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Abstract

This paper proposes a novel and simple approach to compute daily Value at Risk
(VaR) and Expected Shortfall (ES) directly from high-frequency data. It assumes
that financial logarithm prices are subordinated unifractal processes in the intrinsic
time, which stochastically transforms the clock time in accordance with the markets
activity. This is a very general assumption that allows for a simple computation
of daily VaR and ES by scaling up their intraday counterparts computed from data
sampled in intrinsic time. In the empirical exercise, we discuss the statistical and
dynamic properties of the resulting daily VaR and ES estimates and show that our
method outperforms standard ones in accurately estimating and forecasting VaR and
ES.
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1 Introduction

The huge losses during and following the previous financial crisis have shown that the
existing risk models have failed when they were needed most. Since its implementation
as a standard approach by the Basel Committee on Banking Supervision in 1996 (Basel
Committee, 1996), Value at Risk (VaR) has become the most known risk measure in
today’s financial world. In 2016, the Basel Committee recommended a shift from VaR
to Expected Shortfall (ES) as a "more prudent” measure of risk given that it accounts for
the distribution of financial losses beyond VaR (Basel Committeel, |2016). Although very
appealing, the literature on estimating and forecasting ES relies heavily on the one of
VaR. The standard way of computing e.g., (daily) VaR is by using a location-scale model
that involves the estimation and forecasting of the mean, of the standard deviation (or
volatility) and of the quantiles of standardized residuals of (daily) financial returns from
data sampled in calendar time and, usually, at low (daily) frequencies[] The location-scale
approach stems originally from the assumption that daily financial returns are normally
distributed, which has proven to be an unrealistic assumption during the last decades. To
overcome this problem, the common practice is to replace the quantile of standardized
residuals with one of a fat-tailed distribution, such as Student’s {. However, [Halbleib
and Pohlmeier (2012), among others, provide empirical evidence on the general pitfalls
of the location-scale model for VaR, especially during turbulent financial times, and the
necessity for more flexible and precise approaches.

This paper proposes a novel and simple method of estimating and forecasting daily
VaR and ES directly from high-frequency (HF) data. It consists in scaling-up quantiles
and ES of intraday returns sampled not in calendar (clock or physical) time, but in a time
dimension that aims at capturing the real ’heartbeat” of the market. This new time di-
mension transforms the time in accordance with market’s activity and allows to sample
data more often during active/turbulent financial periods and less often during calm ones.
Thus, the resulting intraday returns become very informative about the market’s activity
and riskiness, differently from the ones sampled in the standard clock time, which ignores
such information. Our methods, which we denote the Scaled-up VaR (ScaVaR) and the
Scaled-up ES (ScaES), are the first in the literature that directly exploit the rich infor-
mation content of HF data from the intrinsic time perspective for tail risk estimation and
forecasting.

The theoretical background of our approach is built on the assumption that the fi-
nancial logarithm price process is a subordinated process. In particular, we assume
that it is a unifractal process subordinated (indexed) by the stochastic intrinsic time; i.e.
p(t) = U(0(t)), where U (t) is the subordinated unifractal process and 6(¢) is the stochas-
tic intrinsic time process (the subordinator). The unifractality assumption is particularly
attractive, as it allows for describing the relation between the distributions of financial re-
turns computed at different aggregation (frequency) levels through one single scaling law
driven by one scaling index. This enables us to compute daily estimates of VaR and ES
by scaling up their intraday counterparts by the single scaling index estimated from the

Intraday data sampled in calendar time has found application in estimating and forecasting daily VaR
by using realized volatility estimates for the standard deviation in the location-scale model (see |Giot and
Laurent (2004) among others).



data, which makes our procedure very appealing compared to the location-scale models,
as it avoids heavy parametric specifications for the mean, volatility and the distribution of
the standardized returns.

The idea of subordination goes back to Mandelbrot and Taylor| (1967)), which gener-
alize the classical log-normal asset price model by substituting the physical time with the
(non-negative stochastic) intrinsic one. This approach is able to capture the fat-tailedness
of financial returns in a more tractable way than by assuming a heavy-tailed distribution,
such as the a-stable. Most of the existing subordinting processes use the Brownian mo-
tion as the subordinated one, but differ in what regards the (parametric) assumption on
the stochastic time process (subordinator): the skewed «/2-stable as in Mandelbrot and
Taylor|(1967), the inverse Gaussian as in Eberlein and Keller| (1995)), the log-normal as in
Clark| (1973)) or the multifractal as inMandelbrot et al.| (1997).

The main two limitations of these subordinated models are that (1) the financial re-
turns are imposed to be Gaussian and (2) they use daily data for the estimation. Our
model overcomes these limitations as the unifractality assumption imposes no Gaussian
constraints for the price increments and it uses HF data for the estimation i.e., the intrinsic
time is derived directly from the intraday HF information based on a choice of an intensity
measure of the market’s activity (e.g., intraday trading pattern). Moreover, by assuming
that the underlying intensity is a multifractal measure (Mandelbrot et al.,|1997; Calvet and
Fisher, [2002), we show theoretically that our assumption on the logarithm price process
is very general as the the logarithm price process becomes a multifractal one charac-
terized by different scaling laws describing the relationships among the distributions of
aggregated returns, in accordance with the aggregation (frequency) level. As shown by
Mandelbrot (1999); (Calvet and Fisher (2008); Lux and Segnon (2018), the multifractality
assumption is particularly attractive for financial price processes as it accommodates var-
ious empirical features such as the fat-tailedness of the distribution of returns as well as
volatility clustering and persistence in the return dynamics. As a consequence, our basic
assumption that the financial logarithm price process is a unifractal process subordinated
(indexed) by the intrinsic time, is theoretically a very general one and, in the same time,
practically, very usable due to the simple relationships typical to unifractality.

Despite its practical relevance, the concept of intrinsic time has got so far only limited
attention from the economics and finance literature and, so far, only for other purposes
than the ones of this paper (Stock, |1988; Miiller et al., 1995} Ghysels et al., [ 1997; Oomen,
2006; (Guillaume et al., (1997). It has circulated under different names, such as “’time
deformation” (Mandelbrot et al., |1997), ”deformed time” (Gouriéroux and Jasiak, [2001))
or “operational time” (Clark, |1973) and, as mentioned above, it has been mainly treated as
a latent process with increments following certain parametric distributions estimated from
low frequency data (Hurst et al., [1997). However, the availability of HF data in the last
one and a half decades opens new possibilities of measuring and estimating the intrinsic
time (Marinelli et al., 2001}, 2000) based on market intensity measures, such the trading
volume (Mandelbrot and Taylor, 1967; Clark, |1973)), the intraday volatility pattern (Boudt
et al.,[2011; Dong and Tse|, 2014), the intraday trading pattern (Oomen, [2005}; Gritfin and
Oomen, 2008; Wu, 2012) or in the context of duration models (Engle and Russell, [1998;
Gerhard and Hautsch, 2002).



The application of the fractal theory in finance has mainly focused so far on providing
models for asset returns and their volatilities as in Mandelbrot et al.| (1997), [Calvet et al.
(1997) and |Calvet and Fisher (2001) (see Calvet and Fisher (2008) and Lux and Segnon
(2018) for an overview). Hallam and Olmo| (2014a)) and Hallam and Olmo| (20145) apply
scaling relationships typical to fractality to estimate and forecast the whole probability
density function of daily financial returns from their intraday counterparts computed from
data sampled in calendar time. The outcome of these two approaches is mainly driven by
the information from the central region of the distribution instead of the tails, which makes
them inappropriate for risk estimation and forecasting.

Differently from these fractal-based models, our ScaVar and ScaES focus on the es-
timation and forecast of the tails of return distributions by accounting for the intraday
information on market’s activity within the minimal parametric framework imposed by
the fractal theory. The practical implementation of ScaVaR and ScaES consists in several
simple steps, as it follows: (1) sample HF prices in the intrinsic time based on a choice
of intensity measure and at a certain frequencyE]; (2) estimate quantiles and ES of the re-
sulting intraday logarithm returns; (3) estimate the scaling index that describes the unique
scaling law of the unifractal price process and (4) compute daily estimates of VaR and ES
by scaling up the intraday counterparts from point (2) with the scaling index obtained at
point (3).

In our empirical application, we apply ScaVaR and ScaES to one exchange rate and
two stocks. For our purposes, we use the intraday trading pattern as the intensity measure
driving the intrinsic time sampling scheme: i.e., the sampled prices are “equidistant”
in terms of the number of trades. Further alternative intensity measures such as price
changes, volumes or intraday volatility patterns may also be considered. For the sake of
comparison, we also implement the standard clock-time sampling scheme that samples
prices equidistantly in time.

We provide a comprehensive description of the empirical properties of scaled-up daily
VaR and ES estimates and find that the estimates of foreign exchanges are less extreme,
less volatile and less persistent than the ones of the stocks. Among the stocks, these
effects are mostly pronounced for the asset from the financial sector (BAC). All VaR and
ES estimates exhibit long memory and some skewness and overkurtosis.

Furthermore, we evaluate and compare the accuracy of ScaVaR and ScaES to es-
timate and forecast daily VaR and ES against a standard location-scale model and the
fractal-based approach of |Hallam and Olmo| (2014a). We show that ScaVaR and ScaES
significantly outperform the alternative methods, especially the method of Hallam and
Olmo| (2014a)), in accurately estimating and forecasting daily VaR and ES. Comparing
the two sampling schemes, we show that sampling the HF data in accordance with the
trading activity is much more valuable for risk estimation and forecasting than the calen-
dar one.

This paper is organized as follows: Section [2] presents the theoretical background of

ZPlease note that in this paper we do not deal with the market microstructure noise, which affects HF
prices. As it is a very complex topic by itself (as depicted in the realized volatility literature: [Hansen and
Lunde| (2004), Bandi and Russell| (2005), Zhang et al.| (2005), Barndorff-Nielsen et al.| (2008)), Dahlhaus
and Tunyavetchakit (2018) among others), we leave it for further research.



our approach and its implementation. Section [3|provides empirical results from applying
our method and the alternatives to real data. Section [ concludes.

2 Theory

Section [2.1] briefly introduces the key mathematical concepts for our methodology, Sec-
tion [2.2] provides its formal description and properties and Section [2.3] presents the prac-
tical steps in implementing it.

2.1 Key Theoretical Concepts

The most basic concept at the basis of our approach is the one of subordination (Mandel-
brot and Taylor,|1967) and consists in replacing the calendar time with an intrinsic one in
defining a stochastic process that evolves in time. Let X = {X (¢),t > 0} be a stochastic
process and § = {0(t),t > 0} be a non-negative stochastic process. Then the new pro-
cess {X(6(t)),t > 0} is said to be subordinated to X by the intrinsic time 6(¢). For a
detailed discussion of subordinated processes and their application in modeling financial
logarithm price processes see Chapter 5 of Rachev and Mittnik (2000), among others. In
what follows, we introduce in more detail the concept of intrinsic time as applied in our
methodology.

Assume ¢ € [0,7] where T" > 0. Let X\ denote a real-valued intensity measure on
[0, T'], which measures the market’s activity at a certain point of time. From this intensity
measure, we generate the time transformation 6 : [0,7] — [0, 7], which transforms the
calendar time ¢ into the intrinsic time 0(t):

0(t) = A([0,t]) . (1)

(t) is an increasing function of the clock time ¢ in accordance with the intensity mea-
sure A, i.e., given the market’s intensity \ between two time points s,t € [0,7],s < t,
which are close to each other, the transformed time 6(¢) elapses such that 0(t) — 0(s) =
A([0,t]) = A ([0, s]) = A ([s, t]). Thus, the intrinsic time aims at capturing the real ’heart-
beat” of the market in accordance with its market intensity: it accelerates the time when
the market’s activity is intense and it slows it down when it is calm. Choices of intensity
markers could be: the number of trades, the number of price changes, trading volumes
and intraday volatility patterns (see Clark (1973), Gouriéroux and Jasiak (2001), Oomen
(2005), Dong and Tse (2014)), Boudt et al.| (2011)), Mandelbrot et al.| (1997), among oth-
ers).

The next concept used in our methodology is the one of unifractality (Mandelbrot,
1963, 1982), which is defined in the following manner:

Definition 2.1. A real-valued stochastic process {U(t),t > 0} is said to be unifractal or
self-affine if for some H > 0 and all ¢ > 0,

Ulet) £ HU (1), (2)
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where = denotes equality in distribution.

Hereby, the parameter H is known as the self-affinity or scaling index and it gives
the (unique) scaling law describing the unifracal process. c is the scaling or aggregation
factor that defines the time scale change from ¢ to ct. It holds that, if E[|U(1)|] < oo, then
H < 1andif H =1, then U(t) = tU(1) almost surely (Embrechts and Maejima, 2002).
For this reason, we focus in our paper on the cases where H € (0, 1).

Assuming that the increments are Gaussian and if H = 0.5, then U(¢) is a standard
Brownian Motion (BM), while if H # 0.5, then U(t) is a fractional Brownian Motion
(fBM). While both BM and fBM have stationary (Gaussian) increments, they are inde-
pendent in the case of BM and dependent in the case of fBME] fBM with H > 0.5 exhibits
long memory. As a consequence, the self-affinity index H is in the long memory literature
also known as the Hurst coefficient (see Beran et al. (2013), among others).

Proposition 2.2. Let {U(t),t > 0} be a unifractal process as given in Equation (2)) with
H € (0,1) and with stationary increments. Then, for all ¢ > 0 and for all A > 0, it holds
that

Ult+cA) = U L MU+ A) — U®)]. 3)

The proof of the Proposition[2.2]is given in Appendix [A] The proposition states that, if
a process is unifractal and has stationary increments, then the increments are also unifrac-
tal following the same scaling law as the process itself.

The scaling relationship describing a unifractal process (given in Equation (2)) re-
mains unchanged w.r.t. c: i.e., H does not depend on the choice of c. This might be
very restrictive in many applications, including in the financial ones, as the relationships
among variables scaled (aggregated) at different time scales (frequencies) may not be sim-
ple (unifractal), but complex, as they might change with the scale or aggregation factor.
Therefore, Mandelbrot| (1974) introduces a more general concept, namely the multifrac-
tality that, differently from the unifractality, allows for the scaling relationships to change
with the scaling factor c¢. The multifractality can be defined in two equivalent ways as it
follows (Mandelbrot et al., [1997}; (Calvet and Fisher, 2002):

Definition 2.3. A real-valued process { M (t),t > 0} is said to be multifractal

1. If there exists a real-valued random variable H (c) such that for all ¢ > 0,
M(ct) £ HOM(1), @)

where M(t) and H(c) are independent random functions and H (c) is time inde-
pendent or

3A self-affine process {U(t),t > 0} with stationary and independent increments is an a-stable Lévi
process if the distribution of U(1) is the a-stable described by the tail index 0 < o < 2. Thus, H = 1/«
and for a = 2, the a-stable distribution becomes the Gaussian distribution (Embrechts and Maejimal 2002).



2. If M (t) has stationary increments and satisfies
E[|M®)|) = c(q)t™ ™ Vge Q and VteT 5)

where ¢(q) and 7(q) are deterministic functions of q, 7(q) is denoted the scaling
function, Q and T are intervals on the real line such that [0,1] C Q, T C [0, 00)
and {0} € T.

While the first definition refers to the variation of the scaling relationships with respect
to the choice of the scaling factor ¢, the second one states that a multifractal process
has stationary increments and its moments exhibit multi-scaling laws, denoted here as
moment-scaling relationships. H(c) is known as the generalized Hurst component and
it is a function of c¢: it allows for different scaling relationships among the distribution
of M (t) sampled at different timescales (frequencies). From Definition one can see
that the unifractality with stationary increments is a special case of the multifractality: if
M (t) is unifractal then, H(c) = H,Vc > 0 and M (¢) L H ) (1). Similar to Proposition
one can easily show that the increments of a multifractal process are also multifractal
and have the same moment-scaling relationships as the process itself (Mandelbrot et al.,
1997).

While the concept of multifractality may seem at a first glance simple to understand,
it is difficult to implement in practice, especially in the form defined in Equation (),
due to the difficulty of computing H(c) for all choices of ¢c. Most of the applications
of multifractality in the finance literature (e.g., Hallam and Olmo| (2014a)), |Calvet and
Fisher| (2004)) make use of the second definition that involves concepts (stationarity and
moment-scaling relationships), which are easier to deal with in practice.

Multifractal theory has found so far a wide application in many disciplines as it is able
to describe complex systems characterized by long dynamic dependencies, occurrence of
extreme events and multi-scaling relationships (Kantelhardt, 2009). The multifractal the-
ory is, thus, able to address all these features within a unified mathematical framework
(Lux and Segnonl, 2018}; Kobeissi, 2013). The fact that financial returns exhibit such em-
pirical properties (volatility clustering and fat-tails), makes the multifractal framework an
attractive one in describing the price process of the financial assets as shown by Mandel-
brot et al.| (1997) and |Calvet and Fisher (2004).

2.2 ScaVaR and ScaES

The main assumption at the fundament of our methodology is that the financial logarithm
price process is a subordinated unifractal process indexed by in the intrinsic time 6(t).
More formally:

Assumption 2.4. Let P(t) be the financial price process and p(t) = In P(t)[| We assume
that:

p(t) = U(0(1)), (6)

“Notice that we normalize the logarithm price process by subtracting p(0) from p(t) as Definition
implies that for a unifractal process U (¢), it must hold that U (0) = 0 almost surely.
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where U (t) is a unifractal process with the Hurst coefficient H and stationary increments
and 0(t) is independent of U (t).

Assumption [2.4|is a very general one for financial logarithm price processes and in-
cludes as special cases: (1) the BM assumption when H = 0.5, 6(¢) = ¢ and the incre-
ments are independent and Gaussian, which is the mostly widely-spread assumption in
the finance theory (Black and Scholes, |1973; Markowitz, [1952)); (2) the fBM assumption
when H # 0.5, 0(t) = t and the increments are Gaussian, but dependent, which is pro-
moted by [Comte and Renault| (1998]), Comte and Renault (1996) and Mandelbrot| (1997),
among others and (3) the assumption that the logarithm price process is a subordinated
BM or fBM in 6(¢) as in the multifractal model of asset returns (MMAR) of Mandelbrot
et al[|(1997) and Calvet and Fisher (2002). A major concern regarding all these previous
assumptions is about the Gaussianity of the financial returns (sampled in intrinsic time),
which is empirically unrealistic for the current financial returns as they exhibit fat-tailed
distributions. In contrast, Assumption [2.4{only assumes that p(¢) follows a unifractal law

not in the clock time ¢, but in its transformation 6(t): i.e., U(cf(t)) < cHU(O(t)). This
allows for a simple derivation of the distribution and, for our purposes, of the quantiles
of aggregated (daily) returns from their intraday counterparts sampled in intrinsic time by
simply scaling them up by .

In what follows, we provide further theoretical evidence on the very general charac-
ter of Assumption [2.4] compared to the existing ones (e.g., BM, fBM) by showing that,
assuming that A(¢) is a multifractal measure, the logarithm price process in Equation (6]
becomes a multifractal one that, as mentioned above, accommodates many important em-
pirical stylized facts of financial returns, such as volatility clustering and fat-tailedness
(Lux and Segnon, 2018)).

In order to show this, we first define the concept of multifractal measure as in Calvet
and Fisher (2002).

Definition 2.5. Let ;1 be a random measure on [0, T)|. p is a multifractal measure if
Ep([t,t + A1) = cu(q) (A)TH(Q)—Ha (N

forall (t,A) € D, where ® is a subset of [0, T]x [0, T, such that the closure of © contains
the set [0, T] x {0}, i.e., the scaling relation in Equation ([7) holds "in the neighborhood
of any instant” and all g € Q, where c,(q) and 7,(q) are deterministic functions of q and
Q is specified in Definition[2.3]

Thus, a multifractal measure is characterized by moment-scaling relationships similar
to the ones given in Equation (3). In what follows, we assume that the intensity measure
A is a multifractal measure:

Assumption 2.6. The intensity measure \ defined on [0, T] is a multifractal measure i.e.,
E\([t,t + A]7)] = ex(q)(A)™DHL, where cx(q) and T\(q) are deterministic functions
of q.

Based on Assumption we now show that 0(¢) is a multifractal process as defined
in Section 2.1k



Theorem 2.7. Let \(t) be a multifractal measure on [0, T). If there exists ¢ € (0,1) such
that (—e,1] C Q, then, 0(t) = X ([0,t]) is a multifractal process with continuous and
non-decreasing paths.

The proof of the theorem is in Appendix [A] Based on Theorem[2.7] one can now show
that the price process specified in Assumption [2.4]is a multifractal one:

Theorem 2.8. Assume that the price process p(t) given in Equation (@) satisfies the
condition: E||p(t)|?] < oo Vg € Q, where is Q is specified in Definition Then,
p(t) is multifractal with the scaling function 7,(q) = T\(Hq) and the scaling factor
() = ex(Hg)E [|U(1)]7].

See Appendix |A| for the proof. From Proposition we further get that the incre-
ments of the logarithm price process assumed in Equation (6)) are also unifractal in the
intrinsic time (), and consequently, based on Theorem also multifractal. While
Assumption 2.4 may seem at a first glance ad hoc, Theorem [2.§] proves its very gen-
eral character, by including the multifractal processes as special cases, along with further
assumptions that are less realistic for financial returns such as the unifractality, BM or
fractional BM. While the theoretical results so far provide evidence on the generality of
Assumption [2.4] below and in Section [3] we demonstrate its usefulness in practical appli-
cations, due to the simplicity in describing the relationships among the distributions of
returns aggregated at various levels, typical to unifractal processes.

Thus, by replacing ¢ with (¢) in Proposition one can show that the distribution
of the returns of the logarithm price process assumed in Equation (6)) follows the same
unifractal scaling law as the logarithm price itself:

Corollary 2.9. For all ¢ > 0 and for all A > 0, it holds that
UO(t) + cA) — UB() £ HUB() + A) — UO(1))). (8)

From Corollary one gets that the quantiles (VaR) and ES at probability level p of
the increments of the logarithm price sampled in intrinsic time have the following scaling
relationships:

QuUB(E) +eA) ~UB() = QU +A) ~UBE)  ©)
ES,(U(O1) +cA) — UO(1)) = ES,(U00) + A) —UOF),  (10)

forall p € (0,1), all ¢ > 0 and for all A > 0. Thus, equations (9) and allow us to
compute quantiles (VaR) and ES of increments sampled at the daily frequency by scaling
up their counterparts computed from increments sampled at a higher frequency (e.g., 5

minute) and in intrinsic time. We denote these approaches by Scaling-up VaR (ScaVaR)
and Scaling-up ES (ScaES).

2.3 Implementation of ScaVaR and ScaES

Based on the theoretical assumptions and results presented in Section [2.2] we show here
how to obtain daily estimates of quantiles (VaR) and ES from HF data by implementing
the following steps:



Step 1. Based on choices of the intensity measure A, generate the time transformation func-
tion () = A([0,]) for all ¢ € [0, T]f]

In order to sample ¢ + 1 HF logarithm prices (logarithm ticks) according to the
transformed time 6(t), fix ¢ € N[

Define the equally spaced calendar time grid ¢t = {to, t1, %o, ..., t.}, where ty = 0,
t.=Tandt; —t;,_q is constant forallz =1,...,c.

The intrinsic time grid that samples ¢ + 1 prices according to the intrinsic time 6()
is computed as:

t = {07'(t),tet}
= {07'(t0), 07 (t1), ..., 07 (t.)}
= {to,t1,t0,. .., 1}, (11)

where we fix the first and the last observation, i.e., 071 (ty) = to = 0 and 0~ (¢.) =
t.="1T[

From the ticks sampled on the time grid £, compute the ¢ intraday log-returns for
each day d, denoted here by ry 4 = {r14,...,7cq} Withd =1,...D.

Step 2. From the intraday log-return series 74 of day d and for a given probability p €
(0,1), compute the p-th quantiles and corresponding ES, denoted here by Q,(7.4)

e~

and £S,(7,4), respectively.

Step 3. Estimate the Hurst coefficient H from the intraday log-return series (see |Kantel-
hardt| (2009)) for a survey of estimation methods of ).

Step 4. Based on equations (9) and (I0), compute the p-th quantiles and p-th ES of the daily
returns on day d with p € (0, 1), denoted by @, 4 and ES, 4, by scaling up their
counterparts computed in Step 2 with the scale index H estimated in Step 3, as it
follows:

~

Qpa = MQp(rsa), (12)
ES,q = MES,(r.a). (13)

SWe provide concrete examples on how to choose ) in the empirical exercise in Section

% Alternatively, one can fix the frequency f of sampling the HF data, which is related to ¢ in the following
manner: f = T'/c, where T is the total amount (measured in units of time: e.g., minutes) of calendar time
per day (e.g.,on NYSE T" = 390 minutes). For example, on NYSE, if ¢ = 78, then f = 5 minute. Note that
the term “’frequency” here does not necessarily have the classical calendar interpretation. E.g., a frequency
of 5 minute does not necessarily mean that we sample every 5 minute, but the sampling points varies with
the choice of the intensity measure such that, for instance on NYSE, one samples a total 78 observations
per day sampled at 5 minute frequency.

7 A special case of this procedure is the Calendar Time Sampling (CTS) scheme that samples price
observations that are equidistant in calendar time. Thus, the intensity measure A is fixed and equal to 1 and
t=t.




3 Empirical Application

3.1 Data Description

We apply ScaVaR and ScaES to stock and foreign exchange data. In particular, we use
the tick data of International Business Machines Corporation (IBM) and Bank of America
(BAC) collected from TAQ database of NYSE from January 2, 2001 to July 24, 2017. We
have a total of D = 4124 trading days for each stock. The raw data consists of the best
bid and best ask quotes during the trading period, which is from Monday to Friday from
9:30:00am to 16:00:00pm. From the best bid and best ask, we compute the midquote as
their average. The choice of the stocks aims at providing some diversification in what
regards the liquidity of trading as well as the sector and the profile of the companies
considered: IBM is a common choice in the literature due to its high-liquidity, while BAC
is from the financial sector and has experienced some serious losses, especially during the
previous financial crisis.

The foreign exchange rate data we use is for the Euro against the US Dollar (EURUSD)
from July 5, 2008 until July 20, 2016 (D = 2125). The raw tick data is obtained from
TICKDATAE] that collects foreign exchange rate transactions from multiple data sources
covering a variety of market places around the world. The foreign exchange rates are
traded around the clock from Sunday 6pm ET until Friday 5:59:59.999pm ETﬂ adding
up to a total of five days a week with 24 hours of trading activity.

According to Step 1 presented in Section[2.3] the tick data is sampled at the frequency
f = 5 minute leading to ¢ = 288 for the foreign exchange rates and ¢ = 78 for the stocks.
The choice of this frequency attempts to accommodate the fact that intraday returns are
contaminated with market microstructure noise (see |Andersen, Bollerslev, Diebold and
Ebens| (2001) for a similar procedure when estimating daily volatilities by means of real-
ized volatility measures)ff] However, a theoretical and empirically deeper analysis of the
impact of the market microstructure noise on our estimates is left for further research.

For our purposes, we implement two sampling schemes, namely (1) the Calendar Time
Sampling (CTS) scheme that samples price observations equidistantly in clock time and
(2) the Time Transformation Sampling (TTS) scheme that is an intrinsic time scheme that
samples price observations that are equidistant in terms of the number of ticks averaged
over all past trading days. In this case, the intensity measure A(t) is given by the number of
ticks at time ¢ averaged over all days prior to and including the present day. This sampling
scheme accounts for the intraday periodicity in the trading activity as a common pattern
across all trading days (Wu, ZOIZ)EI

Shttps://www.tickdata.com/|

“Before August 2, 2014, the trading data provided by TICKDATA covers trades from Sunday 4pm ET
until Friday 3:59:59.999pm ET every week.

10Results from implementing other frequencies, such as 1 minute, 3 minute, 10 minute and 30 minute
can be obtained from the authors upon request.

"Implementing further intrinsic sampling schemes based on other types of intensity measures, such as
non-zero changes in the prices, volumes or volatility patterns (Clark} 1973} |Engle and Russell, |1998; |Griffin
and Oomen, 2008; Oomen, 2005, 2006; Boudt et al., 2011; |Dong and Tsel |2014) provides, in general,
similar results to TTS when compared to CTS and the alternatives described below. They can be obtained
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Descriptive statistics of HF returns sampled by the two sampling schemes are given in
TableB.1]in Appendix[B] As one may observe from the table, the magnitude of the returns
is very small, but their kurtosis is very large and much above the value of 3. However, the
value of the kurtosis reduces from the calendar time to the intrinsic one["? This indicates
that the intrinsic time sampling scheme leads to a reduction in the sampled extreme values
compared to CTS as it picks more price observations during highly active periods (with
high fluctuations) and less during calm one (with low fluctuations). In contrast, CTS
samples the data independently of the market’s activity.

In what follows, we compute VaR and ES at p = 1%, 2.5% and 5%: p = 1% is the
probability specified by the Basel Committee to compute VaR (Basel Committee, |1996),
p = 2.5% is the probability to compute ES according to Basel Committee (2016) and
p = 5% is the probability that is most popular among researches and practitioners (e.g.,
Kuester et al.|(2006), among others).

In order to implement Step 2 presented in Section we estimate the quantiles of
the intraday returns by means of empirical quantiles by employing the MATLAB function
'quantile(x)’. The ES estimator is computed as the average of the observations smaller
than the empirical quantile estimator. The empirical quantile and ES estimators are little
precise in small samples (see Harrell and Davis| (1982), among others), which is also our
case, as the number of intraday observations is limited. One way of improving the quality
of these estimators is to increase the number of intraday returns, namely c. This leads
to increasing the frequency of sampling the HF information, which may induce a bias in
the estimates due to the market microstructure noise present in the intraday prices (due
to bid-ask spreads, discrete price changes and asymmetric market information, among
others). This issue is treated at length in the realized volatility literature that finds that
sampling returns at frequencies between 5 and 30 minute provide an optimal trade-off
between accuracy and efficiency of the realized volatility estimators (for an overview of
the literature see Hansen and Lunde|(2006)).

To implement Step 3 in Section [2.3] we estimate the Hurst coefficient by means of the
detrended moving average (DMA) estimator of Alessio et al.| (2002). We also implement
further estimators, such as the detrended fluctuation analysis of Peng et al. (1994) and
the estimators of [Sdnchez-Granero et al.|(2012). However, given that the in-sample and
out-of-sample results do not change significantly by changing the estimation method of
H, we stick here to the results computed from implementing DMA.

Based on the estimate of H and of the intraday empirical quantiles and ES, we are
now able to implement Step 4 presented in Section [2.3] in order to compute the daily
scaled-up estimates of VaR and ES as given in equations and (13). Tables and
provide descriptive statistics of the logarithm transformations of their negative values
namely of g, 4 := ln(—@p,d) and €s,, 4 1= ln(—ETS’I,’d). From both tables, we observe that
the g, 4 and €5, 4 exhibit overkurtosis and skewness and one rejects the normal distribution
assumption in all cases. In general, there is a tendency in reducing the kurtosis and JB-
test values from CTS to TTS, which may indicate a reduction in the extreme values in
the estimated VaR and ES series. However, the most evident result is that exchange rates

from the authors upon request.
12Similar empirical findings are documented by (Clark| (1973) and [Mandelbrot and Taylor, (1967).
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exhibit smaller kurtosis and JB-test values than the stocks, with BAC exhibiting the largest
ones. This can be explained by the fact that the stock markets are more risky and that,
financial crises, included in the sample, affect more the stock market than the currency
one, especially the stocks from the financial sector.

A graphical inspection of the VaR series in Figure confirms these ﬁndingsE] The
estimates of the stocks are much more volatile, with higher volatility clustering and higher
peaks than the ones of the exchange rates, with the mostly pronounced ones for BAC.
However, the clustering effects reduce by increasing p. The ACF of the series, depicted
in Figure , indicate that the transformed VaR estimates exhibit slowly decaying ACEF,
which is typical for long-memory, however with different decaying patterns: the fastest
for the exchange rate, followed by the ones of the stocks, with BAC exhibiting the slowest
decaying ACF pattern.

The histograms and the QQ-plots given in figures [C.3HC.5| and [C.6[{C.8] respectively,
show that the estimates for the exchange rates are closer to the normal distribution than the
ones of the stocks as they exhibit less extreme values, which is in line with the results pre-
sented in tables[B.2)and [B.3] Among the stocks, BAC seems to have the most pronounced
tails in VaR estimates, which indicates that this asset is particularly risky compared to the
other two.

3.2 In-Sample Results

For the assessment of the empirical performance of our new methods to accurately esti-
mate daily VaR and ES, we compare them against (1) a standard location-scale approach
with constant conditional mean, the conditional variance stemming from a GARCH(1,1)
specification and the Student’s t with estimated degrees of freedom for the distribution
of the standardized residuals of daily returns (we denote this specification the GARCH-t)
and (2) the multiscaling approach of [Hallam and Olmo (20144) (denoted here HOMF)
that estimates the whole density function of daily returns from matching the scaled up
moments of intraday returns sampled in CTS to the moments derived from a parametric
distributional assumption for daily returns. From these estimated densities, we compute
the quantiles and ES that we need for our comparison. While the GARCH-t approach is
a standard choice within the the location-scale framework to estimate and forecast VaR
(see Halbleib and Pohlmeier| (2012), among others), HOMF may be regarded as being the
closest to our methods, as it develops from the assumption that the logarithm price process
is multifractal. However, different from our approach, it uses the moment-multiscaling re-
lationships typical to multifractality applied to data sampled in the clock time, ignoring,
thus,any type of market’s activity informationE]

3Given that the graphs for the daily estimated ES are similar to the ones of VaR, they are not presented
here. However, they can be obtained from the authors upon request.

“For comparison reasons, we also implement a location-scale model where the conditional variance
stems from RV specifications instead of GARCH, as well as the unifractal-based method of [Hallam and
Olmol (20145b) that estimates the density of daily returns by scaling up the one of intraday returns sampled
in CTS. However, given that the results for these methods are not significantly different from the ones of
the comparative models mentioned above, we choose to disregard them for the present analysis.
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To evaluate the performance of the models in accurately estimating VaR and ES, we
use strictly consistent scoring (loss) functions as described by |Gneiting (2011). These
scoring functions allow for a reliable ranking of the forecasts, assuring that the forecast
with the smallest loss value is the best. More precisely to make the comparison for quan-
tiles, we employ the strictly consistent asymmetric piece-wise linear scoring function
(sometimes also called check loss function or the tick loss function), which is the most
popular scoring function for quantiles according to (Gneiting| (2011) and which is given
by

Sy (@Qparra) = ra= Qua) D=5 5 ny)- (14)

As there exists no strictly consistent scoring function for ES alone (Gneiting), 2011)),
we choose to use a joint scoring function for the pair VaR and ES as proposed by [Fissler
and Ziegel (2016), namely:

(@pa—7)1(,,<5 ES
P g {ra<@p,a} + ]n(—ES;a,d)-

~ —~ 1 —_~ ~
SXaRES (Qp,da ESp,da Td) = == (Esp,d - Qp,d +
p,d

15)

Thus, over the whole evaluation window composed of D days, we compute the final
scoring functions as the average over all days:

D

_ 1 .
Sy =528 (Qpara), (16)
d=1
e 1= s P
Sy RS = D ;SX RES(Qpa, ESpa,14), (17)

whereas the model with the smallest average score exhibits the best performance. In
order to test for differences in the scoring functions among the models, we implement the
Diebold-Mariano (DM) test originally developed by Diebold and Mariano (1995).

Table (1| provides the VaR and VaRES scores and the results from the DM test with
the ScaVaR/ScaES computed from data sampled in TTS as the benchmark. As one may
see from the table, the ScaVaR/ScaES provides the smallest score values for all p’s and
assets. The TTS provides in general the most improvements compared to CTS.

For stocks, the DM-test cannot reject that the quality of the estimates between the two
sampling schemes is the same. However, for the exchange rate compared to the stocks, it
seems that TTS provides more improvements in terms of score values compared to CTS,
especially when estimating extreme risks (p = 1%). This may be due to the fact that
the intraday trading pattern may not be as informative for stocks as it is for the exchange
rates. To improve the results for stocks, one should consider other types of intrinsic time
sampling schemes, built on intensity measures, which may be more informative for stocks,
such as, for instance, the intraday volatility patternE]

51t is a well-known fact that, during the trading period, stocks exhibit a pronounced ~U”-shape in the
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Table 1: In-sample results: VaR and VaRES scores. The entries in bold correspond to the
smallest score values. The entries in parentheses give the p-values of the DM test with the
ScaVaR/ScaES computed from data sampled in TTS as the benchmark. The VaR score
values are scaled by 10%.

1% 2.5% 5%
VaR VaRES VaR VaRES VaR VaRES

IBM
3.4056  -3.5346 | 6.4961  -3.7759 | 10.4120 -3.9944
) ) ) ) ) )

3.4059  -3.5356 | 6.5118  -3.7754 | 10.4510 -3.9912
(0.9841) (0.8291) | (0.5618) (0.8886) | (0.4599) (0.3753)
37214 32112 | 7.3741  -3.5301 | 12.2920 -3.7559
(0.0624) (0.0004) | (0.0001) (0.0000) | (0.0000) (0.0000)
37186  -3.3284 | 7.4421  -3.5654 | 12.3910 -3.7676
(0.0990) (0.0024) | (0.0006) (0.0000) | (0.0000) (0.0000)

BAC
51814 -32071 | 9.7204 -3.4406 | 15417 -3.6576
) ) ) ) ) )
52077 -32021 | 97367 -3.4438 | 15451  -3.66
(0.2714) (0.1493) | (0.8397) (0.5134) | (0.7922) (0.6010)
6.8742  -2.6057 | 13.1520 -3.0221 | 21.2900 -3.2861
(0.0003)  (0.0000) | (0.0000) (0.0000) | (0.0000) (0.0000)
6.4913  -2.8521 | 13.183 -3.1053 | 21.592 -3.3196
(0.0025)  (0.0002) | (0.0000) (0.0000) | (0.0000) (0.0000)

EURUSD
1.8739  -4.0261 | 3.5462 -4.2857 | 5.8535 -4.4889
) ) ) ) ) )

1.9234  -3.9945 | 3.5713 -4.2712 | 5.8474 -4.4865
(0.0000) (0.0000) | (0.3474) (0.0003) | (0.8938) (0.5620)
2.0127  -3.8267 | 4.0978 -4.0852 | 6.9601 -4.2643
(0.2812) (0.1089) | (0.0011) (0.0035) | (0.0000) (0.0000)
1.9607  -3.9002 | 4.0799 -4.1044 6.991 -4.2682
(0.4922) (0.2077) | (0.0029) (0.0037) | (0.0000) (0.0000)

Model

ScaVaR/ScaES-TTS

ScaVaR/ScaES-CTS

HOMF

GARCH-t

ScaVaR/ScaES-TTS

ScaVaR/ScaES-CTS

HOMF

GARCH-t

ScaVaR/ScaES-TTS

ScaVaR/ScaES-CTS

HOMF

GARCH-t
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Among the alternatives, the HOMF performs worst in terms of the score values, which
indicates that estimating the whole density by scaling up intraday moments and using data
sampled in CTS seems not to be appropriate for the estimation of tail risks.

3.3 Out-of-Sample Results

We compute one-step ahead forecasts of daily VaR and ES by using the rolling-window
technique. The in-sample and out-of-sample windows are chosen such that they have the
same lengths: i.e., for the foreign exchange rates, the out-of-sample window contains the
last D* = 1062 days (for the period from May 7, 2008 until July 20, 2016) and for the
stock data, the out-of-sample window contains the last D* = 2062 days (for the period
from January 2, 2001 to July 24, 2017).

In order to make forecasts based on the daily estimates of VaR and ES stemming from
ScaVaR and ScaES, we apply the HAR model of |Corsi| (2009) on the series ¢, 4 and €5, 4
withd = 1,...,D — D* + 1 in order to account for their long persistence depicted in

Figure[C.2|

Thus, the one-step ahead forecasts @, 4114 and €5, 41| are obtained in the following

manne

. A . A5) A(B) | A(22) A(22
Gparia = B + BDGqa + B + DGR, (18)
Espartia =30 + 50,0+ 4060 + 4@, (19)
where q}(:;) = % Z;”:l Gpd—j+1 and ésgz) = % Z;"Zl éspa—j+1 are the averages over

the past m = 1,5,22 days. The one-step ahead forecasts of @p7d+1|d and ETS’pder”d are
obtained by applying the transformatiorm

Qpasiia = — XD (Gpasija), (20)

E"\Sp,d+1|d = —exXp (é:Sp7d+1‘d). (21)

intraday volatility pattern (see Harris| (1986) and |Andersen and Bollerslev| (1997), among others). For
this reason, in a preliminary attempt, besides further trading-based sampling schemes following Engle
and Russell| (1998)), (Griffin and Oomen| (2008]), (Oomen| (2005) |Oomen| (2006), we also implement some
sampling schemes based on the intraday volatility pattern as described by |Boudt et al.[(2011) and |Dong and
Tse (2014). Our preliminary results show the volatility-based sampling scheme provides better score values
for estimating and forecasting the VaR and ES for stocks compared to the exchange rate. A deeper empirical
analysis of which type of sampling scheme is more valuable for which type of asset is left, however, for
further research.

16 Alternatively, one could consider other specifications, such as Autoregressive Fractional Integrated
Moving Average (ARFIMA) model as applied by |Andersen, Bollerslev, Diebold and Labys| (2001) or
MIDAS approach of |Ghysels et al.[|(2006) to capture the long persistence dynamics similarly to realized
volatilities.

7Note that due to the transformation, the forecasts are biased. A bias correction as the one proposed by
Bianchi and Calzolari| (1980) and |Oomen| (2001) adds, however, further estimation noise to the forecasts
(see e.g.,|Halbleib and Voev|(2011)) and, therefore, for the moment, we decide to ignore it in our empirical
exercise.
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Table 2: Forecasting results: VaR and VaRES scores. The entries in bold correspond to
the smallest score values. The entries in parentheses give the p-values of the DM test
with the ScaVaR/ScaES computed from data sampled in TTS as the benchmark. The VaR
score values are scaled by 10%.

Model 1% 25% 5%
ode VaR  VaRES | VaR _ VaRES | VaR _ VaRES
IBM
2.8612 -3.5967 | 5.6670 -3.8291 | 9.4745 -4.0152
ScaVaR/ScaES-TTS
) ) ) ) ) )

2.8819  -3.5890 | 5.6899  -3.8235 | 94769 -4.0128
(0.0216) (0.0001) | (0.1461) (0.0212) | (0.8821) (0.1882)
3.1472  -3.2739 | 6.0910 -3.6506 | 9.9882  -3.9038

ScaVaR/ScaES-CTS

HOMF (0.1825) (0.0280) | (0.0677) (0.0162) | (0.0270) (0.0112)
GARCH-t 2.9129 -3.5381 5.9644  -3.7435 9.8456  -3.9478
(0.7721) (0.4937) | (0.2068) (0.1276) | (0.1576) (0.0871)
BAC
5.8081 -29161 | 11.8621 -3.1344 | 194769 -3.3272
ScaVaR/ScaES-TTS
) ) ) ) ) )

57742 -2.9201 | 11.9429 -3.1298 | 19.4757 -3.3252
(0.2834) (0.2633) | (0.9154) (0.9082) | (0.9014) (0.4988)
6.9563  -2.4055 | 12.9338 -2.8758 | 20.7714 -3.1553

ScaVaR/ScaES-CTS

HOMF (0.0251) (0.0026) | (0.0196) (0.0010) | (0.0009) (0.0001)
GARCHLt 6.3756  -2.7287 | 12.5178 -3.0156 | 20.5219 -3.2265
(0.1701) (0.0888) | (0.0973) (0.0352) | (0.0046) (0.0045)
EURUSD
1.7749  -4.0216 3.3912 -4.3099 | 5.6807 -4.5006
ScaVaR/ScaES-TTS
) ) ) ) ) )

1.8141  -3.9928 | 3.4053 -4.2956 | 5.6523 -4.5015
(0.0134) (0.0746) | (0.1146) (0.0326) | (0.5552) (0.1819)
1.8317  -3.8836 | 3.5365 -4.2225 | 59195 -4.4249
(0.5706) (0.3541) | (0.1911) (0.2282) | (0.0193) (0.0525)
1.7657  -3.9625 | 3.4905 -4.2533 | 5.8475 -4.4479
(0.9655) (0.6083) | (0.3270) (0.3666) | (0.0737) (0.1167)

ScaVaR/ScaES-CTS

HOMF

GARCH-t
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The forecast evaluation is done similarly to the one from the in-sample analysis, i.e.,
by implementing the two score functions defined in equations (16)) and along with
the DM test with the ScaVaR and ScaES with TTS as a benchmark. Table [2] provides
the out-of-sample results. As one may see from the table, our models perform very good
compared to the two alternatives: it provides in almost all cases the smallest score values.
Between the two sampling schemes, it seems that the intrinsic one (TTS) provides the
best results, especially for IBM. Whenever CTS delivers the smallest score values, the
DM test cannot reject that they are equal to the ones stemming from TTS. The very good
performance of our approaches is regardless of the choice of p. Among the alternatives,
GARCH-t provides the smallest scores for all p’s. In one case, GARCH-t has a score
value smaller than of our ScaVaR/ScaES computed based on TTS, however the DM test
does not reject that they are equal.

4 Conclusions

We provide a novel approach of estimating and forecasting daily VaR and ES directly from
HF data. Our method assumes that financial logarithm price processes are subordinated
unifractal ones (which are driven by a single scaling law) in an alternative time dimension,
denoted as the intrinsic time. This time dimension transforms the clock time according to
an intensity measure that captures the real heartbeat” of the market’s activity. We show
theoretically that this assumption is very general by proving that, under certain conditions,
the unifractal process in intrinsic time is a fact multifractal one. The multifractality is very
appealing for financial returns as it accommodates important empirical feature, such as
volatility clustering and fat-tailedness, being, thus, more general and more realistic than
existing ones, such as the Brownian Motion or the fractional Brownian Motion.

In practice, our method is very simple to implement and consists in computing daily
estimates of VaR and ES by scaling up their intraday empirical counterparts computed
from returns sampled in intrinsic time. In our empirical exercise, we describe the statisti-
cal and dynamic properties of these estimates and show that our method outperforms the
standard ones in accurately estimating and forecasting daily VaR and ES. In particular,
the empirical results show that data sampled in intrinsic time in accordance with the in-
traday trading pattern is very valuable compared to the calendar one when estimating and
forecasting extreme risks.

These results are very promising and of great importance in the light of the current
challenges on forecasting financial risks, but also in the light of the huge amount of high
frequency data (recorded in nanoseconds) that has become available lately. They open a
new agenda of research on how to exploit at best the richness of the information content of
high-frequency data from another time perspective for risk estimation and forecasting, but
also for other financial purposes. Appropriate mathematical frameworks for this type of
analysis are provided by subordination models that, however, have found so far only little
application in the finance and economics literature, as they are in general built on heavily
parametric assumptions and estimated from less informative low frequency data. Thus,
the current paper attempts to “’revive” the concept of subordination in the new context of
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abundant HF information available for academic research (Marinelli et al., 2000, 2001}
Oomen, 2005, 2006} |Dahlhaus and Tunyavetchakit, 2018).

From our current analysis, various immediate questions arise that are left to be an-
swered by the future research, such as: How one should deal with the market microstruc-
ture noise in the subordinating framework? Some own empirical attempts, e.g., by imple-
menting a subsampling type of estimator in the spirit of Zhang et al.| (2005) in order to
compute the quantiles of intraday returns, provide promising empirical results that need
to be further exploited. Which intensity measure (such as based on volatility patterns,
volumes, price changes, transaction patterns) and resulting intrinsic time-based sampling
scheme are mostly useful to forecast financial risks? Which are the dynamic and sta-
tistical properties of the data sampled in intrinsic time and of the measures (volatilities,
quantiles, etc) computed from it? The answers to these questions help at developing a new
understanding on how financial markets function and how their risks can be measured and
predicted by changing the (time) perspective.
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A Appendix: Proofs

Proof of Proposition Let ¢’ = t/c. Then, for all t > 0 and for all A > 0, it holds that

Ut+cA)—=U@lt)=U(c(t+A)) = U(ct). (A.22)
From the unifractal assumption of U, we get that
U(c(f+A)) = U(ch) LM (U(E+A) - U®)) . (A.23)
Given that we assume that the increments of U are stationary, we get that
HUE+8)-U@) LA (UE+A)-U®1)), (A.24)
which completes the proof. O

Proof of Theorem[2.7] Let T be such that it is contained in the second component of ©. Based on
the definition of 6 in Equation , we get that, for all £, h > 0,

O(t+h) — 0(t) = A([0,t + 1)) — A([0,4]) = A([t,t + 1)) . (A.25)

As A ([t,t + h]) > 0, then O(t + h) > 6(t) Vt,h > 0 almost surely, i.e., #(¢) has almost surely
non-decreasing paths.

In order to show that 0(t) is a multifractal process, we make use of the second definition of
the multifractality in Section [2.1]and show that (a) it has moment-scaling relationships as the ones
given in Equation (5)) and (b) it has stationary increments.

a) From Assumption[2.6|we get that for all ¢ € Q and forallt € T,

E [0(t)7] = E [ ((0,8])7] = ex(@)t™ P+, (A.26)

where Q is some interval on the real line and there exists € > 0 such that (—¢,1] € Q and
¢x(q) and 7)(q) are inherited from the measure \.

b) From Equation (A.25), we get that
O(t+h)—0(t)
O(s+h)—0(s)
for all (s,h), (t,h) € D.

Define 7[s, t] := log(A[s, t]) and let M, ;44 (q) be its moment generating function. Then,
for all ¢ € (—¢,¢), it holds that

Miyi.41)(q) = E [exp(q - n[t, t + h])] = E [exp(q - log(A[t, t + R]))] (A.29)
= E[\[t,t + h]7] = cx(q)h DL (A.30)

([t,t+h]) and (A.27)

=
= A([s,5+h]). (A.28)

and analogously
My srn)(a) = E[N[s, s + h]7) = ex(@) i, (A31)

ie., My i4n)(q) = Myss4n)(q) forall ¢ € (—¢,¢). As the moment generating function
on any interval (—¢, ) uniquely charactrizes the distribution of the underlying variable, we
get that the distributions of 7[s, s + h| and n[t,t + h| are identical for all s, ¢ and for all
h > 0. As the logarithm is a strictly increasing function, we also get that the distributions
of A[s, s + h] and A[t, ¢ + h] are identical for all s,¢ and for all ~ > 0, which implies that
the process 6(t) defined in Equation (1)) has stationary increments.
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Proof of Theorem For all t € T, it holds that
El[p@)]*]0(t) = u] = E[|U(u)|*]0(t) = u] . (A.32)
For the unifractal process U, it holds that U () <y (1) and therefore
E[JUw)]0(t) = o] = E [[u U()]7] 0(t) = u] = 0) " EJU (1)]7), (A.33)

as U(t) and 0(t) are independent. By the law of iterated expectations, we get that

Ellp()|7] =E[E[|p(t)|7] 6(t) = u]] (A.34)
=E [0)"E[|U(1)]] (A.35)
=E [0 E[JU(1)]Y]. (A.36)

From the Theorem we know that 6(¢) is a multifractal process, i.e. E [0(t)749] = c\(Hg) t™ (Hq)+1
and thus

E [0()T E[|U1)|Y] = co(HQE [[U(1)]7] - D+, (A37)

which implies that the process p(t) satisfies the multi-scaling law typical to multifractality with
7p(q) = Ta(H¢q) and ¢,(q) = ex(Hg)E[|U(1)]4].

In the following, we show that the process p(t) = U (6(t)) has stationary increments: i.e., for
all s,t > 0,t > s and for all A > 0, it holds that

U0t +h) —U(B(s+h) < U6) —U(6(s)). (A.38)

In order to prove Equation (A.38)), we show that

U@(t+h)—U@(s+h) = U@F+h)—0(s+h))—U(0) (A.39)
L U(b(t) - 6(s)) — Y(0) (A.40)
Lw(ot)) —U(0(s)). (A41)

Formally, the equality in distribution in can be shown by conditioning on (s + h). For
that, we assume that the real-valued stochastic process p(t) is equipped with the Borel o-algebra
B(RR) and is defined on some complete probability space (€2, F,P). Let the measure of 6(s + h)
be denoted by vg(s1p). Then, for all 5,2 > 0,¢ > s, forall b > 0 and for all A € B(R), it holds
that

(U (8(t+h)) — U (0(s + ) € A)

= /R P(U(0(t+ h)) —U(6) € A[8(s + h) = 8) dvg(s11)(0) (A42)
= /R P(U(0(t+h)—38) —U(0) € A|6(s + h) = 6) dvg(ssn)(6) (A43)
=P (U(6(t+h)—0(s+h)) —U(0) € 4), (A44)

where we use in (A.43) the fact that the process U (t) has stationary increments. The third equality
in (A.41)) can be shown equivalently by conditioning on 6(s).
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For the equality in (A.40), it holds that for all s,t¢t > 0, ¢t > s, for all h > 0 and for all
A€ B(R),

P(U(0(t+ h) —0(s+h)) U(0) € A)

= /R ) U(0) € A[0(t +h) — 0(s + h) = 1) dWyern)—o(s+h) (1) (A.45)
= /R +]P> U(0) € A) dvgy—g(s)(n) (A.46)
= ) F U(0) € A|0(t) — 0(s) = ) dvg(e)—o(s) (1) (A47)

IP’(U(G( )—6(s)) —U(0) € 4), (A.48)

where we use in (A.46) the fact that the process () has stationary increments and it is independent
of U(t) and in (A.47) the fact that the processes U (¢) and 0(t) are independent. O
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B Appendix: Tables

Table B.1: Descriptive statistics of the intraday returns for the foreign exchange rates
over the window May 7, 2008 - July 20, 2016 and for the stocks over the window January
2, 2001-July 24, 2017 computed at 5 minute frequency and sampled by two sampling
schemes.

EURUSD IBM BAC
CTS TTS CTS TTS CTS TTS
Mean -5.49E-07 -5.49E-07 | 9.54E-06 9.54E-06 | -1.10E-05 -1.10E-05
Median 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
Maximum | 0.0150 0.0137 0.0759 0.0759 0.0684 0.0765
Minimim | -0.0117 -0.0121 -0.0380  -0.0380 | -0.0929 -0.0783
Std. dev 0.0004 0.0004 0.0014 0.0014 0.0025 0.0025
Skewness | 0.1013 -0.0015 0.5781 0.5781 -0.7884 -0.1087
Kurtosis | 29.6087 20.1280 | 48.6243  48.6243 | 76.1225 56.9787

Table B.2: Descriptive statistics of g, 4 for the foreign exchange rates over the window
May 7, 2008 - July 20, 2016 and for the stocks over the window January 2, 2001-July 24,
2017

Sampling scheme CTS TTS
Probability p 1% 2.5% 5% 1% 2.5% 5%
EURUSD
mean -6.9670 -7.2699 -7.5406 | -7.0042 -7.2884 -7.5406
variance 0.1778 0.1713  0.1743 | 0.1840 0.1732  0.1696
skewness -0.0710 -0.0461 -0.0593 | -0.0072 -0.0196 -0.0340
kurtosis 3.6626  3.5845  3.5237 | 3.6346 3.5856  3.4557
JB test-statistic 40.6535 31.0038 25.5263 | 35.6722 30.4994 18.7972
IBM
mean -5.8222  -6.0944 -6.3459 | -5.8254 -6.0991 -6.3494
variance 0.2497  0.2297 0.2642 | 0.2479 0.2296  0.2275
skewness 0.5722  0.6603  0.6946 | 0.5468 0.6244  0.6576
kurtosis 3.6888 3.7661  3.6402 | 3.6367 3.7629  3.6778
JB test-statistic 306.556 400.517  402.02 | 275.191 367.986 376.185
BAC

mean -5.5273 -5.8033 -6.0581 | -5.5334 -5.8069 -6.0575
variance 0.4382  0.3920 0.4583 | 0.4369 03965 0.3834
skewness 0.7855 0.8503 0.8179 | 0.7952 0.8300 0.8301
kurtosis 4.1658 4.3489  4.1832 | 4.2087 43102 4.3156
JB test-statistic 657.632 809.626 700.317 | 685.622 768.469 771.082
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Table B.3: Descriptive statistics of €s,, ; for the foreign exchange rates over the window
May 7, 2008 - July 20, 2016 and for the stocks over the window January 2, 2001-July 24,
2017

Sampling scheme CTS TTS
Probability p 1% 2.5% 5% 1% 2.5% 5%
EURUSD
mean -6.7249  -6.9328 -7.1361 | -6.7673 -6.9683 -7.1625
variance 0.2018  0.1779  0.1687 | 0.2091  0.1847  0.1728
skewness 0.0256 -0.0529 -0.0802 | 0.0762  0.0057 -0.0238
kurtosis 3.6180 3.6077  3.6256 | 3.4211 3.5194 3.5613
JB test-statistic 34.0504 33.6855 36.9249 | 17.7567 23.8947 28.0986
IBM
mean -5.7586 -5.8774 -6.0389 | -5.7617 -5.8807 -6.0428
variance 0.2642  0.2406  0.2253 | 0.2630 0.2384  0.2230
skewness 0.5408 0.6029  0.6707 | 0.5162 0.5785 0.6384
kurtosis 3.6064 3.7502  3.8106 | 3.5437 3.7139 3.7617
JB test-statistic 264.228 346.577 422.147 | 233.925 317.584 379.783
BAC

mean -5.4636 -5.5838 -5.7493 | -5.4703 -5.5891 -5.7522
variance 0.4583  0.4248 0.4024 | 04573 04234 0.3975
skewness 0.7563  0.8094  0.8516 | 0.7740  0.8084  0.8523
kurtosis 4.0682 4.2408 43109 | 4.1412 42564 4.3626
JB test-statistic 589.184 714.833 793.821 | 635.514 720.376 818.307
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C Appendix: Figures
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Figure C.1: Line graph of the log-transformation of the negative estimates of daily quantiles, g, 4,
computed from scaling up estimates of intraday quantiles estimated from data sampled in TTS
and CTS (use the DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the
data). The first column corresponds to p = 1%, the second column corresponds to p = 2.5% and
the third column corresponds to p = 5%.
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Figure C.2: ACF of the log-transformation of the negative estimates of daily quantiles, g, 4,
computed from scaling up estimates of intraday quantiles estimated from data sampled in TTS
and CTS (use the DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the
data). The first column corresponds to p = 1%, the second column corresponds to p = 2.5% and
the third column corresponds to p = 5%. The blue line represents the 95% confidence interval.
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Figure C.3: Histogram of the log-transformation of the negative estimates of daily quantiles, g, 4
of EURUSD, computed based on the daily estimates of the quantiles as described in the main
text from scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS
(use the DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the data).
The first column corresponds to p = 1%, the second column corresponds to p = 2.5% and the
third column corresponds to p = 5%. The red line represents the density function of a normal
distribution.
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Figure C.4: Histogram of the log-transformation of the negative estimates of daily quantiles, g, 4
of IBM, computed based on the daily estimates of the quantiles as described in the main text from
scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS (use the
DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the data). The first
column corresponds to p = 1%, the second column corresponds to p = 2.5% and the third column
corresponds to p = 5%. The red line represents the density function of a normal distribution.
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Figure C.5: Histogram of the log-transformation of the negative estimates of daily quantiles, g, 4
of BAC, computed based on the daily estimates of the quantiles as described in the main text from
scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS (use the
DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the data). The first
column corresponds to p = 1%, the second column corresponds to p = 2.5% and the third column
corresponds to p = 5%. The red line represents the density function of a normal distribution.
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Figure C.6: QQ-plots of the log-transformation of the negative estimates of daily quantiles, g, 4
of EURUSD, computed based on the daily estimates of the quantiles as described in the main text
from scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS (use
the DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the data). The
first column corresponds to p = 1%, the second column corresponds to p = 2.5% and the third
column corresponds to p = 5%. The red line corresponds to the standard normal distribution.

32



2, g, 'Bmcts 2

= g 2 g

[q+] [q+] [9+] s
wn - n wn ’

=3 -4 y =3 -4 3 =3 -6

= = g =

S S S

S -6 S -6 S 8™

2 2 2

= RN £

S -8 S .8 S 10

(@) -5 (0] 5 O -5 (0] 5 C -5 (0] 5
Standard Normal Quantif&tsmndard Normal Quanti&sandard Normal Quantiles
2 2 IBMTT o

g -2 g -2 g -4

[qe] [q°] (903 -
n (95 N n g

3 P 24 r 2z ° /
= = d =

S S S

o 6 o 6 - -8

2 2 =2

= = =

S .8 < .8 S 10

(@] -5 (6] 5 (@) -5 (0] 5 O -5 (0] 5

Standard Normal Quantif&smndard Normal Quantitsndard Normal Quantiles

Figure C.7: QQ-plots of the log-transformation of the negative estimates of daily quantiles, g, 4
of IBM, computed based on the daily estimates of the quantiles as described in the main text from
scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS (use the

1

DMA estimator of Hurst coefficient and the frequency of 5 minute to

407 a1

1

2 £ ., BACCTS o
g 2 g 2 g 2
[qe] [qe] [9°]
: : . /
S -4 = ! = g
o o o
— — —
— -— — -6
o o o
-6 -6
3 3 8 81 ™
*g = =
S -8 S -8 I -10
(@] -5 (0] 5 (@] -5 (6] 5 C -5 (0] 5
Standard Normal Quantif&smndard Normal Quanti&sandard Normal Quantiles
< < BACTT @
[T, o _ o 2
£ i S + E
[3+] (98] [3+]
w '/ w w -4 e
S -4 4 = . =1 -
o o 7 o
[ — —
— -— - -6
o o o
-6 -6
3 3 8 81 7
= = =
S -8 S -8 S -10
(@] -5 (0] 5 O -5 (0] 5 C -5 (0] 5

o =07 1.1

R

Standard Normal Quantitsmndard Normal Quantitsandard Normal Quantiles

sample the data). The first

1

Figure C.8: QQ-plots of the log-transformation of the negative estimates of daily quantiles, g, 4
of BAC, computed based on the daily estimates of the quantiles as described in the main text from
scaling up estimates of intraday quantiles estimated from data sampled in TTS and CTS (use the
DMA estimator of Hurst coefficient and the frequency of 5 minute to sample the data). The first
column corresponds to p = 1%, the second column corresponds to p = 2.5% and the third column
corresponds to p = 5%. The red line corresponds to the standard normal distribution.
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