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Abstract

We propose to exploit stochastic volatility for statistical identification of Structural

Vector Autoregressive models (SV-SVAR). We discuss full and partial identification

of the model and develop efficient EM algorithms for Maximum Likelihood inference.

Simulation evidence suggests that the SV-SVAR works well in identifying structural

parameters also under misspecification of the variance process, particularly if com-

pared to alternative heteroskedastic SVARs. We apply the model to study the inter-

dependence between monetary policy and stock markets. Since shocks identified by

heteroskedasticity may not be economically meaningful, we exploit the framework to

test conventional exclusion restrictions as well as Proxy SVAR restrictions which are

overidentifying in the heteroskedastic model.
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1 Introduction

Following Sims (1980), structural vector autoregressive (SVAR) models have been used exten-

sively in empirical macroeconomics. Based on a reduced form VAR, identifying restrictions

are imposed to back out a unique set of structural shocks and estimate their dynamic effects

on the endogenous variables. Popular approaches for identification include short- and long-

run restrictions on the effects of structural shocks (Sims; 1980; Bernanke & Mihov; 1998;

Blanchard & Quah; 1989), sign restrictions (Faust; 1998; Canova & De Nicolo; 2002; Uhlig;

2005) and identification via external instruments, also known as Proxy SVARs (Stock &

Watson; 2012; Mertens & Ravn; 2013; Montiel-Olea, Stock & Watson; 2016). Furthermore,

a growing body of literature exploits statistical properties of the data to identify SVAR

models, assuming non-Gaussianity (Lanne, Meitz & Saikkonen; 2017; Gourieroux, Monfort

& Renne; 2017) or heteroskedasticity of the structural shocks (see Lütkepohl & Netšunajev

(2017a) for a review).1

To identify SVAR models via heteroskedasticity, a variety of models has been proposed

in the literature. These include a simple breakpoint model (Rigobon; 2003), a Markov

Switching model (Lanne, Lütkepohl & Maciejowska; 2010), a GARCH model (Normandin

& Phaneuf; 2004) and a Smooth Transition model (Lütkepohl & Netšunajev; 2017b). In

this paper, we contribute to the literature proposing to identify SVARs with a stochastic

volatility (SV) model. Specifically, we assume that the log variances of structural shocks

are latent, each following independent AR(1) processes. In conjunction with a fixed impact

matrix, this yields additional restrictions that allow to pin down a unique set of orthogonal

shocks. To the best of our knowledge, this model has not yet been used for identification in

the SVAR literature.

A stochastic volatility model for the variance of structural shocks is an attractive spec-

ification for various reasons. First, SV models enjoy increasing popularity in theoretical

and empirical macroeconomics. For example, Justiniano & Primiceri (2008) and Fernández-

Villaverde & Rubio-Ramı́rez (2007) allow for SV within fitted DSGE models, finding sub-

stantial time variation in the second moments of their structural shocks. Furthermore, SV

models are often used to complement time varying parameter VARs and have been found

to provide a good description of volatility patterns in macroeconomic data (Primiceri; 2005;

Koop & Korobilis; 2010). Given this context, it seems natural to exploit the model also for

identification purposes of SVAR models. Second, the SV model is known to be more flexible

than models with deterministic variance processes. As pointed out in Kim, Shephard &

Chib (1998), this additional flexibility typically translates into superior fit in comparison to

equally parameterized models from the GARCH family. We find this to be confirmed in our

empirical example where a simple SV model provides the best model fit with a relatively

small amount of parameters and therefore, is favored by any conventional information crite-

rion (IC). This is an important aspect, given that recent evidence of Lütkepohl & Netšunajev

(2017a) suggests to choose the heteroskedasticity model of SVARs by information criteria.

Finally we provide evidence that, in comparison to alternative heteroskedastic SVARs, the

1For a textbook treatment of identification in SVARs we refer to Kilian & Lütkepohl (2017).
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SV-SVAR model works well in estimating the structural parameters under misspecification

of the variance process, proofing itself capable to capture volatility patterns generated by

very different data generating processes (DGPs). More specifically, by simulating data from

SVAR models subject to four distinct variance specifications we find that the SV model

performs superior in terms of mean squared error of estimated impulse response functions.

Since the SV specification implies a nonlinear state space model, standard linear filtering

algorithms cannot be applied to evaluate the likelihood function which makes estimation of

the SV-SVAR model relatively challenging. However, many estimation methods have been

proposed in the literature to overcome this difficulty starting with Generalized Methods of

Moments (Melino & Turnbull; 1990), Quasi Maximum Likelihood (Harvey, Ruiz & Shephard;

1994; Ruiz; 1994), Simulated Likelihood (Danielsson & Richard; 1993) and Bayesian methods

(Kim et al.; 1998) based on Markov Chain Monte Carlo (MCMC) simulation. In this paper,

we follow Durbin & Koopman (1997) in evaluating the likelihood function by importance

sampling. To maximize the likelihood function we develop two versions of an Expectation

Maximization (EM) algorithm. The first is based on a second order Taylor approximation

of the intractable smoothing distribution necessary in the E-step and relies on sparse matrix

algorithms developed for Gaussian Markov random fields (Rue, Martino & Chopin; 2009;

Chan; 2017). Therefore, the algorithm is very fast and typically converges within seconds.

Our second EM algorithm approximates the E-step by Monte Carlo integration, exploiting

that the error term of a log-linearized state equation can be accurately approximated by

a mixture of normal distributions (Kim et al.; 1998). Conditional on simulated mixture

indicators, the model has a normal linear state space representation allowing to compute the

expectations necessary in the E-step by standard Kalman smoothing recursions. Thereby,

the second order approximation can be avoided at the cost of higher computational effort.

In an empirical application, we use the proposed model to identify the structural pa-

rameters of a VAR specified in Bjørnland & Leitemo (2009). Within conventional SVAR

analysis, they study the interdependence between monetary policy and the stock market

based on short- and long-run restrictions. We find that compared to other heteroskedastic

SVAR models, the SV specification provides superior fit and is favored by all conventional

information criteria. Since structural shocks identified by heteroskedasticity are not guaran-

teed to be economically meaningful, we follow Lütkepohl & Netšunajev (2017a) and test the

exclusion restrictions used by Bjørnland & Leitemo (2009). In addition, we also test Proxy

SVAR restrictions which arise if the narrative series of Romer & Romer (2004) and Gertler

& Karadi (2015) are used as external instruments to identify a monetary policy shock. Our

results indicate that the short-run restrictions of Bjørnland & Leitemo (2009) and Proxy

SVAR restrictions based on the shock of Gertler & Karadi (2015) are rejected by the data.

However, we do neither find evidence against imposing the long-run restriction of Bjørnland

& Leitemo (2009) nor against identifying a monetary policy shock by the Romer & Romer

(2004) series.

The paper is structured as follows. Section 2 introduces the SVAR model with stochastic

volatility and discusses under which conditions the structural parameters are identified.

Section 3 considers Maximum Likelihood estimation and reviews a procedure to test for
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identification. In section 4, we present simulation evidence while in section 5 we apply

the proposed model to study the interdependence between US monetary policy and stock

markets. Section 6 concludes.

2 Identification of SVAR via Stochastic Volatility

Let yt be a K × 1 vector of endogenous variables. The generic heteroskedastic SVAR model

we consider reads:

yt = ν +

p∑
j=1

Ajyt−j + ut, (2.1)

ut = BV
1
2
t ηt, (2.2)

where ηt ∼ (0, IK) is assumed to be a white noise error term. Equation (2.1) corresponds

to a standard reduced form VAR(p) model for yt capturing common dynamics across the

time series data by a linear specification. Here, Aj for j = 1, . . . , p are K × K matrices

of autoregressive coefficients and ν is a K × 1 vector of intercepts. Since we only consider

stable time series throughout the paper, we assume:

detA(z) = det(IK − A1z − . . .− Apzp) 6= 0 for |z| ≤ 1.

Equation (2.2) models the structural part and is set up as a B-model in the terminology of

Lütkepohl (2005). The reduced form error terms ut are decomposed into a linear function

of K structural shocks εt = V
1
2
t ηt, with B a K × K invertible contemporaneous impact

matrix and V
1
2
t a stochastic diagonal matrix with strictly positive elements capturing po-

tential heteroskedasticity in each structural shock. This specification yields a time-varying

covariance matrix of the reduced form errors ut given as Σt = E(utu
′
t) = BVtB

′. In the

following, we assume that there are r ≤ K heteroskedastic shocks which are ordered first

in vector εt. Proposition 1 summarizes the identifying conditions for the structural im-

pact matrix B = [B1, B2], partitioned such that B1 corresponds to the block regarding the

heteroskedastic shocks, and B2 to all remaining shocks.

Proposition 1. Let Σ1 = BB′ and Σt = BV ∗t B
′ (t = 2, . . . , T ), where B = [B1, B2]

with B1 ∈ R
K×r, B2 ∈ R

K×(K−r) and V ∗t = diag (v1t, . . . , vrt, 1K−r) be nonsingular K × K
covariance matrices. If for r ≤ K:

∀i ∈ {1, . . . , r} : ∀j 6= i ∈ {1, . . . , K} : ∃t ∈ {2, . . . , T} : vit 6= vjt (2.3)

holds, matrix B1 is unique up to multiplication of its columns by −1.

Proof. See Appendix A.1.

Note that Proposition 1 can be applied to the generic heteroskedastic SVAR by normal-
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izing the variance V ∗t = V −1
1 Vt (t = 1, . . . , T ) such that V ∗1 = IK .2 The following insights

are gained from the identification analysis. First, condition (2.3) excludes the possibility

that the stochastic processes in vt are linearly dependent which ultimately gives the tool to

statistically discriminate amongst them. Second, similar to Sentana & Fiorentini (2001) and

Lanne et al. (2010), we show that identification via heteroskedasticity depends crucially on

the number of heteroskedastic shocks r. If r equals K, it is B = B1 such that full identifica-

tion of the impact matrix in model (2.1)-(2.2) is ensured. Third, applying Corollary 1 shows

that r = K − 1 suffices to guarantee full identification of B:

Corollary 1. Assume the setting from Proposition 1 including assumption (2.3) for the

special case r = K − 1. Then, the entire matrix B ∈ RK×K is unique up to multiplication of

its columns by −1.

Proof. See Appendix A.2.

In case that r < K − 1, B is only partially identified and further identifying restrictions

are necessary to identify the elements of B2. One example would be to impose a lower

triangular structure on the lower right block of B2. We discuss this possibility to estimate

the model under partial identification in section 3.5.

The identification results hold for any model inducing time variation in Vt. In this paper,

we specify a basic SV model for the first r ≤ K diagonal elements of Vt corresponding to

the variances of the first r structural shocks:

Vt =

[
diag(exp([h1t, . . . , hrt]

′)) 0

0 IK−r

]
, (2.4)

hit = µi + φi(hi,t−1 − µi) +
√
siωit, for i = 1, . . . , r. (2.5)

We assume that ωit ∼ N (0, 1) and E(ε′tωt) = 0 for ωt = [ω1t, . . . , ωrt]
′. In words, the first

r log variances of εt contained in the diagonal elements of Vt are assumed to be latent

independent Gaussian AR(1) processes. Their unconditional first and second moments are

given by E(hit) = µi and Var(hit) = si/(1− φ2
i ). Note that the proposed model for equation

(2.2) is very similar to the Generalized Orthogonal GARCH (GO-GARCH) model of Van der

Weide (2002) and Lanne & Saikkonen (2007), with the major difference in the specification

(2.4)-(2.5) of Vt. While for the GO-GARCH the first r diagonal components are modeled by

deterministic GARCH(1,1) processes, we model their logarithms as latent AR(1)’s.

To return to model identification, note that jointly rescaling hi and the i-th column of

B does not alter the second moment properties of the model. Therefore, some normalizing

constraints need to be imposed. Similar to the approach taken in the GO-GARCH, we choose

to normalize the unconditional variance of the structural shocks to unity, that is E(ε2
it) = 1.

Note that from the properties of a log-normal distribution, E(exp(hit)) = exp
(
µi + si

2(1−φ2i )

)
.

Therefore, we simply set µi = − si
2(1−φ2i )

and impose the linear constraint on the first sample

2Also note that joint column permutations of B and Vt (t = 1, . . . , T ) do not induce different second
moment properties of the reduced form errors.
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moment:

Ahhi = µi, (2.6)

where Ah = 1T
′/T and hi = [hi1, . . . , hiT ]′. To initialize the latent variables, we assume that

at t = 1, hi1 ∼ N (µi, si/(1 − φ2
i )) which corresponds to the unconditional distribution of

hit. Note that an alternative normalizing constraint would be to set E(hi1) = Var(hi1) = 0

which implies E(u1u
′
1) = BB′ as imposed e.g. by Markov Switching SVAR models (Lanne

et al.; 2010; Herwartz & Lütkepohl; 2014). However, the latter would require additional r

free parameters to capture nonzero means in the log variances. Furthermore, we find the

linear constraint given in (2.6) to yield numerically more stable results during estimation at

trivial computational extra costs.

3 Maximum Likelihood Estimation

Let φ = [φ1, . . . , φr]
′ and s = [s1, . . . , sr]

′. In order to estimate the parameter vector

θ = [vec([ν,A1, . . . , Ap])
′, vec(B)′, φ′, s′]′, we propose a full Gaussian maximum likelihood

approach. Assuming normality of ηt, the log-likelihood function based on the prediction

error decomposition is given as follows:

L(θ) =
T∑
t=1

[
−K

2
log(2π)− 1

2
log |BVt|t−1B

′| − 1

2
u′t(BVt|t−1B

′)−1ut

]
,

where ut = yt − ν −
∑p

j=1 Ajyt−j and Vt|t−1 = E[Vt|Ft−1] are one-step ahead predicted

variances conditional on the information set at time t − 1. Since the SV model implies a

nonlinear state space model, the predictive distributions p(ht|θ, yt−1) necessary to compute

Vt|t−1 are not available in closed form. That is, the likelihood is intractable and standard

Kalman filter algorithms cannot be applied. To overcome this difficulty, we follow Durbin

& Koopman (1997) and Chan & Grant (2016) in evaluating the likelihood function by

importance sampling in a computationally efficient way. Furthermore, to maximize the

likelihood, we develop two versions of an Expectation Maximization algorithm which lead

to fast and reliable results.

3.1 Evaluation of the Likelihood

To show how the likelihood can be evaluated by importance sampling, we slightly manipulate

the log-likelihood function. Let εt = B−1ut and vi,t|t−1 the i-th diagonal element of Vt|t−1,

then:

L(θ) =− T log |B|+
K∑
i=1

T∑
t=1

[
−1

2
log(2π)− 1

2
log(vi,t|t−1)− 1

2
ε2
it/vi,t|t−1

]

=− T log |B|+
K∑
i=1

log p(εi|θ),
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where we have used that log |BVt|t−1B
′| = 2 log |B| +

∑K
i=1 log

(
vi,t|t−1

)
. Therefore, given

autoregressive coefficients and contemporaneous impact matrix, likelihood evaluation of the

SV-SVAR model reduces to the evaluation of K univariate densities for each structural

shock. For i = r+ 1, . . . , K these densities are trivial to compute since vi,t|t−1 = 1. However,

the densities log p(εi|θ) for i ≤ r are not tractable. Their evaluation equals computing the

following high-dimensional integral for i = 1, . . . , r:

p(εi|θ) =

∫
p(εi|θ, hi)p(hi|θ)dhi. (3.1)

To evaluate this integral, we use an importance sampling estimator. Therefore, let q(hi) be a

proposal distribution from which independent random draws h
(1)
i , . . . , h

(R)
i can be generated,

and further let q(hi) dominate p(εi|θ, hi)p(hi|θ). An unbiased importance sampling estimator

of the integral in equation (3.1) is:

p̂(εi|θ) =
1

R

R∑
j=1

p(εi|θ, h(j)
i )p(h

(j)
i |θ)

q(h
(j)
i )

. (3.2)

Plugging (3.2) into the SV-SVAR log-likelihood yields an IS estimator of the SV-SVAR

log-likelihood function:

L̂(θ) = −T log |B|+
r∑
i=1

log p̂(εi|θ) +
K∑

i=r+1

log p(εi|θ). (3.3)

The accuracy of the IS estimator crucially depends on our choice for the importance

densities q(hi) which we discuss in the following. First, note that the optimal (zero variance)

importance density is given by the smoothing distribution p(hi|θ, εi) ∝ p(εi|θ, hi)p(hi|θ).
However, since the likelihood of the measurement equation is nonlinear in hi, the normalizing

constant is unkown which is why we rely on IS in the first place. We follow Durbin &

Koopman (1997, 2000) and use a Gaussian importance density denoted by πG(hi|θ, εi), which

is centered at the mode of p(hi|θ, εi) with precision equal to the curvature at this point. For

computational reasons, we rely on fast algorithms that exploit the sparse precision matrices

of Gaussian Markov random fields as used e.g. in Rue et al. (2009) for a broad class of models

and Chan & Grant (2016) for stochastic volatility models in particular.

To derive πG(hi|θ, εi), we follow the exposition of Chan & Grant (2016). First, note that

assuming normality implies the following explicit form of the zero variance IS density:

p(hi|θ, εi) ∝ exp

(
−1

2
(hi − δi)′Qi(hi − δi) + log p(εi|θ, hi)

)
,
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where Qi = H ′iΣ
−1
hi
Hi with

Hi =


1 0 0 . . . 0

−φi 1 0 . . . 0

0 −φi 1 . . . 0
...

. . . . . . . . .
...

0 0 . . . −φi 1

 ,

and Σhi = diag([ si
1−φi , si, . . . , si]

′). Furthermore, δi = H−1
i δ̃i with δ̃i = [µi, (1−φi)µi, . . . , (1−

φi)µi]
′. The Gaussian approximation is based on a second order Taylor expansion of the

nonlinear density log p(εi|θ, hi) around some properly chosen h̃
(0)
i :

log p(εit|θ, hit) ≈ log p(εit|θ, h̃(0)
it ) + bithit −

1

2
cith

2
it, (3.4)

where bit and cit depend on h̃
(0)
it . Based on the linearized kernel, an approximate smoothing

distribution πG(hi|θ, εi) takes the form of a Normal distribution with precision matrix Q̄i =

Qi +Ci and mean δ̄i = Q̄−1
i (bi +Qiδi), where Ci = diag([ci1, . . . , ciT ]′) and bi = [bi1, . . . , biT ]′.

The T -dimensional density has a tridiagonal precision matrix which allows for fast generation

of random samples and likelihood evaluation. The approximation is evaluated at the mode of

the smoothing distribution obtained by a Newton-Raphson method that typically converges

in few iterations. Details on the Newton-Raphson method and on explicit expressions for bit

and cit are given in Appendix B.1.

As discussed in section 2, we impose the normalizing constraint Ahhi = µi to guarantee

unique scaling in B and hi. Therefore, the IS density πG(hi|θ, εi) needs a slight modification

to account for this linear constraint. In particular, an application of Bayes’ theorem yields

a constraint density πcG(hi|θ, εi) which is also Gaussian but has mean and covariance:3

δ̄ci = δ̄i − Q̄−1
i A′h(AhQ̄

−1
i A′h)

−1(Ahδ̄i − µi), (3.5)

Cov(hi|θ, εi, Ahhi=µi) = Q̄−1
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1AhQ̄
−1
i . (3.6)

Note that imposing the linear restriction yields a non-sparse precision and a reduced rank

covariance which impedes direct efficient sampling and density evaluation. Following Rue

et al. (2009), sampling and evaluation of πcG(hi|θ, εi) can still be implemented at trivial extra

costs. Specifically, a random sample h̃
(j)
i is first generated from πG(hi|θ, εi), exploiting the

sparse precision Q̄−1
i . In a second step, the draw is corrected for the linear constraint by

setting h
(j)
i = h̃

(j)
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1(Ahh̃
(j)
i − µi). Also evaluation of the adjusted IS

density can be achieved efficiently by applying Bayes’ Theorem:

πcG(hi|θ, εi) =
πG(hi|θ, εi)π(Ahhi|hi)

π(Ahhi)
, (3.7)

where log π(Ahhi|hi) = −1
2

log |AhA′h| and π(Ahhi) ∼ N (Ahδi, AhQ̄
−1
i A′h).

3This approach is known as “conditioning by kriging”.
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Finally, we recommend to assess the quality of the estimator (3.3) by reporting its standard

error which can be computed e.g. by the batch means method. Furthermore, for the validity

of the standard error and
√
R-convergence of the IS estimator, the variance of the importance

weights has to exist. Since for the high-dimensional integral (3.1) that has to be estimated

this is not clear a-priori, we advise to test for the existence of the variance using e.g. the

test of Koopman, Shephard & Creal (2009). However, for sample sizes typically used in

macroeconomics we do not expect this to be a serious issue.

3.2 EM Algorithm

In order to optimize the likelihood function, we exploit the Expectation Maximization algo-

rithm first introduced by Dempster, Laird & Rubin (1977). The EM procedure is particularly

suitable for maximization problems under the presence of hidden variables. In our setting,

the hidden variables are the set of r log variances denoted by h = [h1, . . . , hr]. Our goal is

to maximize:

L(θ) = log p(y|θ) = log

∫
p(y|θ, h)p(h|θ)dh.

Following Neal & Hinton (1998) and Roweis & Ghahramani (2001), let p̃(h) be any dis-

tribution of the hidden variables, possibly depending on θ and y. Then, a lower bound on

L(θ) can be obtained by an application of Jensen’s inequality:

L(θ) = log

∫
p(y|θ, h)p(h|θ)dh (3.8)

= log

∫
p(y|θ, h)p(h|θ)

p̃(h)
p̃(h)dh (3.9)

≥
∫

log

(
p(y|θ, h)p(h|θ)

p̃(h)

)
p̃(h)dh (3.10)

=

∫
log (p(y|θ, h)p(h|θ)) p̃(h)dh−

∫
log (p̃(h)) p̃(h)dh (3.11)

=: F (p̃, θ). (3.12)

The EM algorithm starts with some initial parameter vector θ(0) and proceeds by iteratively

maximizing:

E-step: p̃(l) = arg max
p̃

F (p̃, θ(l−1)), (3.13)

M-step: θ(l) = arg max
θ

F (p̃(l), θ). (3.14)

Under mild regularity conditions the EM algorithm converges reliably towards a local op-

timum.4 It is easy to show that the E-step in (3.13) is given by setting p̃(l) equal to the

smoothing distribution p(h|θ(l−1), y). This can be seen by noting that for this choice, equa-

tion (3.10) holds with equality which means that the lower bound F (p̃, θ) exactly equals the

4For details on convergence, we refer to the textbook treatment in McLachlan & Krishnan (2007).
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log-likelihood L(θ). Furthermore, the M-step in equation (3.14) is given by maximizing the

criterion function:

Q(θ; θ(l−1)) =

∫
log (p(y|θ, h)p(h|θ)) p̃(l)(h)dh (3.15)

= Eθ(l−1) (Lc(θ)) , (3.16)

where the expectation is taken with respect to p̃(l)(h) and Lc(θ) = log (p(y|θ, h)p(h|θ)) is the

complete data log-likelihood.

For the SV-SVAR model, the complete data log-likelihood is rather simple and we refer to

Appendix B.3 for an explicit expression. It follows that for a given choice of p̃(l), computing

the M-Step is straightforward. However, since the smoothing distribution in SV models is

generally not tractable, we cannot simply set p̃(l) = p(h|θ(l−1), y). Instead, we develop two

algorithms which approximate this density to a different extent, one based on an analytical

approximation and the other based on Monte Carlo integration. In the following, we use

that independence among the structural errors implies that the smoothing distribution can

be factored as: p(h|θ(l−1), y) =
∏r

i=1 p(hi|θ(l−1), y).

3.2.1 Analytical Approximation

Our analytical approximation is based on the following E-step:

p̃(l)(h) =
r∏
i=1

πcG(hi|θ(l−1), εi), (3.17)

which is the Gaussian approximation of the smoothing distribution that we already intro-

duced as importance density. This E-step corresponds to maximizing F (p̃, θ(l−1)) with respect

to p̃ considering only the family of Gaussian distributions. To motivate this approach, we

follow the arguments of Neal & Hinton (1998) who argue that it is not necessary to work with

the exact smoothing distributions in the EM algorithm to get monotonic increases in the log-

likelihood function L(θ). In fact, it can be shown that F (p̃, θ) = L(θ)−DKL (p̃(h)||p(h|y, θ))
where DKL(·||·) is the Kullback - Leibler (KL) divergence measure. Therefore, if the Gaus-

sian approximation is close to the smoothing density in a KL sense, iteratively optimizing

F (p̃, θ) yields convergence to a point very close to the corresponding local maximum of L(θ).

In the following, we refer to this algorithm as EM-1 and provide details in Appendix B.3.

3.2.2 Monte Carlo Approximation

The second approach is based on Markov Chain Monte Carlo (MCMC) integration and

draws on the results of Kim et al. (1998).5 The idea is to consider the linearized state space

5See also Mahieu & Schotman (1998) for a similar Monte Carlo EM algorithm to estimate a univariate
SV model.
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representation of the r independent SV equations:

log(ε2
it) = hit + log(η2

it), (3.18)

hit = µi + φi(hi,t−1 − µi) +
√
siωit, (3.19)

where ηit ∼ N(0, 1) and ωit ∼ N(0, 1). Kim et al. (1998) propose to closely approximate the

log-χ2 error distribution in (3.18) by a mixture of seven normals. In particular, they specify:

p(log(η2
t )|zit = k) ∼ N (log(ε2

it);mk, v
2
k), (3.20)

p(zit = k) = pk, (3.21)

with mixture parameters pk,mk, v
2
k for k = 1, . . . , 7 tabulated in Appendix B.3. The ad-

vantage of representing the transformed measurement error with a normal mixture is that

conditional on a realization of the indicators zi = [zi1, . . . , ziT ]′, the state space model is

both, linear and Gaussian which allows for closed form computations of p(hit|θ, zit, y) by

Kalman smoothing recursions.

We exploit this property in our Monte Carlo EM algorithm in the following way. First,

consider the mixture representation of the intractable smoothing distribution:

p(h|θ(l−1), y) ≈
∫
p(h|θ(l−1), z, y)p(z|θ(l−1), y)dz.

Using this distribution in the EM algorithm yields the following objective function in the

M-step:

Q(θ; θ(l−1)) ≈
∫ ∫

log [p(y|θ, h)p(h|θ)] p(h|θ(l−1), z, y)p(z|θ(l−1), y)dzdh.

To approximatively solve this high-dimensional integral, we simulate a large number of mix-

ture indicators z from p(z|θ(l−1), y) by MCMC methods and consider the Monte Carlo coun-

terpart:

Q(θ, θ(l−1)) ≈ 1

R

R∑
j=1

E
(j)

θ(l−1) [L(θ)],

where the expectation is now taken with respect to the tractable Gaussian distribution

p(h|θ(l−1), z(j), y) which can be computed by Kalman smoothing recursions.

In order to generate random draws of the mixture indicators we follow the MCMC scheme

of Kim et al. (1998) which involves iteratively drawing from the conditional distributions

p(hi|θ(l−1), zi, y) and p(zi|θ(l−1), hi, y). For computational reasons we rely on the precision

sampler of Chan & Jeliazkov (2009) which exploits the sparsity in the precision matrix.

Furthermore, it allows for a straightforward extension to implement the linear normalizing

constraint on hi. In the remainder, we call the Monte Carlo based algorithm EM-2 and for

details on the MCMC algorithm and respective M-steps, we refer to Appendix B.3.
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3.3 Properties of the Estimator

Because the SV-SVAR model is a special case of a Hidden Markov Model, the asymptotic

properties of the maximum likelihood estimator can be inferred from Cappé, Moulines &

Ryden (2005). Let θ̂ denote the ML estimator, under appropriate regularity conditions, θ̂ is

consistent and asymptotically normally distributed:

T 1/2(θ̂ − θ) d→ N (0, I(θ)−1), (3.22)

where I(θ) = −E
[
∂2 log p(y|θ)

∂θ′∂θ

]
is the information matrix. Furthermore, a strongly consistent

estimator for the asymptotic variance is given as:

Î(θ) = T−1J (θ̂) (3.23)

where J (θ̂) = −∂2L(θ)
∂θ′∂θ

∣∣
θ=θ̂

is the observed information matrix evaluated at the ML estimator.

To compute estimator (3.23) in algorithm EM-1, note that we can evaluate an approximate

log-likelihood in closed form based on the Gaussian approximation which we rely on in the

E-step. In particular, based on Bayes’ Theorem:

log p(εi|θ) ≈ log p(εi|θ, hi) + log p(hi|θ)− log πcG(hi|θ, εi), (3.24)

which can be evaluated for any hi. For convenience, the r likelihoods for the heteroskedastic

structural shocks are evaluated at the mean hi = δ̄ci , such that the exponential term in

πcG(hi|θ, εi) drops out. Therefore, based on (3.24) an approximate complete log-likelihood is

given as:

La(θ) = −T log |B|+
r∑
i=1

[log p(εi|θ, hi) + log p(hi|θ)− log πcG(hi|θ, εi)] +
K∑

i=r+1

log p(εi|θ).

We take the second derivative of this approximation with respect to the parameter vector

θ using numerical differentiation to obtain an approximation of the observed information

matrix J1(θ̂) = −∂2La(θ)
∂θ′∂θ

∣∣
θ=θ̂

.

For the Monte Carlo based algorithm EM-2, no closed form approximation of the likeli-

hood is available which makes the computation of the information matrix estimator more

involved. We apply Louis Identity (Louis; 1982) to the observed information matrix:

J2(θ̂) = E
[
Jc(θ̂)|y

]
− Cov(Sc(θ̂)|y), (3.25)

where Jc(θ̂) = −∂2Lc(θ)
∂θ∂θ′

∣∣
θ=θ̂

, Sc(θ̂) = ∂Lc(θ)
∂θ

∣∣
θ=θ̂

are the observed information matrix and score

of the complete data log-likelihood Lc. The integrals necessary to compute expected value

and variance are with respect to the smoothing distribution at the ML estimator p(h|θ̂, y)

which is intractable for the SV model. However, based on simulated values of the mixture
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indicators z(j)(j = 1, . . . , R), Monte Carlo integration is feasible with:

E
[
Jc(θ̂)|y

]
≈ 1

R

R∑
j=1

−E

[
∂2Lc(θ)
∂θ∂θ′

∣∣∣ z(j), y

]
θ=θ̂

,

Cov(Sc(θ̂)) ≈
1

R

R∑
j=1

E

[
∂Lc(θ)
∂θ

∂Lc(θ)
∂θ′

∣∣∣ z(j), y

]
θ=θ̂

,

where the second approximation holds since E(Sc(θ̂)|y) = 0. The integrals required to com-

pute the expected values are with respect to the tractable Gaussian distributions p(h|θ̂, z(j), y).

The derivatives necessary to apply the Louis Method are available in closed form and given

in Appendix B.4.

3.4 Inference on Structural Impulse Response Functions

Identification of the SVAR model is ultimately useful to conduct structural analysis. Since

Impulse Response Functions (IRFs) are likely to be the most widely used tool for that

purpose, we quickly outline how to conduct inference on these quantities with our model.

Following Lütkepohl (2005), the IRFs are elements of the coefficient matrices Θj = ΦjB

in the Vector Moving Average (VMA) representation of the model:

yt = µy +
∞∑
j=0

ΦjBεt,

where εt = V
1
2
t ηt are the structural shocks, µy = (IK−A1− . . .−Ap)−1ν is the unconditional

mean of yt and Φj ∈ RK×K (j = 0, 1, . . .) is a sequence of exponentially decaying matrices

given as: Φj = JAjJ ′ with J = [IK , 0, . . . , 0] and

A =


A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK 0 0
...

...
. . .

... 0

0 0 . . . IK 0

 .

The elements of Θi, θjk,i’s are the impulse response functions in variable j to a structural

innovation k after i periods.

We conduct inference on the estimated quantities Θ̂i based on their asymptotic distribu-

tion. Given that the IRFs are nonlinear functions of the model parameters, the distribution

can be inferred based on the result that T 1/2(θ̂ − θ) d→ N (0, I(θ)−1). Let α = vec(A) with
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A = [A1, . . . , Ap], β = vec(B) and partition the asymptotic covariance matrix of θ̂ into:

I(θ)−1 = Σθ =


Σν

Σν,α Σα

Σν,β Σα,β Σβ

Σν,φ Σα,φ Σβ,φ Σφ

Σν,s Σα,s Σβ,s Σφ,s Σs

 .

As in Brüggemann, Jentsch & Trenkler (2016), an application of the Delta method yields

the asymptotic distribution of the structural impulse responses:

√
T (Θ̂i −Θi)

d→ N (0,ΣΘ̂i
), i = 0, 1, 2, . . . ,

where:

ΣΘ̂i
= Ci,αΣαC

′
i,α + Ci,βΣβC

′
i,β + Ci,αΣ′α,βC

′
i,β + Ci,βΣα,βC

′
i,α,

with C0,α = 0, Ci,α = ∂ vec(Θi)
∂α′

= (B′ ⊗ IK)Gi and Gi = ∂ vec(Φi)
∂α′

=
i−1∑
mj=0

[J(A′)i−1−j] ⊗ Φj

for i ≥ 1. Finally, Ci,β = ∂ vec(Θi)
∂β′

= (IK ⊗ Φi) for i ≥ 0. Similarly, for the accumulated

structural impulse responses Ξn =
n∑
i=0

Θi, we get:

√
T
(

Ξ̂n − Ξn

)
d→ N (0,ΣΞ̂n

), n = 0, 1, 2, . . . ,

where:

ΣΞ̂n
= PnΣαP

′
n + P̄nΣβP̄

′
n + PnΣ′α,βP̄

′
n + P̄nΣα,βP

′
n,

with Pn = (B′ ⊗ IK)Fn, F0 = 0, Fn = G1 + · · ·+Gn, P̄n = (IK ⊗Ψn) and Ψn =
n∑
i=0

Φi.

3.5 Testing for Identification

For valid likelihood inference on the structural parameters including the impact matrix B,

the model must be identified. As highlighted in section 2, at most one component in ε is

allowed to be homoskedastic if the model is to be identified solely by heteroskedasticity. To

determine the number of heteroskedastic shocks in a given application, we recommend to

follow a procedure considered by Lanne & Saikkonen (2007) and Lütkepohl & Milunovich

(2016) within SVAR-GARCH models. The idea is to conduct the following sequence of tests:

H0 : r = r0 vs H1 : r > r0, (3.26)

for r0 = 0, . . . , K − 1. If all null hypotheses up to r0 = K − 2 can be rejected, there is

evidence for sufficient heteroskedasticity in the data to fully identify B.
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The testing problem given in (3.26) is nonstandard since parts of the parameter space differ

between null and alternative hypothesis. Therefore, Lanne & Saikkonen (2007) suggest test

statistics which require estimation under H0 only. In particular, suppose that r0 is the true

number of heteroskedastic errors, and separate the structural shocks εt = B−1ut = [ε′1t, ε
′
2t]
′

into a heteroskedastic part ε1t ∈ R
r0 and homeskedastic innovations ε2t ∈ R

K−r0 . Note

that if the null is true (r = r0), ε2t ∼ (0, IK−r0) is white noise. To test for remaining

heteroskedasticity in ε2t, Lanne & Saikkonen (2007) propose to use Portmanteau types of

statistics on the second moment of ε2t. In particular, they construct the following time series:

ξt = ε′2tε2t − T−1

T∑
t=1

ε′2tε2t, (3.27)

ϑt = vech(ε2tε
′
2t)− T−1

T∑
t=1

vech(ε2tε
′
2t), (3.28)

with vech(·) being the half-vectorization operator as defined e.g. in Lütkepohl (2005). Based

on these time series, autocovariances up to a prespecified horizon H are tested considering

the following statistics:

Q1(H) = T
H∑
h=1

(
γ̃(h)

γ̃(0)

)2

, (3.29)

Q2(H) = T
H∑
h=1

tr
[
Γ̃(h)′Γ̃(0)−1Γ̃(h)Γ̃(0)−1

]
, (3.30)

where γ̃(h) = T−1
∑T

t=h+1 ξtξt−h and Γ̃(h) = T−1
∑H

t=h+1 ϑtϑ
′
t−h. It is shown that under the

null, Q1(H)
d→ χ2(H) and Q2(H)

d→ χ2
(

1
4
H(K − r0)2(K − r0 + 1)2

)
.

To apply these tests, we must be able to estimate the model under H0 which requires

additional restrictions on B if r0 < K − 1. To uniquely disentangle the shocks in ε2t,

it turns out that it is sufficient to impose a lower triangular structure on the lower right

(K − r)× (K − r) block of B:

Corollary 2. Assume the setting from Proposition 1 including assumption (2.3) for r ≤

K − 2. Moreover, separate B =

(
B11 B21

B12 B22

)
, B11 ∈ Rr×r, B12 ∈ R(K−r)×r, B21 ∈ Rr×(K−r)

and B22 ∈ R(K−r)×(K−r). Let B22 be restricted to be a lower triangular matrix. Then, the full

matrix B is unique up to multiplication of its columns by −1.

Proof. See Appendix A.3.

We conclude with a remark regarding the small sample properties of the tests. Based on

extensive simulation studies, Lütkepohl & Milunovich (2016) find a substantial lack in power

for sample sizes typically available in macroeconomics. Hence, if the null hypothesis can be

rejected for all r0’s up to K − 2, this can be interpreted as strong evidence in favor of model

identification.
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4 Monte Carlo Study

An important question for practitioners is how a heteroskedastic SVAR model performs in

estimating structural parameters under inherent misspecification of the variance process.

To shed some light on this question, we conduct a small scale Monte Carlo (MC) study.

Specifically, we compare the estimation performance of the SV-SVAR model under misspec-

ification to that of alternative heteroskedastic SVARs, namely a simple Breakpoint model

(BP-SVAR), Markov Switching models (MS-SVAR) and a GARCH model (GARCH-SVAR).

Our analysis involves generating a large number of datasets from the four stated het-

eroskedastic SVARs. Then, we estimate each model and compare the relative estimation

performance of the misspecified to the correctly specified model. We focus on estimation

of structural IRFs which are probably the most widely used tool in SVAR analysis. Fur-

thermore, they are nonlinear functions of both, the structural impact matrix and reduced

form autoregressive parameters. Thus, they are particularly suited to summarize the overall

estimation performance of a SVAR model. As a metric of comparison, we use cumulated

Mean Squared Errors (MSEs) of the IRF estimates.

The following data generating processes (DGPs) are specified to simulate the datasets,

closely resembling the MC design of Lütkepohl & Schlaak (2018).6 Time series of lengths

T ∈ {200, 500} are generated by the following bivariate VAR(1) process:

yt = A1yt−1 + ut,

with ut ∼ N (0, BΛtB
′) for t = 1, . . . , T and

A1 =

(
0.6 0.35

−0.1 0.7

)
, B =

(
1 0

0.5 2

)
.

For the diagonal matrix Λt, the following DGPs are specified:

1. BP-SVAR: The BP-SVAR is subject to a one time change in the variance. We set

Λt = I2 for t = 1, . . . T/2 and Λt = diag([2, 7]′) for t = T/2 + 1, . . . T .

2. MS(2)-SVAR: The specified MS-SVAR involves a switching variance with the same

regimes than the BP-SVAR. We specify the transition probability matrix:

P =

(
.95 .05

.1 .9

)
.

Based on simulated states s1, . . . , sT ∈ {1, 2}, Λst=1 = I2 and Λst=2 = diag([2, 7]′).

3. GARCH-SVAR: For this specification, the diagonal elements of Λt = diag([λ1t, λ2t]
′)

6Some difference to their design comes from our choice of the impact matrix. In particular, we use what
we think are more realistic values of the impact matrix in a sense that they lead to less dramatic changes in
the VAR error variance.
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follow univariate GARCH(1,1) processes with unit unconditional variance:

λit = (1− αi − βi) + αiε
2
i,t−1 + βiλi,t−1, i ∈ {1, 2},

where εt = B−1ut is the vector of structural shocks at time t. We set αi = 0.15 and

βi = 0.8 (i = 1, 2) which correspond to values typically estimated for empirical data.

4. SV-SVAR: For this DGP, Λt = diag([exp(h1t), exp(h2t)]
′) with:

hit = µi + φi(hi,t−1 − µi) +
√
siωit,

where ωit ∼ N (0, 1). We set µi = −0.5si/(1− φ2
i ) such that E(ε2

it) = 1. Furthermore,

we set φi = 0.95 and si = 0.04 (i = 1, 2) what corresponds to fairly persistent processes

in the variance often observed in macroeconomic and financial data.

To avoid that our results are driven by issues regarding to weak identification, we only

accept datasets in the MS(2)-SVAR DGP if at least 25% of the observations are associated

with either of the regimes. Likewise, for the GARCH and SV DGPs, only datasets with an

empirical kurtosis of the simulated structural shocks of at least 3.6 are accepted.

A total of M=1000 datasets are simulated for each variance specification. In the following,

let θ̂jk,i(m) for (j, k ∈ {1, 2}) denote the estimated impulse response function in variable j

caused by structural shock k after i periods based on estimates for the m-th dataset. Our

metric of comparison is then given as:

MSE (θjk)h =
1

M

M∑
m=1

(
h∑
i=0

(
θ̂jk,i(m)− θjk,i

)2
)
. (4.1)

We choose horizon h=5 as in Lütkepohl & Schlaak (2018). To compute parameter estimates,

we use algorithm EM-1 for the SV-SVAR model. For the BP-SVAR we maximize a Gaussian

likelihood over a grid of possible break-dates. Furthermore, for the MS-SVARs we use the

EM algorithm outlined in Herwartz & Lütkepohl (2014). Finally, for the GARCH-SVAR we

compute ML estimates based on the procedure of Lanne & Saikkonen (2007). Note that the

estimated models rely on different normalizing constraints for the structural shocks which is

why we rescale all impulse response functions to unit shock size.

The results of the simulation study are provided in Table 1. For improved readability,

we report relative MSEs in comparison to the correctly specified model. Overall, we find

that the SV-SVAR model performs very well regardless of the true DGP or the sample size

for each of the impulse responses θjk. In fact, the largest deterioration that we register in

terms of MSE is found to be 56% in θ21 of the Markov Switching DGP. This contrasts all

other models included into the Monte Carlo study which are subject to a very heterogeneous

performance. Whenever they are inherently misspecified, we find relative MSE of much

higher orders of magnitude. For example, with detoriations of up to 18 times, estimates based

on a MS(2)-SVAR seem completely unreliable for data generated by the SV and GARCH

DGPs. Admittably, the complexity of a MS model can be increased by adding additional

states. Therefore, we also report estimates based on a MS(3) for the SV and GARCH DGPs.
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Table 1: Cumulated MSEs at horizon h = 5

T=200 T=500
θ11 θ12 θ21 θ22 θ11 θ12 θ21 θ22

B
P

-D
G

P BP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS(2) 1.24 1.23 1.15 1.01 1.09 1.08 1.08 1.08
GARCH 1.76 1.84 1.56 1.12 1.14 1.17 1.15 1.03
SV 1.32 1.33 1.20 1.06 1.06 1.07 1.06 1.02

M
S
-D

G
P BP 4.12 4.71 3.56 1.30 11.30 12.38 9.11 1.57

MS(2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH 3.37 3.55 2.65 1.18 4.26 4.44 3.47 1.17
SV 1.48 1.56 1.28 1.05 1.42 1.45 1.30 1.04

G
A

R
C

H
-D

G
P BP 4.17 4.61 2.73 1.37 10.40 11.75 5.51 1.64

MS(2) 5.83 6.50 3.74 1.38 16.37 18.62 7.58 1.55
MS(3) 2.22 2.36 1.80 1.21 3.90 4.35 2.22 1.29
GARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SV 1.12 1.13 1.09 1.02 1.06 1.07 1.07 1.09

S
V

-D
G

P

BP 3.41 3.80 2.41 1.19 9.81 11.07 5.29 1.41
MS(2) 4.11 4.57 2.75 1.20 11.93 13.81 6.47 1.31
MS(3) 1.87 2.01 1.50 1.13 2.94 3.21 1.98 1.13
GARCH 1.83 1.89 1.43 1.11 1.75 1.86 1.32 1.07
SV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: MSEs of impulse response functions calculated as in (4.1) and displayed

relative to true model MSEs.

While indeed this yields substantial improvements, we still register detoriations in MSE up

to 300%.

If we compare the IRF estimates of the SV-SVAR to all other misspecified models in a

certain DGP, we find it to perform strictly better in two out of three DGPs. Specifically,

for residuals generated by a MS(2) and GARCH model, all impulse responses estimated by

the SV-SVAR have lower cumulative MSEs than the other misspecified models. Only if

the structural errors are simulated with a one time shift in the variance there is no clear

advantage of the SV model over the MS model. However, this is not surprising given that

the latter is perfectly able to capture such sudden shifts in the variance.

Finally, we find that the SV-SVAR model also compares favorable if its performance is

directly matched to the most related model, the GARCH-SVAR. In particular, the SV-SVAR

model always performs better when both models are misspecified. Furthermore, while there

is almost no deterioration in the MSE of the SV-SVAR estimates in a GARCH-DGP, the

other way around we record substantially higher relative MSEs.

Summing up, our small simulation study yields promising results indicating that the SV-

SVAR may be a safe choice to identify structural shocks for different types of heteroskedas-

ticity patterns and to estimate the corresponding impulse response functions.
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5 Interdependence between Monetary Policy and Stock

Markets

SVAR models are a widely used tool to investigate the dynamic effects of monetary policy,

see e.g. Ramey (2016) for an extensive overview of the literature. To identify the structural

shocks, the most simple way uses a Cholesky decomposition of the covariance matrix in a

reduced form VAR with the policy variable ordered last (Christiano, Eichenbaum & Evans;

1999; Bernanke, Boivin & Eliasz; 2005). In accordance with theoretical economic models

featuring nominal rigidities (Christiano, Eichenbaum & Evans; 2005), this implies that only

the central bank is allowed to respond to all movements in the economy on impact, while

all variables in the system ordered above react with at least one lag to a monetary policy

shock. While this seems reasonable for slowly moving real macroeconomic aggregates, such a

recursivity assumption becomes unrealistic once fast moving financial variables are included

into the SVAR analysis.

Over the last years, many other identification schemes have been developed to study the

effects of monetary policy shocks avoiding the use of a recursiveness assumption. Bjørnland

& Leitemo (2009) propose to identify a monetary policy shock under the presence of stock

market returns by a combination of short- and long-run restrictions. Besides zero impact

restrictions on real variables, a monetary policy shock is furthermore restricted to have a

zero long-term impact on stock markets. This additional restriction allows the authors to

disentangle monetary policy innovations from financial shocks.

Another promising way to address identification in presence of fast moving variables are

Proxy SVARs based on external instruments. If there is an external time series that is cor-

related with the structural shock to be identified and uncorrelated with all other shocks in

the system, no exclusion restrictions are necessary at all. Recently, many narrative measures

have been proposed to identify monetary policy shocks. Widely used are proxies constructed

based on either readings of Federal Open Market Committee (FOMC) minutes (e.g. Romer

& Romer (2004); Coibion (2012)) or changes in high frequency future prices in a narrow win-

dow around FOMC meetings (e.g Faust, Swanson & Wright (2004); Nakamura & Steinsson

(2018); Gertler & Karadi (2015)).7

Finally, heteroskedasticity can be exploited to identify the interdependence between mon-

etary policy and financial variables. For example, Rigobon (2003) combines identification

via heteroskedasticity and economic narratives to estimate the reaction of monetary policy

to stock market returns. Also Wright (2012) links economic and statistical identification

within a daily SVAR, assuming that monetary policy shocks have a higher variance around

FOMC meetings. Even if no economic narrative is available for the statistically identified

structural parameters, the heteroskedastic SVAR model can be used to formally test conven-

tional identifying restrictions. For example, Lütkepohl & Netšunajev (2017a) review various

heteroskedastic SVAR models and use them to test the combination of exclusion restric-

7Yet another branch of the literature relies on sign restrictions of the impulse response functions (Faust;
1998; Canova & De Nicolo; 2002; Uhlig; 2005) or on a combination of sign restrictions and information in
proxy variables (Braun & Brüggemann; 2017).
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tions employed by Bjørnland & Leitemo (2009).8 Their analysis includes a GARCH-SVAR,

two specifications of a MS-SVAR and a SVAR featuring a Smooth Transition model for the

variance (STVAR).

To illustrate the use of our methods, we repeat the analysis of Lütkepohl & Netšunajev

(2017a) complemented by the SV-SVAR model. Besides testing the short- and long-run re-

strictions used by Bjørnland & Leitemo (2009), we additionally test Proxy SVAR restrictions

that arise if the narrative series of Romer & Romer (2004) and Gertler & Karadi (2015) are

used as instruments for a monetary policy shock.

5.1 Model and Identifying Constraints

The VAR model of Bjørnland & Leitemo (2009) is based on the following variables: yt =

(qt, πt, ct,∆st, rt)
′, where qt is a linearly detrended index of log industrial production, πt

the annualized inflation rate based on consumer prices, ct the annualized change in log

commodity prices as measured by the World Bank, ∆st S&P500 real stock returns and rt

the federal funds rate. For detailed description of the data sources, transformations and time

series plots see Appendix C. As in Lütkepohl & Netšunajev (2017a), we use an extended

sample period including data from 1970M1 until 2007M6, summing up to a total of 450

observations. To make our results comparable, we also choose p = 3 lags which is supported

by the AIC applied within a linear VAR model.

In our analysis, we test the following set of short- and long-run constraints used by

Bjørnland & Leitemo (2009):

B =


∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 and Ξ∞ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗

 , (5.1)

where Ξ∞ = (IK−A1−. . .−Ap)−1B is the long-run impact matrix of the structural shocks on

yt. Note than an asterisk means that the corresponding entry in B and Ξ∞ is left unrestricted.

The last columns of B and Ξ∞ correspond to the reaction of yt to a monetary policy shock.

Economic activity, consumer- and commodity prices are only allowed to respond with a

delay of one month to a monetary policy shock, while stock markets are allowed to react

contemporaneously. However, in the long run, a monetary policy shock is assumed to have a

zero effect on the stock market. The fourth column of B corresponds to a stock price shock

which is constrained to have no contemporaneous impact on activity and prices while the

central bank is allowed to adjust the interest rates within the same period. The remaining

shocks do not have an economic interpretation. To identify the model, Bjørnland & Leitemo

(2009) simply disentangle these shocks by imposing a recursivity assumption. As outlined

before, restrictions (5.1) are overidentifying in heteroskedastic SVAR models and can be

8See also Lütkepohl & Netšunajev (2017b) for a similar analysis based on a Smooth Transition SVAR
model only.

19



tested against the data. In line with Lütkepohl & Netšunajev (2017a), the following set of

restrictions is tested:

R1: Both, B and Ξ∞ restricted as in (5.1).

R2: Only the last two columns of B and Ξ∞ are restricted as in (5.1).

R3: Only B is restricted as in (5.1).

We further contribute to the literature by testing Proxy SVAR restrictions that arise if

an external instrument z is used for identification of a structural shock. The identifying

assumptions are that the instrument is correlated with the structural shock it is designed

for (relevance) and uncorrelated with all remaining shocks (exogeneity). Without loss of

generality, assume that the first shock is identified by the instrument. Then, Mertens &

Ravn (2013) show that the relevance and exogeneity assumption can be translated into the

following set of linear restrictions on β1, denoting the first column of B:

β21 = (Σ−1
zu′1

Σzu′2
)′β11. (5.2)

where β1 = [β11, β
′
21]′ with β11 scalar and β21 ∈ R

K−1. Furthermore, Σzu′ = Cov(z, u′) =

[Σzu′1
,Σzu′2

] with Σzu′1
scalar and Σ′zu′2

∈ RK−1. In practice, elements of Σzu′ are estimated

by the corresponding sample moments.9 To identify a monetary policy shock, we use the

narrative series constructed by Romer & Romer (2004) (RR henceforth) and Gertler &

Karadi (2015) (GK henceforth). We test the following Proxy SVAR restrictions that arise

when the first column of B is identified via either RR’s or GK’s instrument:

R4rr: IV moment restrictions (5.2) based on the RR shock.

R4gk: IV moment restrictions (5.2) based on the GK shock.

We use the RR series extended by Wieland & Yang (2016) which is available for the whole

sample. The GK shock is only available for a subsample starting in 1990M1. We use their

baseline series which is constructed based on the three months ahead monthly fed funds

futures.10 Time series plots of both series are available in Appendix C.

5.2 Statistical Analysis

Before we start testing the aforementioned restrictions, we conduct formal model selection

for the variance specification of the structural shocks. By means of information criteria

and residual plots, we compare the SV model to those models included in Lütkepohl &

Netšunajev (2017a): a GARCH, a Smooth Transition (ST) and different specifications of a

Markov Switching model. This allows us to directly compare our results.

9In particular, at each M-step we compute Σ̂zu′ = N−1z

∑T
t=1Dtûtz

′
t where Dt is a dummy indicating

whether the instrument is available at time t and Nz =
∑T

t=1Dt.
10We repeat our analysis for the other instruments available in Gertler & Karadi (2015). The results do

not change qualitatively.
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Table 2: Model Selection by Information Criteria

Linear SV-EM1 SV-EM2 GARCH STVAR MS(2) MS(3)

lnL −3159.34 −2692.25 −2689.95 −2763.62 −2878.25 −2827.39 −2775.23
AIC 6508.69 5614.49 5609.89 5757.23 5980.51 5878.79 5792.46
BIC 6898.43 6086.28 6081.68 6229.03 6439.99 6338.27 6288.87

Note: lnL - log-likelihood function, AIC=−2 lnL + 2 × np and BIC=−2 lnL + ln(T ) × np with

np the number of free parameters. For SV-EM1 and SV-EM2, application of the batch means

method yields approximate 95%-confidence intervals of [-2692.27,-2692.22] and [-2689.98,-2689.91],

respectively.

Table 2 reports log-likelihood values, Akaike information criteria (AIC) and Bayesian

information criteria (BIC) for a linear VAR and all heteroskedastic models. First of all, we

highlight that there is only a small gain in terms of likelihood value of the SV model using the

Monte Carlo based algorithm (EM-2) compared to the deterministic approximation (EM-1).

To assess the Monte Carlo error of the estimates, we also report approximate 95%-confidence

intervals based on an application of the batch means method and R =100,000 draws of the

importance density.11 Comparing the different models, our results suggest that including

time-variation in the second moment is strongly supported by both information criteria.

Moreover, among the heteroskedastic models we find that particularly models designed for

financial variables are favored, that is the GARCH model and the SV model. This may be

not surprising given that stock market returns are included in the system.

Among all models considered, we find that the SV model performs best in terms of

information criteria. In this regard, our results deviate from those of Lütkepohl & Netšunajev

(2017a) who find that the MS(3) model provides the best description for this dataset.12

In accordance with Lütkepohl & Netšunajev (2017a), we also consider standardized resid-

uals as an additional model checking device. Figure 1 provides a plot for the standardized

residuals of all models computed as ûit/σ̂ii,t where σ̂2
ii,t is the i-th diagonal entry of the esti-

mated VAR covariance matrix Σ̂t. These plots clearly suggest that none of the other methods

is fully satisfactory in yielding standardized residuals that seem to be homoskedastic and

approximately normally distributed. However, for the SV-SVAR model, standardized resid-

uals seem well behaved with no apparent heteroskedasticity and virtually no outliers. To

confirm this impression, we provide complementary test results in Appendix C.1 concerned

with remaining heteroskedasticity and non-normality in standardized structural shocks. We

find that only for the shocks of the SV-SVAR model, there is no evidence against both nor-

mality and homoskedasticity. To conclude, statistical analysis suggests that the proposed

SV-SVAR is the most adequate for this application and we continue our analysis based on

this model.

In order to test restrictions R1-R4 as overidentifying, it is necessary to count with enough

11A formal test of Koopman et al. (2009) indicates that the variance of the importance weights is finite
which further supports the validity of our likelihood estimates.

12We also find a better ranking for the GARCH model compared to MS(3). Most likely, this is caused
by a different estimation procedure. Specifically, Lütkepohl & Netšunajev (2017a) do only approximatively
maximize the likelihood by a sequential estimation procedure.
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Figure 1: Standardized residuals of linear, ST-, MS(2)-, MS(3)-, GARCH- and SV-SVAR model.
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Table 3: Tests of Identification in SV-SVAR Model

Q1(1) dof p-value Q2(1) dof p-value

r0 = 0 15.02 1 0.00 596.60 225 0.00
r0 = 1 23.82 1 0.00 250.03 100 0.00
r0 = 2 29.40 1 0.00 140.62 36 0.00
r0 = 3 18.31 1 0.00 43.79 9 0.00
r0 = 4 17.27 1 0.00 17.27 1 0.00

Q1(3) dof p-value Q2(3) dof p-value

r0 = 0 52.34 3 0.00 1433.73 675 0.00
r0 = 1 39.67 3 0.00 528.79 300 0.00
r0 = 2 32.70 3 0.00 221.40 108 0.00
r0 = 3 20.21 3 0.00 60.93 27 0.00
r0 = 4 19.83 3 0.00 19.83 3 0.00

Note: Sequence of tests to check the number of heteroskedastic

shocks in the system as introduced in section 3.5 (Lanne & Saikko-

nen; 2007).

heteroskedastic shocks (r ≥ K − 1) to fully identify the impact matrix B. As described

in section 3.5, we apply a sequence of tests with H0 : r = r0 against H1 : r > r0 for

r0 = 0, 1, . . . K−1. The results are reported in Table 3. We find strong evidence that r = K

in our model, implying that the model can be fully identified by heteroskedasticity.

We continue our analysis and test the economically motivated restrictions R1-R4 as overi-

dentifying. In Table 4 we provide Likelihood Ratio (LR) test statistics for the restrictions

introduced previously.13 Note that if B is identified under H0, they have a standard asymp-

totic χ2(nr)-distribution with nr being the number of restrictions tested. Since we estimate

the likelihood values with the help of importance sampling, we account for the Monte Carlo

error by applying the batch means method and reporting approximate 95%-confidence in-

tervals for the p-values.

In line with the findings of Lütkepohl & Netšunajev (2017a), our results suggest that R1,

the restrictions of Bjørnland & Leitemo (2009), are rejected by the data. To make sure that

this result does not come from the lower triangular block corresponding to the economically

meaningless shocks, Lütkepohl & Netšunajev (2017a) also propose to test R2, which are the

restrictions in B corresponding to the impact of monetary policy and stock market shocks.

Within the SV model, these restrictions are also rejected. Testing for the zero restrictions

in B in isolation (R3) also results in a rejection. However, in contrast to Lütkepohl &

Netšunajev (2017a), we find that the long-run restriction is not rejected at any conventional

significance level if R1 is tested against R3. This indicates that the long-run restriction is

less of a problem, but rather are those in the short run. This key difference in the empirical

analysis might arise due to more precisely estimated IRFs by the SV-SVAR model, strongly

supported by statistical evidence. The fact that we are able to draw a different empirical

conclusion emphasizes the importance of model selection in the context of heteroskedastic

13This table is based on parameter estimates provided by EM-1. A corresponding Table based on EM-2
can be found in Appendix C.1 and does not differ qualitatively.
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Table 4: Test for Overidentifying Restrictions (EM-1)

H0 H1 LR dof p-value p.025 p.975

R1 UC 25.864 10 0.0039 0.0036 0.0043
R2 UC 22.968 7 0.0017 0.0016 0.0019
R3 UC 24.245 9 0.0039 0.0036 0.0043
R1 R3 1.634 1 0.2012 0.1977 0.2048

R4rr UC 6.208 4 0.1841 0.1332 0.2518
R4gk UC 256.852 4 0.0000 0.0000 0.0000

Note: For details about overidentifying restrictions see sub-

section 5.1. Likelihood ratio test statistics are computed as

2 (lnLH1
− lnLH0

) and are approximatively χ2-distributed under

H0. Right columns report approximate 95%-confidence intervals

for the p-value resulting from an application of the batch means

method to the LR test statistic.

SVARs.

With respect to the Proxy SVAR restrictions, we find that identifying a monetary policy

shock with the shock series of Gertler & Karadi (2015) is strongly rejected by the data

with a likelihood ratio test statistic exceeding 250. In turn, identification via the narrative

series of Romer & Romer (2004) cannot be rejected at any conventional significance level.

To further understand these results, we compute sample correlations of the instruments z

with ε̂, the estimated structural shocks of the unconstrained SV-SVAR model. For GK,

we find Corr(zGK , ε̂) = (0.039,−0.066, 0.048,−0.242, 0.430), while for RR, Corr(zRR, ε̂) =

(0.042, 0.004, 0.028,−0.017, 0.453). While both shocks are subject to a strong correlation

with one of the statistically identified shocks, the instrument of GK is highly correlated

with at least one additional shock. This clearly violates the exogeneity condition on the

instrument. Thereby, our results support the argument of Ramey (2016) who questions

the exogeneity of the GK instrument finding that it is autocorrelated and predictable by

Greenbook variables. In turn, for the RR shock we find that there is little correlation with

the remaining structural residuals of the SVAR. This clearly explains why identification via

the RR shock is not rejected. Since the Proxy SVAR restrictions based on RR cannot be

rejected, we can interpret the last shock of the unconstrained model as a monetary policy

shock for which Corr(zRR, ε̂5) = 0.45. In Figure 2 we plot impulse response functions (IRFs)

up to 72 months (6 years) of the system variables in response to a monetary policy shock.

Besides point estimates, we provide 68% asymptotic confidence intervals. Again, we note

that there is qualitatively no difference in using EM-1 or EM-2 to compute the estimates and

corresponding standard errors. The IRFs and their asymptotic confidence intervals coincide

for all variables at all horizons. In line with the IRFs computed by Lütkepohl & Netšunajev

(2017a) based on other heteroskedastic models, an unexpected tightening in monetary policy

is associated with a puzzling short-term increase in activity and prices before they reach

negative values on the medium and long term. In turn, commodity prices as well as stock

market returns are found to react significantly negative in the short run. This fact seems

reasonable given that one would expect a shift in demand towards risk free assets.
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Figure 2: IRFs up to a horizon of 72 months of a monetary policy shock with 68% confidence
bounds. Figures compare estimates based on EM-1 (solid line) and EM-2 (dashed line) with
corresponding asymptotic confidence intervals.

6 Conclusion

In this paper, we have considered stochastic volatility to identify structural parameters of

SVAR models. The resulting model (SV-SVAR) can generate patterns of heteroskedasticity

which are very typical in VAR analysis and therefore, we expect it to be useful in a wide

range of applications.

We discussed conditions for full and partial identification and proposed to estimate the

model by Gaussian Maximum Likelihood. For this purpose, we developed two EM algorithms

which approximate the intractable E-step to a different extent. One algorithm is based on

a Laplace approximation while the other relies on MCMC integration. We leave the choice

of algorithm to individual preferences, but find that in pratice little is gained by using the

computationally more burdensome Monte Carlo EM. Besides discussing optimization, we

stated the main properties of the estimator and present tools to approximate the asymptotic

covariance matrix. We also described how inference on Impulse Response Functions can be

conducted based on our model. Tests considered by Lanne & Saikkonen (2007) can be used

to determine the number of heteroskedastic shocks and to test for identification.

To demonstrate the flexibility of the SV-SVAR model, we conducted a Monte Carlo study

investigating how precise Impulse Response Functions are estimated under misspecification

of the variance process. In contrast to alternative heteroskedastic SVARs, we find that the

proposed model performs very well regardless of the DGP specified for the variance.

In an empirical application, we have revisited the model of Bjørnland & Leitemo (2009)

who rely on a combination of short- and long-run restrictions to disentangle monetary policy

from stock market shocks. Formal model selection strongly supports a SV specification in

the variance if compared to other heteroskedastic SVARs used by Lütkepohl & Netšunajev

(2017a) in this context. The SV-SVAR is used to formally test the exclusion restrictions of

Bjørnland & Leitemo (2009) as overidentifying, and additionally test Proxy SVAR restric-

tions that arise if external instruments are used to identify a monetary policy shock.

Future research in several directions could be pursued. First, a Bootstrap procedure would

provide a valuable alternative to summarize estimation uncertainty in the SV-SVAR model.

Second, there is a need for more powerful statistical tests of identification in conditional
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heteroskedastic SVAR models. Furthermore, the impact of weak identification on inference

needs to be investigated. Finally, it would be interesting to assess semiparametric methods

to identify SVAR models by heteroskedasticity which do not require the specification of a

particular variance model.
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Lütkepohl, H. & Netšunajev, A. (2017a). Structural vector autoregressions with het-

eroskedasticity: A review of different volatility models, Econometrics and Statistics 1(Sup-

plement C): 2 – 18.
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Appendix A Proofs

To ensure identification of impact matrix B in model (2.1)-(2.2) we show that under sufficient

heterogeneity in the second moments of the structural shocks, there is no B∗ different from B

except for column permutations and sign changes which yields an observationally equivalent

model with the same second moment in ut for all t = 1, . . . , T .

A.1 Proof of Proposition 1

Proof. SupposeQ =

(
Q1 Q3

Q2 Q4

)
, whereQ1 ∈ Rr×r, Q2, Q

′
3 ∈ R(K−r)×r andQ4 ∈ R(K−r)×(K−r)

satisfies Σ1 = BB′ = BQQ′B′ and (A.1)

Σt = BV ∗t B
′ = BQV ∗t Q

′B′ (t = 2, . . . , T ). (A.2)

From (A.1) directly follows that Q is an orthogonal matrix, i.e. QQ′ = IK what implies

Q1Q
′
1 +Q3Q

′
3 = Ir, (A.3)

Q2Q
′
1 +Q4Q

′
3 = 0, (A.4)

Q2Q
′
2 +Q4Q

′
4 = IK−r. (A.5)

Furthermore, as V ∗t =

(
Λt 0

0 IK−r

)
with Λt = diag (v1t, . . . , vrt), (A.2) yields

Q1ΛtQ
′
1 +Q3Q

′
3 = Λt

(A.3)
=⇒ Q1 (Ir − Λt)︸ ︷︷ ︸

=:Λ∗t

Q′1 = Λ∗t , (A.6)

Q2ΛtQ
′
1 +Q4Q

′
3 = 0

(A.4)
=⇒ Q2ΛtQ

′
1 = Q2Q

′
1. (A.7)

Let q1i (i = 1, . . . , r) be the rows of Q1. Due to (A.6), q1iΛ
∗
t q
′
1i = 1 − vit has to hold for

all i and t. Because of (2.3) for all i there exists a t ∈ {2, . . . , T} with vit 6= 1, so q1i 6= 0

has to hold for all i = 1, . . . , r. Moreover, because q1iΛ
∗
t q
′
1j = 0 holds for all i 6= j and t
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due to (A.6), q1i 6= c · q1j has to hold for all c 6= 0. Therefore, the rows of Q1 are linearly

independent so that Q1 has full rank and is thus invertible.

With (A.7) and the invertibility of Q′1 it follows Q2Λt = Q2 for all t why Q2 equals the zero

matrix because for any i there exists a t such that vit 6= 1 due to (2.3) . Using Q2 = 0 and

(A.5) directly yields Q4Q
′
4 = IK−r, so Q4 is an orthogonal matrix and therefore invertible.

In addition, because of (A.4), Q2 = 0 and the invertibility of Q4, Q3 has to be the zero

matrix. Following to that, (A.3) delivers Q1Q
′
1 = Ir, i.e. Q1 is an orthogonal matrix.

Consequently, (A.6) reduces to Q1ΛtQ
′
1 = Λt for all t ∈ {2, . . . , T}. Using assumption (2.3)

one can show equivalent to Proposition 1 in Lanne et al. (2010) that Q1 is a diagonal matrix

with ±1 entries on the diagonal. This proves the uniqueness of B1 apart from sign reversal

of its columns.

A.2 Proof of Corollary 1

Using Proposition 1 with V ∗t = V −1
1 Vt (cf. (2.4)) for t = 1, . . . , T such that V ∗1 = IK shows

that an observationally equivalent model with the same second moment properties can be

obtained by B∗ = BQ if and only if Q has the structure

(
Q1 0

0 Q4

)
, Q1 ∈ Rr×r a diagonal

matrix with ±1 entries on the diagonal and Q4 ∈ R(K−r)×(K−r) any orthogonal matrix. Thus,

the decomposition B = [B1, B2] with B1 ∈ RK×r and B2 ∈ RK×(K−r) yields uniqueness of B1

apart from multiplication of its columns by −1. Furthermore, joint column permutations of

B1 and V ∗t for all t = 1, . . . , T obviously keep the second moment properties.

Proof. For r = K−1 matrix Q4 is a scalar with Q2
4 = 1⇒ Q4 = ±1. So, full Q is a diagonal

matrix with ±1 entries on the diagonal. This proves the uniqueness of the full matrix B

apart from sign reversal of it columns.

A.3 Proof of Corollary 2

Proof. Let Q =

(
Q1 0

0 Q4

)
be a K ×K matrix such that BQ =

(
B11Q1 B21Q4

B12Q1 B22Q4

)
has the

same structure as B, i.e. B22Q4 is still a lower triangular matrix. Thereby, it directly follows

that Q4 is a lower triangular matrix itself. Moreover, because Q4 is orthogonal, it is also

normal and therefore diagonal. Any diagonal and orthogonal matrix has ±1 entries on the

diagonal. So, full matrix Q is diagonal with ±1 entries on the diagonal. This proves the

uniqueness of B apart from sign reversal of its columns.

Appendix B Estimation

B.1 Importance Density

To derive the Gaussian approximation of the (unrestricted) IS density πG(hi|θ, εi) for i =

1, . . . , r, we closely follow the exposition of Chan & Grant (2016). We start with an appli-
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cation of Bayes’ theorem which gives the zero variance importance density:

log p(hi|θ, εi) ∝ log p(εi|θ, hi) + log p(hi). (B.1)

The assumption of normality in both the transition and measurement equation gives:

log p(hi) ∝−
1

2
(hi − δi)′Qi (hi − δi) , (B.2)

log p(εit|θ, hit) ∝−
1

2

(
hit + ε2

ite
−hit
)
. (B.3)

Since the measurement equation is nonlinear in hi, the normalizing constant of the smoothing

distribution in equation (B.1) is not known. An approximate distribution, however, can be

obtained by a second order Taylor approximation of the measurement equation (B.3). The

corresponding partial derivatives are given as:

∂ log p(εit|θ, hit)
∂hit

= −1

2
+

1

2
ε2
ite
−hit=: fit ⇒ fi = (fi1, . . . , fiT )′ ,

−∂
2 log p(εit|θ, hit)

∂h2
it

=
1

2
ε2
ite
−hit =: cit ⇒ Ci = diag ([ci1, . . . , ciT ]′) .

A second order Taylor approximation around h̃
(0)
i then yields:

log p(εi|θ, hi) ≈ log p(εi|θ, h̃(0)
i ) +

(
hi − h̃(0)

i

)′
fi −

1

2

(
hi − h̃(0)

i

)′
Ci

(
hi − h̃(0)

i

)

= −1

2

h′iCihi − 2h′i

(
fi + Cih̃

(0)
i

)
︸ ︷︷ ︸

=:bi

+ constant.
(B.4)

Combining (B.1), (B.2) and (B.4) provides an approximation of the smoothing distribution

which takes the form of a normal kernel:

log p(hi|θ, εi) ∝∼ −
1

2

h′i (Ci +Qi)︸ ︷︷ ︸
=:Q̄i

hi − 2h′i (bi +Qiδi)

 .

Consequently, the approximate smoothing density is:

πG (hi|θ, εi) ∼ N
(
δ̄i, Q̄

−1
i

)
, with δ̄i = Q̄−1

i (bi +Qiδi) .

The restricted density πcG (hi|θ, εi) is constructed as outlined in section 3. Note that πcG (hi|θ, εi)
yields a good approximation only if h̃

(0)
i is chosen appropriately. In the following, we sketch

how the Newton Raphson method is used to evaluate the IS density at the mode of the

smoothing distribution (B.1).

32



B.2 Newton Raphson method

The Newton-Raphson method is implemented as follows: hi is initialized by some vector h
(0)
i

satisfying the linear constraint, i.e. Ahh
(0)
i = µi. Then, h

(l)
i is used to evaluate Q̄i, δ̄i and to

iterate:

h̃
(l+1)
i = h

(l)
i + Q̄−1

i

(
−Q̄ih

(l)
i + δ̄i

)
= Q̄−1

i δ̄i,

h
(l+1)
i = h̃

(l+1)
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
(
Ahh̃

(l+1)
i − µi

)
for l ≥ 0 until convergence, i.e. until

∥∥∥h(l+1)
i − h(l)

i

∥∥∥ < ε holds for a specified tolerance level

ε.

B.3 EM Algorithm

To fix notation, define the following quantities:

Y 0 := (y1, . . . , yT ) K × T,
A := (ν,A1, . . . , Ap) K ×Kp+ 1,

Y 0
t :=

(
y′t−1, . . . , y

′
t−p
)′

Kp× 1,

xt :=
(

1,
(
Y 0
t

)′)′
Kp+ 1× 1,

X := (x1, . . . , xT ) Kp+ 1× T,
y0 := vec(Y 0) KT × 1,

α := vec(A) K(Kp+ 1)× 1,

U := (u1, . . . , uT ) K × T,
u := vec(U) KT × 1,

V −1 := (exp(−h1), . . . , exp(−hT )) K × T.

Using this, VAR equation (2.1) can be compactly written as:

y0 = Zα + u,

with Z = (X ′ ⊗ IK), E(uu′) = Σ̃u. Note that its inverse is given by Σ̃−1
u = ([B−1]

′ ⊗
IT )Σ−1

e (B−1 ⊗ IT ) where Σ−1
e = diag(vec(V −1)).

This yields the following compact representation of the complete data log-likelihood:

Lc(θ) ∝− T ln |B| − 1

2

(
y0 − Zα

)′ ([
B−1

]′ ⊗ IT)Σ−1
e

(
B−1 ⊗ IT

) (
y0 − Zα

)
+

r∑
i=1

{
−T

2
ln(si) +

1

2
ln
(
1− φ2

i

)
− 1

2si

([
1− φ2

i

]
[hi1 − µi]2 +

T∑
t=2

([hit − µi]− φi[hi,t−1 − µi])2

)}
.

(B.5)
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Both algorithms EM-1 and EM-2 require some starting values. They are set in the same

way for both alternatives. That is:

α̂(0) =
([

(XX ′)−1X
]
⊗ Ik

)
y0,

B̂(0) = (T−1Û Û ′)
1
2Q, with Û = Y 0 − ÂX,

where Q is a K ×K orthogonal matrix uniformly drawn from the space of K-dimensional

orthogonal matrices. Furthermore, we set the r × 1 vectors:

φ̂(0) = [0.95, . . . , 0.95]′,

ŝ(0) = [0.02, . . . , 0.02]′,

which correspond to persistent heteroskedasticity with initial kurtosis of about 3.7 for the

estimated structural shocks ε̂i, i = 1, . . . , r.

Note that in order to satisfy linear restriction (2.6) we set for i = 1, . . . , r and l ≥ 1:

µ̂
(l−1)
i = − ŝ

(l−1)
i

2

/(
1−

(
φ̂

(l−1)
i

)2
)
.

EM-1

Because of ε̂
(l−1)
t = B̂(l−1)(yt−Â(l−1)xt), it is equivalent to condition the approximate smooth-

ing densities πcG and their moments to
(
θ(l−1), ε̂

(l−1)
i

)
or
(
θ(l−1), y

)
, respectively. Based on

starting values θ(0) =

[(
α̂(0)
)′
, vec

(
B̂(0)

)′
,
(
φ̂(0)
)′
,
(
ŝ(0)
)′]′

, the EM algorithm iteratively

cycles through the following steps for l ≥ 1:

1. E-step: For i = 1, . . . , r, evaluate the moments of the approximate smoothing densities,

mean δ̄ci and variance Q̄−1
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
AhQ̄

−1
i , as described in Appendix

B.1. Thereby, directly inverting Q̄i is unnecessary costly since we only need its diag-

onal elements representing the marginal variances Var(hit|θ(l−1), y) and the entries of

the first off-diagonal corresponding to Cov(hit, hi,t−1|θ(l−1), y). Similar to the Kalman

smoother recursions, they can be obtained without computing the whole inverse using

sparse matrix routines based on Takahashi’s equations (Rue et al.; 2009). An efficient

implementation in Matlab is available at the MathWorks File Exchange (see sparseinv

by Tim Davis).

2. M-step: Note that in order to get a closed-form update for φi’s and si’s, we ignore terms

associated with the initial conditions hi1 ∼ N (µi, si/(1− φ2
i )) for the latent variables

in the complete data log-likelihood (B.5). Consequently, taking expectation of (B.5)

with respect to the approximation of p(hi|θ(l−1), y) for i = 1, . . . , r and maximizing

yields:
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(a) Update φi and si for i = 1, . . . , r:

φ̂
(l)
i =

Sixy
Sixx

,

ŝ
(l)
i =(T − 1)−1

(
Siyy − 2φ̂

(l)
i S

i
xy +

(
φ̂

(l)
i

)2

Sixx

)
,

with:

Sixx =
T−1∑
t=1

[
Var(hit|θ(l−1), y) +

(
E(hit|θ(l−1), y)− µ̂(l−1)

i

)2
]
,

Siyy =
T∑
t=2

[
Var(hit|θ(l−1), y) +

(
E(hit|θ(l−1), y)− µ̂(l−1)

i

)2
]
,

Sixy =
T∑
t=2

[
Cov(hit, hi,t−1|θ(l−1), y)

+
(

E(hit|θ(l−1), y)− µ̂(l−1)
i

)(
E(hi,t−1|θ(l−1), y)− µ̂(l−1)

i

)]
.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α̂(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

with Σ̃−1
u =

([(
B̂(l−1)

)−1
]′
⊗ IT

)
Σ̂−1
e

((
B̂(l−1)

)−1

⊗ IT
)

and

Σ̂−1
e = diag(vec(V̂ −1)). Furthermore, it is:

V̂ −1 =E(V −1|θ(l−1), y) = (v̂−1
1 , . . . , v̂−1

T ) ∈ RK×T , with

v̂−1
t = exp

(
−E(ht|θ(l−1), y) +

1

2
Var(ht|θ(l−1), y)

)
.

The latter is based on the properties of a log-normal distribution. Note that for

i = r + 1, . . . , K, v̂−1
it = 1.

(c) Update B. Therefore, define Û = Y 0 − Â(l)X, then:

B̂(l) =arg max
B∈RK×K

E

[
Lc(B)

∣∣∣∣Â(l), φ̂(l), ŝ(l), y

]
∝− T ln |B| − 1

2
vec(B−1Û)′Σ̂−1

e vec(B−1Û).

3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We iterate between steps 1.-3. until the relative change in the expected complete data

log-likelihood becomes negligible. To be more precise, the algorithm is a Generalized EM

algorithm since the M-step of impact matrix B depends on VAR coefficients α.

35



EM-2

In EM-2, the expectations in the E-step are approximated by MCMC integration. Based on

starting values, θ(0), the algorithm iterates between the following steps for l ≥ 1:

1. E-Step: In order to compute the expectations necessary in the EM algorithm, we

recur to Monte Carlo integration. In particular, for each of the heteroskedastic shocks

(i = 1, . . . , r), we simulate random draws of the mixture indicators z
(j)
i for j = 1, . . . , R

and compute:

Q(θ, θ(l−1)) ≈ 1

R

R∑
j=1

E
(j)

θ(l−1) [L(θ)], (B.6)

where the expectations are taken with respect to the tractable distribution

p(h|θ(l−1), z(j), y). To generate random draws of z, we rely on the methodology of

Kim et al. (1998). For each of the heteroskedastic shocks (i = 1, . . . , r), this involves

iteratively drawing from the following conditional distributions:

(a) z
(j)
i ∼ p

(
zi
∣∣θ(l−1), h

(j−1)
i , y

)
. The mixture indicators are drawn for each

t = 1, . . . , T from the discrete conditional distribution P
(
z

(j)
it = k

)
= qit,k for

k = 1, . . . , 7 where:

qit,k =
pkφ (y∗it − hit;mk, v

2
k)

7∑
k=1

pkφ (y∗it − hit;mk, v2
k)

,

with y∗it = log

[(
ε̂

(l−1)
it

)2
]
, ε̂

(l−1)
t =

(
B̂(l−1)

)−1 (
yt − Â(l−1)xt

)
and φ(·;mk, v

2
k)

indicating the pdf of a normal distribution with meanmk and variance v2
k. Mixture

parameters pk’s, mk’s and vk’s are tabulated in Table 5.

(b) h
(j)
i ∼ p(hi|θ(l−1), z

(j)
i , y). To draw the log variances, first a random sample from

the unconstrained conditional distribution h̃
(j)
i ∼ N (δ̄ij,Σij) is generated using

the precision sampler of Chan & Jeliazkov (2009). The unconstrained moments

are given as:

Σ−1
ij = H ′iΣ

−1
hi
Hi +Gij,

δ̄ij = Σij

(
H ′iΣ

−1
hi
Hiδi +Gij(y

∗
i −mij)

)
,

and

y∗i =

(
log

[(
ε̂

(l−1)
i1

)2
]
, . . . , log

[(
ε̂

(l−1)
iT

)2
])′

,

Gij = diag
(
v2
(
z

(j)
i1

)
, . . . , v2

(
z

(j)
iT

))−1

,

mij = diag
(
m
(
z

(j)
i1

)
, . . . ,m

(
z

(j)
iT

))
.
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In a next step, the draw is corrected to account for the linear constraint. That is:

h
(j)
i = h̃

(j)
i − ΣijA

′
h(AhΣijA

′
h)
−1
(
Ahh̃

(j)
i − µ̂

(l−1)
i

)
,

which yields a draw from the correct distribution under the linear constraint. The

moments of this distribution are:

δ̄cij = δ̄ij − ΣijA
′
h(AhΣijA

′
h)
−1
(
Ahδ̄ij − µ̂(l−1)

i

)
,

Cov

(
hi

∣∣∣∣θ(l−1), z
(j)
i , y, Ahhi=µ̂

(l−1)
i

)
= Σij − ΣijA

′
h(AhΣijA

′
h)
−1AhΣij.

Note that the corrected moments are those used to compute the Monte Carlo

expected complete data log-likelihood from equation (B.6). As in EM-1, we only

compute the diagonal and first off-diagonal of the covariance matrix Σij using the

same sparse matrix routines.

2. M-steps: Note that as in EM-1, we ignore terms associated with the initial conditions

hi1 ∼ N (µi, si/(1− φ2
i )) for the latent variables in the complete data log-likelihood

(B.5) in order to get closed-form updates for φi’s and si’s.

(a) Update φi and si for i = 1, . . . , r:

φ̂
(l)
i =

S̃ixy

S̃ixx
,

ŝ
(l)
i =(T − 1)−1

(
S̃iyy − 2φ̂

(l)
i S̃

i
xy +

(
φ̂

(l)
i

)2

S̃ixx

)
,

with:

S̃ixx =R−1

R∑
j=1

T−1∑
t=1

[
Var

(
hit|θ(l−1), z

(j)
it , y

)
+
(

E
(
hit|θ(l−1), z

(j)
it , y

)
− µ̂(l−1)

i

)2
]
,

S̃iyy =R−1

R∑
j=1

T∑
t=2

[
Var

(
hit|θ(l−1), z

(j)
it , y

)
+
(

E
(
hit|θ(l−1), z

(j)
it , y

)
− µ̂(l−1)

i

)2
]
,

S̃ixy =R−1

R∑
j=1

T∑
t=2

[
Cov

(
hit, hi,t−1|θ(l−1), z

(j)
it , z

(j)
i,t−1, y

)
+
(

E
(
hit|θ(l−1), z

(j)
it , y

)
− µ̂(l−1)

i

)(
E
(
hi,t−1|θ(l−1), z

(j)
i,t−1, y

)
− µ̂(l−1)

i

)]
.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α̂(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

where everything is as in EM-1 but:

v̂−1
t =R−1

R∑
j=1

exp

(
−E

(
ht|θ(l−1), z

(j)
t , y

)
+

1

2
Var

(
ht|θ(l−1), z

(j)
t , y

))
.
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(c) Update B as in EM-1.

3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We recommend to set the starting values based on the results of EM-1, which are quickly

available. We increase the number of MCMC replications deterministically over the EM

iterations. This is necessary since automated strategies as the ascent-based MCEM algorithm

(Caffo, Jank & Jones; 2005) fail to converge due to the substantial amount of parameters

to be estimated in the VAR equation. That is, we first run a burn-in period of 300 EM

steps using R = 50 and then proceed with another 100 EM iterations using R = 500.

Subsequently, we increase R to 50,000 and iterate EM steps until the stopping criterion of

Caffo et al. (2005) applies. This usually happens after a small number of additional EM

steps using 50,000 MCMC replications.

Table 5: Mixture Components

k pk = Pr(zit = k) mk v2
k

1 0.00730 −10.12999 5.79596
2 0.10556 −3.97281 2.61369
3 0.00002 −8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 −1.08819 1.26261

Note: Seven Normal Mixture components to approx-

imate a log
(
χ2
(1)

)
distribution adjusted by its mean

−1.2704.
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B.4 Derivatives complete data log-likelihood

The respective derivatives of the complete data log-likelihood (B.5) are given in the following.

Let h̃it = hit−µi for i = 1, . . . , r and t = 1, . . . , T . First and second derivatives with respect

to state equation parameters φi and si are given as follows:

∂Lc(θ)
∂si

= − T

2si
+

1

2s2
i

([
1− φ2

i

]
h̃2
i1 +

T∑
t=2

(
h̃it − φih̃i,t−1

)2
)
,

∂Lc(θ)
∂φi

= − φi
1− φ2

i

+
1

si

(
φih̃

2
i1 +

T∑
t=2

h̃i,t−1

(
h̃it − φih̃i,t−1

))
,

∂2Lc(θ)
∂φi∂si

= − 1

s2
i

(
φih̃

2
i1 +

T∑
t=2

h̃i,t−1

(
h̃it − φih̃i,t−1

))
,

∂2Lc(θ)
∂φ2

i

= − 1 + φ2
i

(1− φ2
i )

2 +
1

si

(
h̃2
i1 −

T∑
t=2

h̃2
i,t−1

)
,

∂2Lc(θ)
∂s2

i

=
T

2s2
i

− 1

s3
i

([
1− φ2

i

]
h̃2
i1 +

T∑
t=2

(
h̃it − φih̃i,t−1

)2
)
.

Furthermore, let Σt = BVtB
′, β = vec(B), α = vec(A), X̃t = (x′t ⊗ IK), such that

vec(Axt) = X̃tα and K(K,K) be the K2 × K2 commutation matrix. Then, the first and

second derivatives of (B.5) with respect to α and β are given as:

∂Lc(θ)
∂α′

=

(
T∑
t=1

y′tΣ
−1
t X̃t

)
− α′

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂Lc(θ)
∂β′

= −T vec
([
B−1

]′)′
+ vec

(
T∑
t=1

[
B−1

]′
V −1
t B−1utu

′
t

[
B−1

]′)′
,

∂2Lc(θ)
∂α′∂β

= −
T∑
t=1

[(
ε′t ⊗ X̃ ′t

[
B−1

]′
V −1
t B−1

)
+
(
ε′tV

−1
t B−1 ⊗ X̃ ′t

[
B−1

]′)
K(K,K)

]
,

∂2Lc(θ)
∂α∂α′

= −

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂2Lc(θ)
∂β∂β′

= T
(
B−1 ⊗

[
B−1

]′)
K(K,K)

−
T∑
t=1

(
IK ⊗

[
B−1

]′
V −1
t

) (
K(K,K) + IK2

) (
B−1utu

′
t

[
B−1

]′ ⊗B−1
)

−
T∑
t=1

(
B−1utu

′
t

[
B−1

]′
V −1
t B−1 ⊗

[
B−1

]′)
K(K,K).

Note that the cross derivatives ∂2Lc(θ)
∂φi∂α

, ∂2Lc(θ)
∂φi∂β

, ∂2Lc(θ)
∂si∂α

and ∂2Lc(θ)
∂si∂β

are equal to zero due to

the structure of the complete data log likelihood (B.5).
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Appendix C Data and complementary Results

The time series data used in section 5 is based on yt = (qt, πt, ct,∆st, rt)
′, where

• qt is the logarithm of industrial production (linearly detrended),

• πt is the growth rate of the consumer price index (in %),

• ct denotes the annualized change in the logarithm of the World Bank commodity price

index (in %),

• ∆st is the first difference of the logarithm of the CPI deflated real S&P500 index,

• rt is the Federal Funds rate.

As in Lütkepohl & Netšunajev (2017a) and Lütkepohl & Netšunajev (2017b), we use the

updated sample period 1970M1-2007M6. Except for ct, the data can be downloaded from the

FRED. The commodity price index is provided by the World Bank. The transformed data

set is readily available at http://sfb649.wiwi.hu-berlin.de/fedc/discussionPapers_

formular_content.php.

The monetary policy instruments of Gertler & Karadi (2015) and Romer & Romer (2004)

are obtained from the homepage of Valerie Ramey: http://econweb.ucsd.edu/~vramey/

research.html#data. Note that the RR series used in our analysis is the one extended by

Wieland & Yang (2016).
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Figure 3: Time Series Data
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C.1 Complementary results

Table 6: Tests on standardized structural shocks

Normality Heteroskedasticity

MJB p-value Q1 p-value Q2 p-value

Linear 12,911.0 0.000 52.34 0.000 1433.70 0.000
STVAR 49,789.0 0.000 40.22 0.000 1475.40 0.000
MS(2) 291.9 0.000 13.59 0.004 811.21 0.000
MS(3) 48.6 0.000 9.40 0.024 844.74 0.000

GARCH 555.0 0.000 8.22 0.042 627.45 0.904
SV 15.9 0.104 3.25 0.354 627.84 0.903

Note: Multivariate Jarque-Bera (MJB) test conducted as in (Lütkepohl; 2005,

p. 181). Test statistics Q1 and Q2 as discussed in section 3.5, applied to esti-

mated standardized structural shocks ε̂t
/

exp
(
ĥt/2

)
.

Table 7: Test for Overidentifying Restrictions (EM-2)

H0 H1 LR dof p-value p.025 p.975

R1 UC 27.618 10 0.0021 0.0014 0.0030
R2 UC 23.741 7 0.0013 0.0008 0.0019
R3 UC 25.962 9 0.0021 0.0014 0.0031
R1 R3 1.616 1 0.2036 0.1246 0.3497

R4rr UC 5.779 4 0.2163 0.1277 0.3547
R4gk UC 256.470 4 0.0000 0.0000 0.0000

Note: For details about overidentifying restrictions see sub-

section 5.1. Likelihood ratio test statistics are computed as

2 (lnLH1 − lnLH0) and are approximatively χ2-distributed under

H0. Right columns report an approximate 95%-confidence interval

for the p-value resulting from an application of the batch means

method to the LR test statistic.
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