -0.1383

73 New orders for durable goods 5 0

74 New orders for nondefense capital goods 5 0

75 Unfilled orders for durable goods 5 1 -0.0019

76 Business Inventories 5 1 -0.0100

77 Inventories to sales ratio 2 0

78 M1 money stock 5 0

79 M2 money stock 5 0

80 Real M2 money stock 5 2 0.0232

81 St. Louis adjusted monetary base 5 2 0.0023

82 Total reserves of depository institutions 5 0

83 Commercial and industrial loans 5 1 -0.0029

84 Real estate loans at all commercial banks 5 0

85 Total nonrevolving credit 5 0

86 nonrevolving comsumer credit to personal income 2 0

87 S&P 500 composite 5 4 0.0092

88 S&P industrials 5 4 0.0091

89 S&P common stock dividend yields 2 4 -0.0083

90 S&P common stock price-earnings ratio 5 1,4 0.0066

91 VXO 1 1,4 0.0063

92 Dow Jones Industrial 5 4 0.0034

93 Dow Jones Utilities 5 0

94 Nasdaq Composite 5 4 0.0015

95 Dow Jones 5 4 0.0015

96 Nasdaq Industrial 5 4 0.0013

97 3 month financial commercial paper rate 2 1 0.2361

98 3 month Treasury bill 2 0.4455

99 6 month Treasury bill 2 1,3 0.4731

100 1 year Treasury rate 2 3 0.4023

101 5 year Treasury rate 2 3 0.0871

102 10 year Treasury rate 2 3 -0.0207

103 Moody AAA corporate bond yield 2 3 -0.0912

104 Moody BAA corporate bond yield 2 3,4 -0.0722

105 Trade weighted US Dollar index major currencies 5 0

106 Switzerland US foreign exchange rate 5 0

107 Japan US foreign exchange rate 5 0

108 US UK foreign exchange rate 5 0

Continued on next page
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Table B.1 – cont.

Description of the variables
Transformation Latent

FFR
code factor

109 Canada US foreign exchange rate 5 0

110 PPI: finished goods 5 2 -0.0349

111 PPI: finished consumer goods 5 2 -0.0353

112 PPI: intermediate materials 5 2 -0.0332

113 PPI: crude materials 5 2 -0.0145

114 crude oil 5 2 -0.0113

115 PPI: metals 5 0

116 CPI: all items 5 2 -0.0505

117 CPI: apparel 5 0

118 CPI: transportation 5 2 -0.0480

119 CPI: commodities 5 2 -0.0508

120 CPI: durables 5 0

121 CPI: all items less food 5 2 -0.0501

122 CPI: all items less shelter 5 2 -0.0516

123 CPI: all items less medical care 5 2 -0.0509

124 Personal consumption expenditure: chain index 6 2 -0.0090

125 Personal consumption expenditure: durable goods 5 0

126 Personal consumption expenditure: nondurable goods 5 2 -0.0491

Note: This table shows the different observed variables on monthly frequency for a sampling period January 1985 until
December 2016. The data is retrieved from the McCracken and Ng (2016) FRED-MD data base and datastream. The
transformation codes are labeled as follows: 1 = no transformation, 2 = ∆xt, 3 = ∆2xt, 4 = log(xt), 5 = ∆log(xt), 6 =
∆2log(xt). The last two columns are associated with our regularized FAVAR model. The column “Latent factor” shows
the latent factors the specific time series load on. The latent factors are denotes as 1 = labor market, 2 = price, 3 =
industrial production, 4 = stock market, 5 = credit spread. The column “FFR” denotes the estimated loadings onto
the observable factor.

Table B.2: Naming variables scheme

Index Description of the variables

6 Industrial Production (IP) index

31 Civilian unemployment rate

87 S&P 500 composite

66 Moody’s Seasoned Baa Corporate Bond Yield

116 Consumer Price Index (CPI): all items

Note: This table lists the observed time series that are used as
naming variables for the named factor identification case (IRb).
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Table B.3: Contemporaneous impact matrices

Panel A: regularized FAVAR model - RFAVAR

1 0 0 0 0
-0.0555

(0.0316)

0 1 0 0 0
-0.1093

(0.0676)

0 0 1 0 0
-0.1014

(0.0721)

0 0 0 1 0
0.0169

(0.0895)

0 0 0 0 1
-0.1742

(0.0836)

0 0 0 0 0 1

Panel B: named factors scheme - FAVAR-NF

-1.2426 0.3996 0.2934 0.2029 0.0824
-0.4235

(0.0449)

-0.8293 -0.9389 0.0315 -0.2053 0.0276
-0.1201

(0.0738)

-0.6111 -0.0810 -0.2619 -0.1330 -1.1376
0.0337

(0.0870)

1.7036 -0.3395 0.9813 1.1365 0.3018
0.1589

(0.0752)

-1.1194 -0.1157 -0.9908 0.7985 0.5888
-0.1626

(0.0836)

0 0 0 0 0 1

Note: This tables shows the contemporaneous impact matrices associ-
ated with the different identification schemes. Panel A shows the impact
matrix for our structural regularized FAVAR model (IRa). Panel B
gives the impact matrix associated with the named factor identification
scheme (IRb). Standard errors are given in brackets.
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C Figures
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Figure C.1: R2 plot for a factor model based on principal components analysis
This graph shows R2 for univariate regressions of the observed variables on each of the eight factors. The number
of factors is chosen based on the Bai and Ng (2002) IC1 criterion.
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Figure C.2: R2 plot for the regularized FAVAR
This graph shows R2 for univariate regressions of the observed variables on each of the factors. The factors are
abbreviated as follows: ’LM’ labor market, ’P’ price, ’IP’ industrial production, ’SM’ stock market, ’CS’ credit
spread and ’FFR’ Federal Funds rate.
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Figure C.3: Factor plots for the regularized FAVAR
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Figure C.4: R2 plot for the named factor FAVAR
This graph shows R2 for univariate regressions of the observed variables on each of the factors. The factors are
abbreviated as follows: ’LM’ labor market, ’P’ price, ’IP’ industrial production, ’SM’ stock market, ’CS’ credit
spread and ’FFR’ Federal Funds rate. The naming variables are given in Table B.2.
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Figure C.5: Factor plots for the named factor FAVAR
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Figure C.6: R2 plot for the named factor FAVAR: oil price application
This graph shows R2 for univariate regressions of the observed variables on each of the factors. The factors
are abbreviated as follows: ’LM’ labor market, ’P’ price, ’IP’ industrial production, ’SM’ stock market, ’C’
consumption, ’FX’ is a trade weighted currency index and ’FFR’ Federal Funds rate. The naming variables are
based on Stock and Watson (2016).
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Figure C.7: Accumulated impulse responses to a monetary policy shock on the factors for the
named factor FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals.

62



Figure C.8: Impact matrix on the observed variables xt for the named factor FAVAR
This graph shows the contemporaneous impact matrix of a 100bp shock in the factor innovations to the observed
time series for a factor model with named factor identification. The factors are abbreviated as follows: ’LM’ labor
market, ’P’ price, ’IP’ industrial production, ’SM’ stock market, ’CS’ credit spread and ’FFR’ Federal Funds rate.
The naming variables for the first scheme are given in Table B.2.
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Figure C.9: Accumulated impulse responses to a monetary policy shock on the observed variables
xt for the named factor FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals.
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Figure C.10: Accumulated impulse responses on the observed variables xt for the dynamic factor
model
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals.
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Figure C.11: Accumulated impulse responses on the observed variables xt for the VAR-F model
The graph shows impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines correspond
to 68% bootstrap confidence intervals.
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Robustness Checks

C.1 Shadow rate
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Figure C.12: Shadow and Federal funds rate
This graph shows the shadow rate and the Federal Funds rate. The shadow rate takes effect whenever the FFR is
at the zero lower bound, i.e. when it is below 25bp.
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Figure C.13: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the shadow rate. The
dashed lines correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(12)
model.
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Figure C.14: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the named factor FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the shadow rate. The
dashed lines correspond to 68% bootstrap confidence intervals.
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Figure C.15: Accumulated impulse responses on the observed variables xt for the dynamic factor
model
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the shadow rate. The
dashed lines correspond to 68% bootstrap confidence intervals.
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Figure C.16: Accumulated impulse responses on the observed variables xt for the VAR-F model
The graph shows impulse responses to a 100bp shock in the innovation of the shadow rate. The dashed lines
correspond to 68% bootstrap confidence intervals.
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C.2 Different initial number of factors
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Figure C.17: R2 plot for a factor model based on principal components analysis
This graph shows R2 for univariate regressions of the observed variables on each of the 20 factors.
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Figure C.18: R2 plot for the regularized FAVAR
This graph shows R2 for univariate regressions of the observed variables on each of the factors. The factors are
abbreviated as follows: ’LM’ labor market, ’P’ price, ’IP’ industrial production, ’SM’ stock market, ’CS’ credit
spread and ’FFR’ Federal Funds rate.
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C.3 Different lag order

C.3.1 RFAVAR(2) model
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Figure C.19: Accumulated impulse responses to a monetary policy shock on the factors for the
regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(2) model.
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Figure C.20: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(2) model.
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C.3.2 RFAVAR(3) model
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Figure C.21: Accumulated impulse responses to a monetary policy shock on the factors for the
regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(3) model.
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Figure C.22: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(3) model.
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C.3.3 RFAVAR(6) model
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Figure C.23: Accumulated impulse responses to a monetary policy shock on the factors for the
regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(6) model.
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Figure C.24: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(6) model.
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C.4 Pre-crisis time span
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Figure C.25: R2 plot for the FAVAR based on principal components analysis
This graph shows R2 for univariate regressions of the observed variables on each of the nine factors. The number
of factors is chosen based on the Bai and Ng (2002) IC1 criterion. The sample spans the pre-crisis period from
January 1985 to December 2006.
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Figure C.26: R2 plot for the regularized FAVAR
This graph shows R2 for univariate regressions of the observed variables on each of the factors. The factors are
abbreviated as follows: ’P’ price, ’CS’ credit spreads, ’IP’ industrial production, ’SM’ stock market and ’FFR’
Federal Funds rate. The sample spans the pre-crisis period from January 1985 to December 2006.
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Figure C.27: Factor plots for the regularized FAVAR
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Figure C.28: Impact matrix on the observed variables xt for the regularized FAVAR
This graph shows the contemporaneous impact matrix of a 100bp shock in the factor innovations to the observed
time series for the regularized FAVAR model. The factors are abbreviated as follows: ’P’ price, ’CS’ credit spreads,
’IP’ industrial production, ’SM’ stock market and ’FFR’ Federal Funds rate. The sample spans the pre-crisis
period from January 1985 to December 2006.
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Figure C.29: Accumulated impulse responses to a monetary policy shock on the observed
variables xt for the regularized FAVAR
The graph shows accumulated impulse responses to a 100bp shock in the innovation of the FFR. The dashed lines
correspond to 68% bootstrap confidence intervals. The impulse responses are based on a RFAVAR(12) model.
The sample spans the pre-crisis period from January 1985 to December 2006.
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