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Abstract

We introduce a novel regression framework which simultaneously models the quantile and the Expected
Shortfall of a response variable given a set of covariates. The foundation for this joint regression is a
recent result by Fissler and Ziegel (2016), who show that the quantile and the ES are jointly elicitable.
This joint elicitability allows for M- and Z-estimation of the joint regression parameters. Such a parameter
estimation is not possible for an Expected Shortfall regression alone as Expected Shortfall is not elicitable.
We show consistency and asymptotic normality for the M- and Z-estimator under standard regularity
conditions. The loss function used for the M-estimation depends on two specification functions, whose
choices affect the properties of the resulting estimators. In an extensive simulation study, we verify the
asymptotic properties and analyze the small sample behavior of the M-estimator under different choices
for the specification functions. This joint regression framework allows for various applications including
estimating, forecasting and backtesting Expected Shortfall, which is particularly relevant in light of the
upcoming introduction of Expected Shortfall in the Basel Accords.

Keywords: Expected Shortfall, Joint Elicitability, Joint Regression, M-estimation

1. Introduction

In the past few years, Expected Shortfall (ES) has increasingly become the object of interest for practitioners,
academics and regulators due to its upcoming introduction into the Basel Accords (Basel Committee,
2016). The ES at some fixed probability level α is defined as the mean of the returns which are smaller than
the α-quantile of the return distribution. This risk measure has the desired ability to capture information
from the whole left tail of the return distribution, which is particularly important for measuring extreme
financial risks. So far, the most commonly used risk measure in the financial literature is the Value-at-Risk
(VaR), which is the α-quantile of the return distribution. Its popularity is mainly due to the fact that so far
the Basel Accords stipulate its use for the calculation of capital requirements for banks. The main drawback
of the VaR is its inability to capture tail risks beyond itself (Artzner et al., 1999; Basel Committee, 2013),
a deficiency which is overcome by the ES. However, in contrast to VaR, ES is not elicitable (Gneiting,
2011), which means that there exists no loss function which the ES uniquely minimizes in expectation.
Consequently, modeling the ES of a random variable Y given a vector of covariates X through a linear
regression, ESα(Y |X) = X ′θe is infeasible since estimation of the regression parameter vector θe through
M-estimation requires such a loss function. Most recently, Fissler and Ziegel (2016) show that the quantile
(VaR) and ES are jointly elicitable by proposing a joint loss function whose expectation is minimized by
these functionals.
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In this paper we introduce a joint regression framework where we simultaneously model a linear
quantile regression and a linear ES regression in the sense that Qα(Y |X) = X ′θq and ESα(Y |X) = X ′θe.
The existence of the aforementioned joint loss function enables us to jointly estimate the regression
parameters through minimization of this loss function. This estimation technique is in general known as
M-estimation. We also introduce a Z-estimator for the regression parameters which, instead of minimizing
a loss function, finds the multivariate root of a set of estimating equations. To the best of our knowledge
such a joint regression and the associated joint parameter estimation are new to the literature. We show
consistency and asymptotic normality for both estimators under standard regularity conditions.

The joint loss function, the estimating equations and also the parameter estimates depend on two
specification functions, which can be chosen freely from some class of functions. Even though consistency
and asymptotic normality hold for all applicable choices of these specification functions, the necessary
moment conditions and the resulting asymptotic covariance matrix of the estimators depend on them. We
discuss the choices of these functions in the context of asymptotic efficiency, minimal regularity conditions
and the numerical performance of the estimators.

The estimation of the asymptotic covariance matrix imposes difficulties, especially for extreme
probability levels of the quantile and ES and for small sample sizes. First, estimation of the density quantile
function causes problems since estimating the tails of a density function is inaccurate due to the small
amount of observations in the tails. This issue is well known from quantile regression and consequently,
we rely on estimation methods from this field (Koenker, 2005). Second, we have to estimate the (truncated)
variance of the negative quantile residuals conditional on the covariates, a nuisance quantity which is new
to the literature. This task especially suffers from limited sample sizes since for extreme quantile levels,
we are left with very few negative quantile residuals. We introduce several estimators for this quantity
which are able to cope with limited sample sizes and which can model the dependency of the negative
quantile residuals on the covariates.

We conduct a Monte-Carlo simulation study where we compare different choices for the specification
functions, investigate the small sample behavior of our estimator, verify its asymptotic properties and
compare the performance of the different estimators for the asymptotic covariance matrix. Our simulations
include one regression design with homoskedastic and two more complicated designs with heteroskedastic
error terms, which complicate the estimation of the asymptotic covariance matrix. For all three data
generating processes, we can empirically verify consistency and asymptotic normality of the M-estimator
depending on several different choices of the specification functions. However, we find that its small sample
performance highly depends on these choices, whereas choices resulting in a positively homogeneous loss
function (Nolde and Ziegel, 2017; Efron, 1991) result in a superior performance in terms of numerical
stability of the estimator, asymptotic efficiency and computation times. Eventually, we also evaluate
joint estimation of the quantile and ES in a univariate setting and compare our M-estimation approach to
existing approaches in the literature from Chen (2008) and Brazauskas et al. (2008). We find a similar
performance of all three estimators in estimating the sample ES, however, our M-estimation technique
dominates the other approaches in terms of estimating the asymptotic variance of the ES estimates.

This joint regression technique for the quantile and ES has a wide range of potential applications, as it
generalizes quantile regression to the pair consisting of the quantile and the ES. It opens up the possibility
to extend all existing applications of quantile regression on VaR in the financial literature to ES such as
e.g. in Gaglianone et al. (2011), Koenker and Xiao (2006), Engle and Manganelli (2004) and Halbleib and
Pohlmeier (2012). Extensions for estimation, forecasting and backtesting methods for ES are particularly
sought-after in light of the upcoming shift from VaR to ES in the recent Basel Accords.

The rest of the paper is organized as follows. In Section 2, we introduce the joint regression framework,
the underlying regularity conditions and the asymptotic properties of our estimator. The proofs are deferred
to the Appendix. Section 3 provides details on the numerical implementation of the parameter estimation
and on the estimation of the asymptotic covariance matrix. Section 4 presents an extensive Monte-Carlo
simulation and Section 5 concludes.
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2. Methodology

2.1. Elicitability and Identifiability of Expected Shortfall

Regression techniques such as mean or quantile regression and the underlying M-estimation of the
parameters are closely related to the theory of elicitable functionals and strictly consistent loss functions.
The M-estimation technique is always based on a certain loss function, whose expectation must be
minimized by the quantity we intend to estimate. Thus, the infeasibility of estimating regression
parameters for the ES stand-alone is due to the unavailability of such a loss function (Gneiting, 2011).

Following Lambert et al. (2008), Gneiting (2011) and Fissler and Ziegel (2016), we introduce the
concept of (multivariate) p-elicitability and p-identifiability. We consider a random variable Z ∈ Z ⊆ Rd,
a class of distributions P on Z and a domain of action D ⊆ Rp, p ∈ N for the functional T : P → D.
We call a loss function L : D × Z → R strictly consistent for the functional T relative to the class of
distributions P , if T(F) is the unique minimizer of EF

[
L(x, Z)

]
for all distributions F ∈ P . Furthermore,

we call a p-dimensional functional p-elicitable relative to the class P , if there exists a loss function L
which is strictly consistent for T relative to P . If the dimension p is clear from the context, we simply call
the functional elicitable instead of p-elicitable.

Closely related to elicitability is the concept of identifiability (see e.g. Steinwart et al., 2014, Fissler
and Ziegel, 2016 and Nolde and Ziegel, 2017). A functional T is identifiable w.r.t. P , if there exists
a function V : D × Z → Rp such that EF

[
V(t, Z)] = 0 if and only if t = T(Z) for all distributions

F ∈ P . For univariate functionals, the concept of identifiability implies elicitability under some additional
assumptions (Steinwart et al., 2014). However, for multivariate functionals, this relationship is still under
research.

Given the quantile Qα(Z) at probability level α, the corresponding ES at level α is defined as

ESα(Z) = E
[
Z

�� Z ≤ Qα(Z)
]
. (2.1)

Gneiting (2011) shows that the ES is not elicitable with respect to any class P of probability distributions
on the interval I ⊆ R that contains the measures with finite support, or the finite mixtures of the absolutely
continuous distributions with compact support. This result has several consequences for the risk measure
ES. First, consistent and meaningful ranking of competing forecasts for the functional ES is infeasible.
Second, estimation of ES by means of M-estimation, i.e. by minimizing some associated loss function
cannot be carried out. Closely related, the estimation of parameters of an ES regression framework in the
sense that ESα(Y |X) = X ′θe by means of M-estimation is also infeasible.

Fissler and Ziegel (2016) show that the pair consisting of the quantile and the corresponding ES at
common probability level α is 2-elicitable relative to the class of all distributions with finite first moments
and unique α-quantiles. For a random variable Z ∈ R with distribution F with finite first moments and
unique α-quantiles, the corresponding class of strictly consistent loss functions is given by

L(Z, q, e) =
(
1{Z≤q } − α

)
G1(q) − 1{Z≤q }G1(Z)

+ G2(e)
(
e − q +

(q − Z)1{Z≤q }
α

)
− G2(e) + a(Z),

(2.2)

where G ′2 = G2, G2 is strictly increasing and strictly convex, G1 is increasing, and a and G1 are F-integrable.
Since the definition of ES already depends on the respective quantile, the fact that ES is only jointly
elicitable with the quantile is quite intuitive. Even though the authors present this class of loss functions in
the context of forecast ranking (Fissler et al., 2016), we apply this function for M-estimation of the joint
regression parameters. We obtain the identification functions for the pair consisting of the quantile and the
ES by differentiating (2.2) for all Z , q (Nolde and Ziegel, 2017),

V(Z, q, e) =

(
1
α (1{Z≤q } − α)

[
αG′1(q) + G2(e)

]
G′2(e)

[
e − q + 1

α (q − Z)1{Z≤q }
] )
, (2.3)
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where the functions G1 and G2 are given as in (2.2) and are furthermore assumed to be continuously
differentiable. In our context, (2.3) is used for specifying the estimating equations for the Z-estimator.

2.2. The Joint Regression Framework

In this section, we formally introduce the joint linear quantile and ES regression framework. For that, we
assume that there is a real-valued response variable Y and a k-dimensional vector of explanatory variables
X =

(
X1, . . . , Xk

) ′
∈ X ⊆ Rk . The cumulative distribution function of the conditional distribution of Y

given X will henceforth be denoted by FY |X and the conditional density function by fY |X (whenever it
exists).

The regression framework which jointly models the conditional quantile and the conditional Expected
Shortfall of Y given X for some fixed α ∈ (0, 1) is given by the linear regression equations

Y = X ′θq + uq, and
Y = X ′θe + ue,

(2.4)

with parameters θ = (θq′, θe′)′ ∈ Θ ⊆ R2k , where

Qα(uq |X) = 0, and ESα(ue |X) = 0. (2.5)

We propose both, anM-estimation and a Z-estimation procedure for the compound regression parameter
vector θ. For the M-estimation procedure, we adapt the strictly consistent joint loss function for the
quantile and ES as given in (2.2), and generalize it such that it can be applied to a regression framework,

ρ(Y, X, θ) =
(
1{Y≤X′θq } − α

)
G1(X ′θq) − 1{Y≤X′θq }G1(Y )

+ G2(X ′θe)
(
X ′θe − X ′θq +

(X ′θq − Y )1{Y≤X′θq }
α

)
− G2(X ′θe) + a(Y ),

(2.6)

where the function G1 is twice continuously differentiable, G2 is three times continuously differentiable,
G ′2 = G2, G2 and G′2 are strictly positive, G1 is increasing and a and G1 are integrable. We discuss
the choice of the specification functions G1 and G2 in a theoretical context in Section 2.4 and by their
numerical performance in Section 4.2. The corresponding (ρ-type) M-estimator is defined by a sequence
θ̂ρ,n, such that

θ̂ρ,n = argmin
θ∈Θ

1
n

n∑
i=1

ρ(Yi, Xi, θ). (2.7)

Instead of minimizing some objective function ρ(Y, X, θ), such as in (2.6) and (2.7), we can also define the
corresponding Z-estimator (or ψ-type M-estimator), which sets a vector of estimating equations, denoted
by ψ(Y, X, θ), to zero. More general, it suffices that these estimating equations converge to zero almost
surely (or even in probability). Formally, the Z-estimator is a sequence θ̂ψ,n, such that

1
n

n∑
i=1

ψ(Yi, Xi, θ̂ψ,n) → 0 (2.8)

almost surely (or in probability), where

ψ(Y, X, θ) =

( 1
α (1{Y≤X′θq } − α)

(
αXG′1(X

′θq) + XG2(X ′θe)
)

XG′2(X
′θe)

(
X ′θe − X ′θq + 1

α (X
′θq − Y )1{Y≤X′θq }

)) , (2.9)
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and where the functions G1 and G2 are given above.
When the loss function ρ(Y, X, θ) is continuously differentiable in θ, it is obvious that the two estimation

approaches given in (2.7) and (2.8) are equivalent. However, in this case the loss function ρ(Y, X, θ) is not
differentiable and ψ(Y, X, θ) is even discontinuous at the points where Y = X ′θq. Thus, we treat these
two estimation approaches as different estimators and show their asymptotic behavior separately in the
following section.

2.3. Asymptotic Properties

In this section, we present the asymptotic properties of both, the Z- and the M-estimator of the regression
parameters given in (2.7) and (2.8). We show consistency of the estimators in Theorem 2.2 and Theorem
2.3 and asymptotic normality in Theorem 2.4 and Theorem 2.5, respectively. We impose the following set
of regularity conditions for our estimators.

Assumption 2.1 (Regularity Conditions).

(A-1) Let (Yi, Xi) for i = 1, . . . , n be an iid series of random variables, distributed such as (Y, X)
where Y ∈ R and X ∈ X ⊆ Rk . We assume that the conditional distribution FY |X has finite first
moments and is absolutely continuous with probability density function fY |X , which is strictly
positive, continuous and bounded in a neighbourhood of X ′θq0 .

(A-2) The parameter space Θ ⊂ R2k is compact with non-empty interior.

(A-3) Let the conditional quantile and conditional ES at level α of Y given X be linear functions in
X given by the regression equations

Y = X ′θq0 + uq, and (2.10)
Y = X ′θe0 + ue, (2.11)

where

Qα(uq |X) = 0, and ESα(ue |X) = 0, (2.12)

and where the true regression parameters θ0 ∈ int(Θ) are in the interior of Θ.

(A-4) Let the functions ρ(Y, X, θ) be given as in (2.6) and ψ(Y, X, θ) be given as in (2.9), where
the function G1 is twice continuously differentiable, G2 is three times continuously differentiable,
G ′2 = G2, G2 and G′2 are strictly positive, G1 is increasing and a and G1 are integrable.

(A-5) We assume that the matrix E
[
X X ′

]
is positive definite.

(A-6) We assume that certain moments of X are finite. For the exact moment conditions, we refer to
Appendix A.

Assumption (A-1) is a combination of typical conditions in the context of mean and quantile regression.
The condition that the distribution FY |X is absolutely continuous and has a strictly positive, bounded
and continuous density function in a neighborhood of X ′θq0 is also imposed for the asymptotic theory of
quantile regression. Existence of the conditional moments of Y given X appears in mean regression and is
subject to our regularity conditions since ES is a truncated mean.

Compactness of the parameter space Θ generally simplifies the proofs of the asymptotic results.
However, in this setup, it is crucial for a flexible choice of the function G2. Assume we choose a function
G2 such that limz→−∞ zG′2(z) = 0, which holds for many of the possible choices for G2. Then, we get that
the function ψ2 is redescending to zero for all θe such that X ′θe → −∞, which makes it impossible to
show consistency of the Z-estimator for non-compact parameter spaces.
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The full rank condition (A-5) is typical for any regression design with stochastic regressors in order to
exclude perfect multicollinearity of the regressors. Furthermore, the existence of certain moments of the
explanatory variables as assumed in conditions (M-1) - (M-4) in Appendix A is also standard in any
regression theory relying on stochastic regressors.

Theorem 2.2. Assume the regularity conditions given in Assumption 2.1 and the Moment Conditions
(M-1) in Appendix A hold true. Then, for every sequence θ̂ψ,n ∈ Θ satisfying 1

n

∑n
i=1 ψ(Yi, Xi, θ̂ψ,n) → 0

almost surely, it holds that

θ̂ψ,n → θ0 (2.13)

almost surely.

The proof for this theorem is given in Appendix B.1

Theorem 2.3. Assume that the regularity conditions in Assumption 2.1 and the Moment Conditions
(M-2) in Appendix A hold true. Then, for every sequence θ̂ρ,n ∈ Θ such that

1
n

n∑
i=1

ρ(Yi, Xi, θ̂ρ,n) ≤
1
n

n∑
i=1

ρ(Yi, Xi, θ0) + oP(1), (2.14)

it holds that

θ̂ρ,n
P
−→ θ0. (2.15)

The proof for this theorem is given in Appendix B.2.

Theorem 2.4. Assume the regularity conditions given in Assumptions 2.1 and the Moment Conditions
(M-3) in AppendixA hold true. Then, for every sequence θ̂ψ,n ∈ Θ satisfying 1√

n

∑n
i=1 ψ(Yi, Xi, θ̂ψ,n)

P
−→ 0

and θ̂ψ,n
P
−→ θ0, it holds that

√
n
(
θ̂ψ,n − θ0

) d
−→ N

(
0,Λ−1CΛ−1

)
, (2.16)

with

Λ =

(
Λ11 0
0 Λ22

)
, (2.17)

C =
(
C11 C12
C21 C22

)
, (2.18)

where

Λ11 = E

[
(X X ′)

(
αG′1(X

′θ
q
0 ) + G2(X ′θe0)

α

)
fY |X(X ′θ

q
0 )

]
, (2.19)

Λ22 = E
[
(X X ′)G′2(X

′θe0)
]
, (2.20)

and

C11 =
1 − α
α
E

[
(X X ′)

(
αG′1(X

′θ
q
0 ) + G2(X ′θe0)

)2
]
, (2.21)

C12 = C21 =
1 − α
α
E

[
(X X ′)

(
αG′1(X

′θ
q
0 ) + G2(X ′θe0)

)
G′2(X

′θe0)
(
X ′θq0 − X ′θe0

) ]
, (2.22)

C22 = E

[
(X X ′)G′22 (X

′θe0)

(
1
α

Var
(
Y − X ′θq0

��Y ≤ X ′θq0 , X
)
+

1 − α
α

(
X ′θq0 − X ′θe0

)2
)]
. (2.23)
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The proof for this theorem is given in Appendix B.3.

Theorem 2.5. Assume that the regularity conditions in Assumptions 2.1 and the Moment Conditions
(M-4) in Appendix A hold true. Then, for every sequence θ̂ρ,n ∈ Θ such that

1
n

n∑
i=1

ρ(Yi, Xi, θ̂ρ,n) ≤ inf
θ∈Θ

1
n

n∑
i=1

ρ(Yi, Xi, θ) + oP(n−1) (2.24)

and θ̂ρ,n
P
−→ θ0, it holds that

√
n
(
θ̂ρ,n − θ0

) d
−→ N

(
0,Λ−1CΛ−1), (2.25)

where the matrices Λ and C are given as in Theorem 2.4.

The proof for this theorem is given in Appendix B.4. The preceding theorems show that even though
the estimators θ̂ρ,n and θ̂ψ,n are not identical, their asymptotic distribution coincides. For our numerical
implementation in the subsequent chapters, we will use the M-estimator θ̂ρ,n as given in (2.7) since
numerically, optimization of an objective function is easier than root-searching as further described in
Section 3.1. This holds especially since the empirical estimating equations 1

n

∑n
i=1 ψ(Yi, Xi, θ) do not

necessarily exhibit an exact root (for the quantile parameters θq) due to its discontinuity induced by the
indicator function.

Remark 2.6 (Quantile Regression). Notice that the asymptotic covariance matrix of the quantile-specific
parameter estimates θ̂q is given by

α(1 − α)D−1
1 D0D−1

1 (2.26)

where

D1 = E
[
(X X ′)

(
αG′1(X

′θ
q
0 ) + G2(X ′θe0)

)
fY |X(X ′θ

q
0 )

]
and (2.27)

D0 = E
[
(X X ′)

(
αG′1(X

′θ
q
0 ) + G2(X ′θe0)

)2
]
. (2.28)

This simplifies to the well-known covariance matrix of quantile regression parameter estimates by setting
G1(z) = z and G2(z) = 0, which means ignoring the ES-specific part of our loss function and estimating
equations. This demonstrates that the quantile regression method is nested in our regression procedure,
also in terms of its asymptotic distribution.

Remark 2.7 (Estimation of the quantile and ES). We can use this regression framework to jointly
estimate the quantile and ES of an iid sample Y1, . . . ,Yn by simply choosing X = 1n. Then, the asymptotic
covariance matrix given in Theorem 2.4 and Theorem 2.5 simplifies to Σ, where

Σ11 =
α(1 − α)

f 2
Y (θ

q
0 )

, (2.29)

Σ12 =(1 − α)
θ
q
0 − θ

e
0

fY (θ
q
0 )
, (2.30)

Σ22 =
1
α

Var(Y − θq0 |Y ≤ θ
q
0 ) +

1 − α
α
(θ

q
0 − θ

e
0)

2. (2.31)

Notice that in this simplified case, the asymptotic covariance matrix is independent of the specification
functions G1 and G2 used in the loss function and in the estimating equations. Furthermore, (2.29) implies
that quantile estimates stemming from our joint estimation procedure have the same asymptotic efficiency
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as quantile estimates stemming from minimizing the check loss (or any choice from the class of generalized
piecewise linear loss functions) and from sample quantiles (cf. Koenker, 2005).

The same holds true for the asymptotic efficiency of ES estimates stemming from our joint optimization
procedure and from estimating the sample ES. Brazauskas et al. (2008) estimate the sample ES of an iid
sample Y1, . . .Yn based on the empirical distribution function F̂n by

ÊSα =
1
α

∫ α

0
F̂−1
n (u) du, (2.32)

and show asymptotic normality of the estimator with asymptotic variance

AVar
(
ÊSα

)
=

1
α2

∫ F−1(α)

−∞

∫ F−1(α)

−∞

F(x ∧ y) − F(x)F(y) dxdy. (2.33)

We show in Proposition B.5 in Appendix B.5 that under mild regularity conditions, this expression equals
the ES-specific asymptotic variance part of our M-estimator as given in (2.31).

Chen (2008) estimate the sample ES based on the sample quantile estimator, Q̂α(Y ) by

ẼSα =
∑n

i=1 Yi1{Yi ≤Q̂α(Y)}∑n
i=1 1{Yi ≤Q̂α(Y)}

. (2.34)

The author shows asymptotic normality of the estimator under more general dependence conditions on the
data, however, for iid data the asymptotic variance boils down to

AVar
(
ẼSα

)
= Var

(
Y −Qα(Y )

��Y ≤ Qα(Y )
)
. (2.35)

We compare the numerical performance of our joint estimator to both estimators for the sample ES and
also compare the performance of the associated estimators for the asymptotic variance in in Section 4.4.

2.4. Choice of the Specification Functions

The loss function and the estimating equations, given in (2.6) and (2.9) depend on two specification
functions, G1 and G2, which have to fulfill some regularity conditions for the asymptotic results, given in
Assumption 2.1, condition (A-4). The choice of these functions highly influences the performance of our
regression procedure in terms of asymptotic efficiency, the necessary moment conditions of the regressors
and the numerical performance of the optimization algorithm.

Efron (1991) and Nolde and Ziegel (2017) argue that for the estimation of regression parameters it is
crucial that the associated loss functions are positively homogeneous of order b in the sense that for all
c > 0,

L(cZ, ct) = cbL(Z, t). (2.36)

This is a typical property for loss functions since the ordering of the losses should be independent of the
unit of measurement, e.g. the currency we measure the prices and risk forecasts with. Loss functions
following this property guarantee that we can change the scaling and still obtain the same optima and
consequently the same parameter estimates.

Nolde and Ziegel (2017) show that the only way for obtaining a strictly consistent and positively
homogeneous1 loss function of order b for the pair consisting of the quantile and the ES are given by the
following choices:

b < 0 : G1(x) = −c0, G2(z) = c1(−z)b + c0, (2.37)
b = 0 : G1(x) = d01{x≤0} + d ′01{x>0}, G2(z) = −c1 log(−z) + c0, (2.38)
b ∈ (0, 1) : G1(x) =

(
d11{x≤0} + d ′11{x>0}

)
|z |b − c0, G2(z) = −c1(−z)b + c0, (2.39)

1For b = 0, only the score differences are positively homogeneous. However, the ordering of the losses is still unaffected
under this slightly weaker property.
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for some constants c0, d0, d ′0 ∈ R with d0 ≤ d ′0, d1, d ′1 ≥ 0 and c1 > 0.
Notice that for the above choices, we have to restrict the domain of G2 to the negative real line. However,

since the (conditional) ES of financial assets for small probability levels is always negative, this is no
critical restriction. In the estimation procedure, we have restrict the parameter space Θ such that X ′θe < 0
for all θ ∈ Θ and for all X ∈ X . Even though this restriction imposes theoretical problems for distributions
of X with unbounded support, this issue can easily be solved for the numerical implementation of our
estimator by simply transforming the data Y before the estimation such that Y < 0. For details on this, we
refer to Section 3.1.

For the numerical implementation of our estimators, we use different choices for the specification
functions where we choose the constants such that

b = −1 : G1(x) = 0, G2(z) = (−z)−1, (2.40)
b = 0 : G1(x) = 0, G2(z) = − log(−z), (2.41)
b = 0.5 : G1(x) = 0, G2(z) = −

√
−z. (2.42)

Another popular choice for G1 and G2 arises from the moment conditions of the regressors as given by
the conditions (M-1) - (M-4) in Appendix A. By choosing G1(z) = 0 and by choosing G2 such that G2
and its first and second derivatives are bounded, the respective moment conditions simplify to

(M-1)’ For the proof of Theorem 2.2, we assume that the following moments are finite:

– E
[
| |X | |3

]
– E

[
| |X | |2E

[
|Y |

��X] ]
(M-2)’ For the proof of Theorem 2.3, we assume that the following moments are finite:

– E
[
| |X | |2

]
– E [|Y |]

– E
[��G1(Y )

��]
– E

[��a(Y )��]
(M-3)’ For the proof of Theorem 2.4, we assume that the following moments are finite:

– E
[
| |X | |5

]
– E

[
| |X | |4E

[
|Y |

��X] ] – E
[
| |X | |3E

[
Y2

��X] ]
(M-4)’ For the proof of Theorem 2.5, we assume that the following moments are finite:

– E
[��G1(Y )

��]
– E

[��a(Y )��]
– E

[
| |X | |4

] – E
[
| |X | |3E

[
|Y |

��X] ]
– E

[
| |X | |2E[Y2 |X]

]
Besides simplifying the notation of the moment conditions, the boundedness assumption also relaxes

these moment conditions. Consider e.g. the choice G2(z) = exp(z), which is proposed by Fissler et al.
(2016). Then, the moment conditions given in Appendix A are of exponential order and thus rule out
many fat-failed distributions for X . This motivates the usage of bounded functions for G2 as e.g. the
second proposal of Fissler et al. (2016): the cdf of the logistic distribution G2(z) = exp(z)/

(
1 + exp(z)

)
.

Further examples for bounded G2 functions include the cdfs of any absolutely continuous distribution
with the whole real line as support. In the simulation study in Section 4.2, we compare five choices
for the specification functions in terms of mean square error, asymptotic efficiency of the estimator and
computation times.
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3. Numerical Estimation of the Model

3.1. Optimization

The parameter vector θ = (θq′, θe′)′ can either be estimated byM-estimation (by minimizing the ρ-function
given in (2.6)), or by Z-estimation (by finding the multivariate root of the ψ-function given in (2.9)). As
shown in Section 2.3, both estimators have the same asymptotic efficiency. However, in practice the
implementation of the Z-estimator imposes some problems.

The numerical implementation of the Z-estimator relies on root-finding of the ψ function, which is
implemented as inMethod ofMoments estimation byminimizing the function∑

i ψ(Yi, Xi, θ)·
∑

i ψ(Yi, Xi, θ)
′

numerically. However, for many valid choices of the function G2, it holds that zG′2(z) → 0 for z → −∞
and thus ψ2(Y, X, θ) → 0 for X ′θe → −∞, which means that ψ2 is redescending to zero. Furthermore,
if we choose G1(z) = 0 and G2(z) → 0 for z → −∞, it also holds that ψ1(Y, X, θ) → 0 for X ′θe → −∞.
Consequently, for estimates θ̂eψ,n such that X ′θ̂eψ,n → −∞, we get the same minimal value of the objective
function ∑

i ψ(Yi, Xi, θ̂
e
ψ,n) ·

∑
i ψ(Yi, Xi, θ̂

e
ψ,n)

′ → 0 as for a sequence converging to the true regression
parameters θ0. Thus, the optimization algorithm for the Z-estimator is numerically very unstable and
diverges in many simulation setups.

In contrast, the M-estimator which minimizes the ρ-function does not suffer from this problem since its
objective function has a unique global optimum. For this reason, we rely on M-estimation of the regression
model. Nevertheless, we face some difficulties in the numerical optimization procedure. Most importantly,
the ρ-function is non-convex (Fissler, 2017), which has two main implications: First, it is not possible to
solve the minimization problem by applying an efficient optimization technique such as linear or quadratic
programming as in e.g. quantile regression (Koenker, 2005). Second, a non-convex objective function
can exhibit several local optima so that standard optimization techniques might encounter difficulties in
finding the global optimum. Furthermore, the ρ-function is not differentiable everywhere, which implies
that we can only apply derivative-free optimization algorithms.

In order to find the global optimum of the ρ function, we estimate θ by repeated optimizations
initialized with randomized starting values such as e.g. in Engle and Manganelli (2004). This means we
run several optimization procedures using different starting values, compare the losses of the estimates
of the different optimizations and select the one with the smallest loss as our final estimate. In practice,
the resulting estimates are very close to the ones stemming from global optimization techniques such
as e.g. simulated annealing, whereas the major advantage of the repeated optimization technique is its
considerably lower computation time.

In detail, for obtaining pre-estimates for the approximate area of our parameters, we run a quantile
regression with probability level α for the quantile parameters θq. For pre-estimates for the ES-specific
parameter vector θe, we run a second quantile regression with probability level α̃, where we choose α̃
such that the α̃-quantile and the α-ES coincide under normality, e.g. α̃ = 1% for α = 2.5%. For the
repeated optimizations, we generate N = 1000 randomized starting values by adding a 2k-dimensional
normally distributed noise term with a standard deviation of s = 0.1 to these pre-estimates. We evaluate
the average ρ-function at these randomized values and only keep the M = 10 starting values with the
smallest average loss. Then, we optimize our objective function using these M different starting values by
applying the Nelder-Mead Simplex optimization algorithm. Finally, out of these M estimates, we select
the one with the smallest average loss as our final estimate. We provide an R package which implements
this optimization procedure (Bayer and Dimitriadis, 2017a) and furthermore allows for flexible choices of
the parameters N, M and s.

A further technical problem arises from the choice of the specifications functions which result in a
positively homogeneous loss function. As discussed in Section 2.4, these choices require that we restrict
θe such that X ′θe < 0. We ensure this condition by estimating the regression model for the transformed
dependent variable Y − max(Y ). We undo the data transformation by adding max(Y ) to the estimated
intercept parameters.
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3.2. Asymptotic Covariance Estimation

While most parts of the asymptotic covariance matrix given in Theorem 2.5 are straightforward to estimate,
two nuisance quantities impose some difficulties. The first is the density quantile function,

fY |X(X ′θ
q
0 ), (3.1)

which is also subject to the quantile regression asymptotic covariance matrix and is hence already well
investigated in this field (Koenker, 2005).

The second is the variance of the quantile residuals, conditional on the covariates and given that these
residuals are negative,

Var
(
Y − X ′θq0

��Y ≤ X ′θq0 , X
)
= Var

(
uq

��uq ≤ 0, X
)
. (3.2)

Estimation of this quantity is very demanding for two reasons. First, for very small probability levels such
as e.g. α = 2.5%, which is a typical choice in financial risk management, we are left with very little
observations (only α · n) such that uq ≤ 0. Second, modeling this truncated variance conditional on the
covariates X is challenging, especially considering the problem of very small sample sizes.

3.2.1. The Density Quantile Function

Estimation of the density quantile function (3.1) is usually based on differentiating both sides of the
identify F(F−1(α)) = α, which yields

F ′(F−1(α)) =

(
d

dα
F−1(α)

)−1
. (3.3)

Thus, it is straightforward to obtain an estimate for the density quantile function by the inverse of the
difference quotient of the empirical quantile function,

f̂Y |X(X ′i θ
q
0 ) =

(
F̂−1
i (α + hn) − F̂−1

i (α − hn)
2hn

)−1

, (3.4)

where F̂−1
i (·) denotes an estimate of the empirical quantile function of the i-th observation. The quantity

hn denotes a bandwidth parameter which we choose according to Hall and Sheather (1988).
There is a vast literature on estimating F−1

i (see Koenker, 2005) and in the following, we present two
approaches which perform well in our simulation study. The main difference between the two approaches
is that the first assumes that the quantile residuals are independent of the covariates, whereas the second
allows for a linear dependence structure.

Under the assumption that the quantile regression residuals uq are independent of the covariates X ,
it holds that F̂−1

i (·) = F̂−1(·) for all i, i.e. the estimate is the same for all observations. In this case, we
linearly interpolate the empirical quantile function of the quantile residuals in order to get an estimate for
the function F̂−1(·) and thus get the values F̂−1(α ± hn) in (3.4) (Koenker, 1994). Henceforth, we refer to
this as the iid estimator of the density quantile function.

The second approach we consider allows for a linear dependence of uq on the covariates X , for which
we apply the technique of Hendricks and Koenker (1992). They suggest to estimate two additional quantile
regressions for the quantile levels α+ hn and α− hn, and we denote these estimated coefficients by θ̂q

(α±hn)
.

The estimated empirical quantile function is then simply obtained by F̂−1
i (α ± hn) = X ′i θ̂

q

(α±hn)
. As above,

we get the estimate for the density quantile function by (3.4). Henceforth, we refer to this as the nid
estimator of the density quantile function.
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3.2.2. The Truncated Conditional Variance

The second quantity which is demanding to estimate is the conditional variance of the quantile residuals
uq = Y − X ′θq0 given X and given that uq ≤ 0. Depending on the dynamics of the underlying process we
present two different estimation approaches.

If the distribution of uq is independent of the covariates X , we simply estimate (3.2) by the sample
variance of the negative quantile residuals and we refer to this estimator as ind in the following. However,
as only about α · n of the quantile residuals are negative, this estimator suffers from the drawback of very
small sample sizes for typical choices of α in the context of financial risk management.

Furthermore, our regression design and the associated asymptotic theory allow for a dependence
between uq and X which the ind estimator cannot capture. In order to explicitly model the relationship
between the conditional variance of uq and X , we assume a location-scale process for uq,

uq = m(X) + σ(X) · ε (3.5)

where m(X) = E[uq |X] and σ2(X) = Var (uq |X) are the conditional mean and variance of uq given
X . However, σ2(X) represents the conditional variance of uq given X , whereas we are interested in its
truncated variant (given uq ≤ 0). One possibility is to estimate (3.5) only for those observations where
uq ≤ 0, but this approach again suffers from very few negative quantile residuals and from additional
noise induced by the estimation of the additional regression parameters.

We present a feasible alternative by assuming that ε follows some absolutely continuous distribution
G(0, 1) with zero mean and unit variance, which implies that uq |X ∼ G

(
m(X), σ(X)

)
with mean m(X),

variance σ2(X), distribution function FG and density fG . The quantities m(X) and σ2(X) can then be
estimated using all available observations of uq and X . Eventually, we obtain the truncated conditional
variance by the scaling formula

Var (uq |uq ≤ 0, X) =
∫ 0

−∞

z2h(z) dz −
(∫ 0

−∞

zh(z) dz
)2

, (3.6)

where h(z) = fG(z)/FG(0) is the truncated conditional density function of uq given X and given that
uq ≤ 0.

In our implementation we assume, a linear dependence for the conditional mean and standard deviation,
i.e. m(X) = X ′η and σ(X) = X ′γ, for some parameter vectors η, γ ∈ Rk . For the distribution of ε
we assume either the Normal or the more flexible Student-t distribution in order to capture possible
overkurtosis of the quantile residuals. We estimate the model parameters, including the degrees of freedom
of the t-distribution, by maximum likelihood estimation using the presumed distribution of ε. Positivity
of the conditional standard deviation σ(X) is ensured by numerically excluding solutions that do not
fulfil the condition X ′γ ≥ 0. We thus obtain estimates for the functions FG and fG and can consequently
apply (3.6) using numerical integration techniques and thereby obtain a prediction for the truncated
conditional variance. Depending on the distributional assumption on the quantile residuals uq , we denote
these estimators by scl-N or scl-t.

This approach can easily be extended in two ways. First, one could consider more flexible specifications
for m(X) and σ(X), e.g. through polynomial regression, regression splines or nonparametric regression
techniques (Fan and Yao, 1998). Second, it is straightforward to account for further properties of the
distribution of the quantile residuals such as e.g. skewness by employing more flexible distributional
choices for ε.

4. Simulation Study

In this section, we investigate the finite sample behavior of the M-estimator for the regression parameters
and verify the asymptotic properties derived in Section 2.3 by means of simulations. Furthermore, we
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compare the performance of different choices for the specification functions in terms of estimation accuracy,
asymptotic efficiency and computation times and evaluate the precision of the different covariance matrix
estimators described in Section 3.2.

4.1. Regression Models: Data Generating Processes

In order to assess the numerical properties of our joint regression model, we simulate data from a linear
location-scale process,

Y |X = X ′γ + (X ′η) · ε, (4.1)

where ε ∼ F(0, 1) has a zero mean, unit variance distribution, X =
(
1, X2, . . . , Xk

) ′ and with parameter
vectors γ, η ∈ Rk . For this process, the true conditional quantile and ES are linear functions in X , given by

Qα (Y |X) = X ′(γ + zαη) and
ESα (Y |X) = X ′(γ + ξαη),

(4.2)

where zα and ξα are the quantile and ES of the distribution F(0, 1), which means that θq0 = γ + zαη and
θe0 = γ + ξαη. Furthermore, the distributions of the quantile- and ES-residuals is given by

uq |X ∼ F
(
−zα(X ′η), (X ′η)2

)
, and

ue |X ∼ F
(
−ξα(X ′η), (X ′η)2

)
.

(4.3)

This general specification of our data generating process (DGP) allows for a variety of setups with different
properties by choosing γ and η accordingly. For the simulation study, we choose γ and η in (4.1) such that
we get the following three specifications for the DGPs,

DGP-(1) :
X = (1, X2), X2 ∼ χ2

1
Y |X ∼ N

(
− X2, 1

) (4.4)

DGP-(2) :
X = (1, X2), X2 ∼ χ2

1

Y |X ∼ N
(
−X2, (1 + 0.1X2)

2
) (4.5)

DGP-(3) :
X = (1, X2, X3), X2, X3 ∼ U[0, 1] with corr(X2, X3) = 0.5

Y |X ∼ t5
(
X2 − X3,

(
0.5 + 0.1X2 + 0.1X3

)2
) (4.6)

The most important difference between the first two univariate processes is the distribution of the
model residuals: for DGP-(1), the model residuals are independent of X , whereas under DGP-(2) they
depend on the regressors X as η2 , 0. This distinction heavily influences the performance and properties
of the different covariances matrix estimators described in Section 3.2. The third DGP depends on two
correlated explanatory variables in order to also assess the performance of a regression framework with
multiple covariates. Furthermore, the distribution of Y given X is leptokurtic, i.e. it has fatter tails than
the normal distribution.

We simulate all three processes 25,000 times with varying sample sizes of n = 250, 500, 1000, 2000
and 5000 observations. For each replication, and for each of the sample sizes, we regress the simulated
Y ’s on the covariates X including an intercept term using our joint regression method for the probability
level α = 2.5%.
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4.2. Comparing the Specification Functions

We start the discussion of the simulation results by numerically investigating the performance of the
M-estimator based on different choices for the specification function G2 used in the loss function in (2.6).
Section 2.4 already discusses this choice in terms of the resulting theoretical properties of our estimator.
For the empirical comparison study of the M-estimator based on different loss functions, we use the
following five choices for the specification functions:

G1(x) = 0, G2(z) = −
1
z
, G2(z) =

1
z2 , (4.7)

G1(x) = 0, G2(z) = − log(−z), G2(z) = −
1
z

(4.8)

G1(x) = 0, G2(z) = −
√
−z, G2(z) = −

1
2
√
−z
, (4.9)

G1(x) = 0, G2(z) = log
(
1 + exp(z)

)
, G2(z) =

exp(z)
1 + exp(z)

, (4.10)

G1(x) = 0, G2(z) = exp(z), G2(z) = exp(z). (4.11)

The first three choices (4.7) - (4.9) result in positively homogeneous loss functions, whereas (4.10) and
(4.11) are examples for a bounded and an unbounded choice for G2 respectively. We fix the function G1 to
be constant zero since other choices do not result in a better numerical performance of the estimators and
this choice is consistent with the homogeneity result of Nolde and Ziegel (2017).

250 500 1000 2000 5000
0.0

0.1

0.2

0.3

M
SE

DGP-(1)

G2(z) = − log(−z)

G2(z) = −
√

−z
G2(z) = −1/z

G2(z) = log(1 + exp(z))
G2(z) = exp(z)

250 500 1000 2000 5000
0.0

0.2

0.4

M
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DGP-(2)

G2(z) = − log(−z)

G2(z) = −
√

−z
G2(z) = −1/z

G2(z) = log(1 + exp(z))
G2(z) = exp(z)
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0.0
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G2(z) = − log(−z)

G2(z) = −
√

−z
G2(z) = −1/z

G2(z) = log(1 + exp(z))
G2(z) = exp(z)

Figure 1: Sum of the mean squared errors of the parameters estimates using different choices for the specification functions in the
loss function.

Figure 1 presents the sum (over the different regression parameters) of the mean squared errors (MSE)
of the regression parameters for the three GDPs described above, different sample sizes and for the five
choices of the specification functions. As implied by the asymptotic theory, we obtain consistent parameter
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estimates for all five choices of the specification functions as their MSE converges to zero for all three
DGPs. However, they differ substantially with respect to their small sample properties. The three positively
homogeneous specifications result in the most accurate estimates, whereas the choices G2(z) = −

√
−z and

G2(z) = − log(−z) tend to perform slightly better than the choice G2(z) = − 1
z . Furthermore, the bounded

choice G2(z) = log
(
1 + exp(z)

)
still performs better than the unbounded exponential function. Figure 6 in

Appendix D furthermore presents the relative bias of the individual parameter estimates, which are in line
with the MSE results.

We also discuss the asymptotic efficiency of the M-estimator based on the different choices for the
specification functions as the asymptotic covariance, given in Theorem 2.4 depends on these choices. As we
cannot compute the expectations (with respect to X) in the true asymptotic covariance matrix analytically,
we estimate it throughMonte-Carlo integration with a sample size of 109 using the formulas in Theorem 2.4
and by using the true density and conditional variance function, as both are analytically known for the
underlying DGPs. Table 1 reports the diagonal elements and the Frobenius norm of the true asymptotic
covariance matrix of the parameter estimates for the different choices for the specification functions for
the three DGPs. For comparison, we also report the same quantities for quantile regression parameter
estimates. We see that on average, the specification functions G2(z) = − log(−z) and G2(z) = −

√
−z exhibit

the smallest entries for the asymptotic variances, closely followed by the third choice for a positively
homogeneous loss function, G2(z) = −1/z. The other non-homogeneous choices lead to considerably larger
asymptotic variances for all considered parameters and DGPs. Furthermore, by comparing the asymptotic
efficiency of our estimation approach (of the quantile-specific parameters) to quantile regression, we see
that we roughly obtain the same asymptotic efficiency.

Table 1: Diagonal entries and Frobenius norms of the true covariance of the stabilizing transformation for all DGPs and all
choices of the G2 function. For comparison, the table also reports the values for quantile regression.

DGP-(1) θ
q
0 θ

q
1 θe0 θe1 NormF

G2(z) = − log(−z) 10.92 3.79 16.33 6.28 7.90
G2(z) = −

√
−z 10.77 3.62 15.97 5.79 7.67

G2(z) = −1/z 11.38 4.38 17.13 7.59 8.52
G2(z) = log(1 + exp(z)) 15.36 18.33 21.82 25.43 16.58
G2(z) = exp(z) 15.51 18.96 22.25 27.19 17.25
Quantile Regression 10.70 3.57 – – –

DGP-(2) θ
q
0 θ

q
1 θe0 θe1 NormF

G2(z) = − log(−z) 12.36 7.13 17.83 10.38 9.61
G2(z) = −

√
−z 12.34 7.11 17.69 10.17 9.53

G2(z) = −1/z 12.71 7.79 18.47 11.65 10.20
G2(z) = log(1 + exp(z)) 17.08 31.13 23.75 39.06 22.95
G2(z) = exp(z) 17.24 32.16 24.19 41.59 23.93
Quantile Regression 12.55 7.38 – – –

DGP-(3) θ
q
0 θ

q
1 θ

q
2 θe0 θe1 θe2 NormF

G2(z) = − log(−z) 24.65 90.92 90.95 83.93 307.70 308.07 115.70
G2(z) = −

√
−z 24.66 90.93 90.95 83.99 307.75 308.04 115.70

G2(z) = −1/z 24.64 90.94 90.99 83.81 307.74 308.26 115.75
G2(z) = log(1 + exp(z)) 24.99 98.77 98.85 83.52 320.82 322.29 121.63
G2(z) = exp(z) 25.25 102.95 102.96 84.61 344.21 345.57 130.29
Quantile Regression 24.67 90.96 90.96 – – – –

In Figure 2 we provide the average computation time for fitting the regression model depending on the
choice of the G2-function. We can see that the three positively homogeneous loss functions also exhibit
the smallest computation times.

Due to their superior performance in terms of asymptotic efficiency, numerical stability and computation
times, we suggest using a specification function which results in a positively homogeneous loss function
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for the implementation of the M-estimator of the regression parameters. This is also in line with the
theoretical findings of Section 2.4.
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Figure 2: Average estimation time for all five G2-functions and the three DGPs.

4.3. Comparing the Variance-Covariance Estimators

In this section, we compare the empirical performance of the asymptotic covariance estimators discussed
in Section 3.2. For the comparison of their precision, we compute the differences between the average
of the estimated asymptotic covariances and the empirical covariance of the estimated parameters over
the 25,000 Monte-Carlo repetitions. In order to present the results in a parsimonious way, we report the
Frobenius norm of the lower triangular part of this matrix difference (such that the covariance terms enter
only once). On the one hand, implied by the asymptotic theory, this quantity should converge to zero
for large sample sizes. On the other hand, we also evaluate the performance of the estimated asymptotic
covariances in finite samples, which is particularly important in possible applications involving confidence
bounds and testing.

The results for the three DGPs and the three homogeneous choices for the loss function are provided
in Figure 3. Given the poor performance in the preceding section, the results for the choices G2(z) =
log(1 + exp(z)) and G2(z) = exp(z) are not provided here but are available upon request. Each of the plots
presents the results for the three covariance estimators (iid/nid, nid/scl-N and nid/scl-t) and for different
sample sizes.

For the univariate and homoskedastic DGP-(1) shown in the first row of Figure 3, we find that the
norms of all three estimators and all G2-functions converge to zero, i.e. the average estimated covariances
and the empirical covariance coincide for large sample sizes. However, for this DGP the iid/nid estimator
converges faster than the scaling based estimators. As there is no dependency between uq and X , the
iid/nid estimator is able to capture the full dynamics of the underlying data and consequently, the other
two scaling based estimators suffer from estimating additional (and redundant) parameters. Consequently,
in this simple case the iid/nid estimator performs best in finite samples.

The second row of Figure 3 presents the results for DGP-(2), which is of heteroskedastic nature since in
contrast to DGP-(1), the distribution of the model residuals uq depends on X . Consequently, the estimates
of the iid/nid approach do not converge to the empirical covariance for large samples as this estimator
fails to capture the underlying dynamics of the data. In contrast, the two scaling approaches are able to
model these dynamics and consequently, the norms of the matrix differences converge to zero for both
estimation methods. However, for the smallest considered sample size, the iid/nid estimator outperforms
these scaling variants. This can be explained by the additional estimation noise stemming from estimation
of the additional parameters which is particularly prominent in small samples.

The last row of Figure 3 presents the results for DGP-(3). We find that the nid/scl-N estimator does
not converge to the empirical covariance at all as the underlying distributional assumption used for the
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Figure 3: Frobenius Norm of the element-wise differences between the empirical and the estimated covariance matrices for three
different covariance estimators.

scaling relation does not capture the fat tails in the data. In contrast, the nid/scl-t approach estimates the
degrees of freedom for the presumed t-distribution and is consequently able to account for this property of
the data. In the scenario, the iid/nid estimator performs well, which can be explained by the relatively
mild heteroskedastic nature of this DGP. Since the covariates follow a uniform distribution, we do not
have to deal with very large conditional variances as compared to DGP-(2), where X follows a fat-tailed
χ2

1 -distribution.
In summary, the performance of the nid/scl-t estimator is the most stable among all considered choices.

However, for data that does not exhibit heteroskedasticity or in the case of very small sample sizes, one can
also use the iid/nid estimator. These covariance estimators are implemented in the provided R package.

4.4. Estimating the Sample Quantile and Expected Shortfall

Besides modeling conditional regression equations for the pair quantile and ES based on a set of covariates,
our regression framework also nests joint estimation of the sample quantile and ES as already discussed in
Remark 2.7. Following the results from Section 4.2, we choose the specification functions G1(z) = 0 and
G2(z) = − log(−z) for the joint M-estimation.

We compare the accuracy of the ES-part from our joint estimation approach with two alternative
estimators for the sample ES from Brazauskas et al. (2008) and Chen (2008), given in (2.32) and (2.34).
For that purpose, we simulate data from the standard Normal and from a Student-t distribution with five
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degrees of freedom for a variety of sample sizes and estimate the 2.5%-ES and the associated asymptotic
variances of the respective estimators.
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Figure 4: Mean squared errors of the different ES estimation approaches and two different distributions.

Figure 4 presents the MSE for the three ES-estimators for the Normal and the t5 distribution. As all
three estimators are consistent, we observe that for an increasing sample size the MSE converges to zero
for all three approaches. Also for small sample sizes, the performance of all three estimators is similar.
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Figure 5: Relative standard errors for the different ES estimation approaches and two different distributions.

We also compare these three different approaches in terms of the accuracy of estimating the asymptotic
variance of the ES estimates. For that, we use the estimators for the asymptotic variance proposed by
Brazauskas et al. (2008) and Chen (2008) and for our M-estimator, we report the results for the iid/ind
approach.

In Figure 5 we compare the relative standard errors of the ES estimates, which are defined as the
average of the estimated asymptotic standard deviations divided by the empirical standard deviation of
the estimates. We presents these results for sample sizes up to 10,000 observations due to the very slow
convergence of the estimator of Brazauskas et al. (2008). Even though all three estimators converge to a
relative standard error of one, the estimator of Brazauskas et al. (2008) substantially overestimates the
variance of the ES estimator for realistic sample sizes. In comparison, our approach and the method of
Chen (2008) are relatively accurate in small samples.
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5. Conclusion

In this paper, we introduce a joint regression technique for the quantile (VaR) and ES. This regression
approach relies on the joint loss function introduced by Fissler and Ziegel (2016), which permits the joint
elicitation of the quantile and ES. We introduce an M- and Z-estimator for the parameters of the joint
regression model. Given a set of standard regularity conditions, we show consistency and asymptotic
normality for both estimators. The underlying loss function, estimating equations and the asymptotic
covariance matrix of the estimators depend on two specification functions, which we investigate in terms of
asymptotic efficiency, numerical performance and computation times. While the asymptotic distribution
coincides for both estimators, we find the Z-estimator to be numerically unstable and consequently focus
on the M-estimator in the numerical illustration. In an extensive simulation study, we verify the asymptotic
distribution and investigate the small sample properties of the M-estimator. We furthermore evaluate the
choice of the specification functions numerically and find that choices resulting in positively homogeneous
loss functions lead to better estimates in terms of efficiency, numerical accuracy and computation times.

This joint regression technique allows for various financial applications for the risk measures VaR and
ES. Bayer and Dimitriadis (2017b) use this regression to develop an ES backtest which is particularly
relevant in terms of the recent introduction of ES into the Basel regulatory framework. The proposed
regression can further be used to model ES by generalizing existing applications of quantile regression on
VaR (e.g. Engle and Manganelli, 2004; Koenker and Xiao, 2006; Halbleib and Pohlmeier, 2012; Komunjer,
2013; Žikeš and Baruník, 2016).

Acknowledgements

We would like to thank Patrick Schmidt, Lyudmila Grigoryeva, Tobias Fissler, Frederic Menninger,
Winfried Pohlmeier, Roxana Halbleib, Phillip Heiler and the participants of the Stochastics Colloquium on
11/30/2016 at the University of Konstanz for fruitful discussions and suggestions which inspired some of
the results of this paper. Financial support by the Heidelberg Academy of Sciences and Humanities (HAW)
within the project “Analyzing, Measuring and Forecasting Financial Risks by means of High-Frequency
Data”, by the German Research Foundation (DFG) within the research group “Robust Risk Measures
in Real Time Settings” and general support by the Graduate School of Decision Sciences (University of
Konstanz) is gratefully acknowledged. The computation in this work was performed on the computational
resource bwUniCluster funded by the Ministry of Science, Research and the Arts Baden-Württemberg and
the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC.

19



Appendix A General Moment Conditions

(M-1) For Theorem 2.2, we assume that the following moments are finite for some constant d0 > 0:

• E
[
| |X | |2 supUd0 (θ0)

��G′1(X ′θq)��]
• E

[
| |X | |2 supUd0 (θ0)

��G′′1 (X ′θq)��]
• E

[
| |X | |2 supUd0 (θ0)

��G2(X ′θe)
��]

• E
[
| |X | |3 supUd0 (θ0)

��G′2(X ′θe)��]
• E

[
| |X | |3 supUd0 (θ0)

��G′′2 (X ′θe)��]
• E

[
| |X | |2 supUd0 (θ0)

��G′2(X ′θe)�� E[|Y |��X] ]
• E

[
| |X | |2 supUd0 (θ0)

��G′′2 (X ′θe)�� E[|Y |��X] ]
(M-2) For Theorem 2.3, we assume that the following moments are finite:

• E
[
| |X | |2

]
• E

[
supθ∈Θ

��G1(X ′θq)
��]

• E
[��G1(Y )

��]
• E

[��a(Y )��]
• E

[
| |X | | supθ∈Θ

��G2(X ′θe)
��]

• E
[
supθ∈Θ

��G2(X ′θe)
�� E[|Y |��X] ]

• E
[
supθ∈Θ

��G2(X ′θe)
��]

(M-3) For Theorem 2.4, we assume that the following moments are finite for some constant d0 > 0
and for all θ ∈ Ūd0(θ0):

• E
[
| |X | |3

(
supτ∈Ūd0 (θ0)G

′
1(X

′τq)
) (

supτ̃∈Ūd0 (θ0)G
′′
1 (X

′τ̃q)
)]

• E
[
| |X | |3

(
supτ∈Ūd0 (θ0)G

′
1(X

′τq)
) (

supτ̃∈Ūd0 (θ0)G
′′
1 (X

′τ̃q)
)]

• E
[
| |X | |3

(
supτ∈Ūd0 (θ0)G

′
1(X

′τq)
) (

supτ̃∈Ūd0 (θ0)G
′
2(X

′τ̃e)
)]

• E
[
| |X | |3

(
supτ∈Ūd0 (θ0)G2(X ′τe)

) (
supτ̃∈Ūd0 (θ0)G

′′
1 (X

′τ̃q)
)]

• E
[
| |X | |3

(
supτ∈Ūd0 (θ0)G2(X ′τe)

) (
supτ̃∈Ūd0 (θ0)G

′
2(X

′τ̃e)
)]

• E
[
| |X | |3 supτ∈Ūd0 (θ0)G

′2
1 (X

′τq)
]

• E
[
| |X | |3 supτ∈Ūd0 (θ0)G

2
2(X

′τe)
]

• E
[
| |X | |3 supτ∈Ūd0 (θ0)G

′
1(X

′τq)G2(X ′τe)
]

• E
[
| |X | |5

(
supτ∈Ūd0 (θ0)G

′
2(X

′τe)
) (

supτ̃∈Ūd0 (θ0)G
′′
2 (X

′τ̃e)
)]

• E
[
| |X | |5

(
supτ∈Ūd0 (θ0)G

′
2(X

′τe)
)2

]
• E

[
| |X | |4

(
supτ∈Ūd0 (θ0)G

′
2(X

′τe)
) (

supτ̃∈Ūd0 (θ0)G
′′
2 (X

′τ̃e)
)
E
[
|Y |

��X] ]
• E

[
| |X | |3G′2(X

′θe)
(
supτ∈Ūd0 (θ0)G

′
2(X

′τe)
)
E
[
|Y |

��X] ]
• E

[
| |X | |3G′2(X

′θe)
(
supτ∈Ūd0 (θ0)G

′′
2 (X

′τe)
)
E
[
Y2

��X] ]
• E

[
| |X | |3

(
supτ∈Ūd0 (θ0)G

′
2(X

′τe)
) (

supτ̃∈Ūd0 (θ0)G
′′
2 (X

′τ̃e)
)
E
[
Y2

��X] ]
(M-4) For Theorem 2.5, we assume that the following moments are finite for some constant d0 > 0:
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• E
[��G1(Y )

��]
• E

[��a(Y )��]
• E

[
| |X | | supθ∈Ud0 (θ0)

��G′1(X ′θq)��]
• E

[
| |X | |2 supθ∈Ūd0 (θ0)

��G′21 (X ′θq)��]
• E

[
| |X | |2 supθ∈Ūd0 (θ0)

��G′1(X ′θq)G2(X ′θe)
��]

• E
[
| |X | | supθ∈Ud0 (θ0)

��G2(X ′θe)
��]

• E
[
| |X | |2 supθ∈Ud0 (θ0)

��G′2(X ′θe)��]

• E
[
| |X | |2 supθ∈Ūd0 (θ0)

��G2
2(X

′θe)
��]

• E
[
| |X | |4 supθ∈Ūd0 (θ0)

��G′22 (X ′θe)��]
• E

[
| |X | | supθ∈Ud0 (θ0)

��G′2(X ′θe)�� E[|Y |��X] ]
• E

[
| |X | |3 supθ∈Ūd0 (θ0)

��G′22 (X ′θe)�� E[ |Y |��X] ]
• E

[
| |X | |2 supθ∈Ūd0 (θ0)

��G′22 (X ′θe)�� E[Y2 |X]
]

Appendix B Proofs

For the subsequent proofs we use the following notation. Let Y ∈ R and X ∈ X ⊆ Rk be random
variables on some probability space equipped with the Borel σ-field. Let θ = (θq′, θe′)′ ∈ Θ ⊆ R2k be
a joint parameter vector, whereas θ0 = (θ

q′
0 , θ

e′
0 )
′ ∈ int(Θ) denote the true parameter vector of our joint

regression. Henceforth, for a vector v ∈ Rk , | |v | | denotes the maximum norm | |v | |max = maxj |vj | and for
a matrix A, | |A| | denotes the row-sum matrix norm which is induced by the maximum norm for vectors.
For convenience of the supremum notation, for all θ ∈ int(Θ) and for some d > 0, we define the open
neighborhood Ud(θ) = {τ ∈ Θ : | |τ − θ | | < d} and its closure Ūd(θ) = {τ ∈ Θ : | |τ − θ | | ≤ d}.

B.1 Proof of Theorem 2.2

Lemma B.1. Let

u(Y, X, θ, d) = sup
τ∈Ūd (θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
���� (B.1)

and assume that the regularity conditions in Assumption 2.1 and the Moment Conditions (M-1) in
Appendix A hold. Then, there are strictly positive real numbers b and d0, such that

E
[
u(Y, X, θ, d)

]
≤ b · d for | |θ − θ0 | | + d ≤ d0, and (B.2)

for all d ≥ 0.

Proof. Let in the following d > 0 and θ ∈ Θ such that | |θ − θ0 | | + d ≤ d0. We first notice that for some
fixed X ∈ X and for all τ ∈ Ūd(θ), it holds that��1{Y≤X′θq } − 1{Y≤X′τq }�� ≤ 1{X′θq− ≤Y≤X′θq+ } (B.3)

for all Y ∈ R and for some θq−, θ
q
+ ∈ Ūd(θ). Since Ūd(θ) is compact, we get that

sup
τ∈Ūd (θ)

��1{Y≤X′θq } − 1{Y≤X′τq }�� ≤ 1{X′θq− ≤Y≤X′θq+ } (B.4)

for all Y ∈ R and for some values θq−, θ
q
+ ∈ Ūd(θ). Note that the values θq− and θ

q
+ depend on X and θ,

however they are independent of Y . Consequently, it holds that

E

[
sup

τ∈Ūd (θ)

��1{Y≤X′θq } − 1{Y≤X′τq }������� X

]
≤ E

[
1{X′θq− ≤Y≤X′θq+ }

��� X
]

= FY |X
(
X ′θq+

)
− FY |X

(
X ′θq−

)
= fY |X(X ′θ̃q)

(
X ′θq+ − X ′θq−

)
≤ 2| |X | | · sup

τ∈Ūd (θ)

fY |X(X ′τq) · d,

(B.5)

21



where we apply the mean value theorem for some θ̃q on the line between θq− and θ
q
+, i.e. θ̃q ∈ Ūd(θ).

For the first component of ψ, we get that

E

[
sup

τ∈Ūd (θ)

����ψ1(Y, X, θ) − ψ1(Y, X, τ)
����]

≤ E

[
sup

τ∈Ūd (θ)

��������X (
G′1(X

′θq) − G′1(X
′τq) +

G2(X ′θe) − G2(X ′τe)
α

)��������]
+ E

[
sup

τ∈Ūd (θ)

��������X (
G′1(X

′τq) +
G2(X ′τe)

α

)�������� · E [
sup

τ∈Ūd (θ)

��1{Y≤X′θq } − 1{Y≤X′τq }������� X

] ]
.

(B.6)

The first term in (B.6) is O(d) since G′1(X
′θq) and G2(X ′θe) are continuously differentiable functions

w.r.t θ and thus, by the mean value theorem we get that

sup
τ∈Ūd (θ)

��G′1(X ′θq) − G′1(X
′τq)

�� ≤ sup
τ̃∈Ūd (θ)

����XG′′1 (X
′τ̃q)

���� · sup
τ∈Ūd (θ)

����θq − τq ����
≤ sup
τ̃∈Ūd (θ)

����XG′′1 (X
′τ̃q)

���� · d, (B.7)

and the respective moments are finite by assumption. The same arguments hold for the function G2. For
the second term in (B.6), we apply (B.5) and thus get that

E

[
sup

τ∈Ūd (θ)

��������X (
G′1(X

′τq) +
G2(X ′τe)

α

)�������� · E [
sup

τ∈Ūd (θ)

��1{Y≤X′θq } − 1{Y≤X′τq }������� X

] ]
≤ E

[
sup

τ∈Ūd (θ)

��������X (
G′1(X

′τq) +
G2(X ′τe)

α

)�������� | |X | | · sup
τ∈Ūd (θ)

fY |X(X ′τq)

]
· d.

(B.8)

Since the density fY |X(X ′θ) is bounded in a neighborhood of X ′θ0 and the respective moments are finite
by assumption, we get that this term is also O(d).

For the second component of ψ, we get that

E

[
sup

τ∈Ūd (θ)

����ψ2(Y, X, θ) − ψ2(Y, X, τ)
����]

≤ E

[
sup

τ∈Ūd (θ)

����X(X ′θe − X ′θq)G′2(X
′θe) − X(X ′τe − X ′τq)G′2(X

′τe)
����]

+ E

[�������� XG′2(X
′θe)X ′θq

α

�������� · E [
sup

τ∈Ūd (θ)

�� (1{Y≤X′θq } − 1{Y≤X′τq }) ������� X

] ]
+ E

[
E

[
sup

τ∈Ūd (θ)

��������1{Y≤X′τq } ( XG′2(X
′θe)X ′θq

α
−

XG′2(X
′τe)X ′τq

α

)�������� ����� X

] ]
+ E

[�������� XG′2(X
′θe)

α

�������� · E [
sup

τ∈Ūd (θ)

��Y (
1{Y≤X′θq } − 1{Y≤X′τq }

) ������� X

] ]
+ E

[
E

[
sup

τ∈Ūd (θ)

��������Y1{Y≤X′τq }α

(
XG′2(X

′θe) − XG′2(X
′τe)

) ������������� X

] ]
= (i) + (ii) + (iii) + (iv) + (v).

The first, third and fifth term are linearly bounded by (B.7) since the functions (X ′θe − X ′θq)G′2(X
′θe)

and (X ′θq)G′2(X
′θe) and G′2(X

′θe) are continuously differentiable. For the second term, we use the
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arguments from (B.5). For the fourth term, we use similar arguments as in (B.5), and get that there exist
some θq−, θ

q
+ ∈ Ūd(θ) and a value θ̃q on the line between θq− and θ

q
+, such that

E

[�������� XG′2(X
′θe)

α

��������E [
sup

τ∈Ūd (θ)

��Y (
1{Y≤X′θq } − 1{Y≤X′τq }

) ������� X

] ]
≤ E

[�������� XG′2(X
′θe)

α

��������E [
|Y | 1{X′θq− ≤Y≤X′θq+ }

��� X
] ]

= E

[�������� XG′2(X
′θe)

α

�������� ∫ X′θ
q
+

X′θ
q
−

|y | fY |X(y)dy

]
≤ E

[�������� XG′2(X
′θe)

α

�������� |X ′θ̃q | fY |X(X ′θ̃q)(X ′θq+ − X ′θq−
) ]

≤
2
α
E

[
G′2(X

′θe)
����X ����2 sup

τ∈Ūd (θ)

|X ′τq | fY |X(X ′τq)

]
· d = O(d)

(B.9)

since fY |X is bounded in a neighborhood of X ′θ0 and the respective moments exist by assumption. This
concludes the proof of the lemma. �

Lemma B.2. Let the random variable X ∈ X with distribution P be such that its second moments exist
and the matrix E[X X ′] is positive definite. Furthermore, let Θ̃ ⊂ Rk be a compact subspace with nonempty
interior and let g : X × Θ̃→ R be a strictly positive function. Then, the matrix

E
[
(X X ′)g(X, θ)

]
(B.10)

is also positive definite.

Proof. Since E[X X ′] is positive definite, we know that for all z ∈ Rk with z , 0, it holds that
0 < z′E[X X ′]z = E[z′(X X ′)z] = E[(X ′z)2] and consequently P

(
X ′z , 0

)
> 0. Since

√
g(X, θ) is a strictly

positive scalar for all θ ∈ Θ̃, it also holds that P
(
(X ′z)

√
g(X, θ) , 0

)
> 0 and thus, for all z , 0,

z′E
[
(X X ′)g(X, θ)]z = E

[(
X ′z

√
g(X, θ)

)2
]
> 0. (B.11)

This positivity statement holds since
(
X ′z

√
g(X, θ)

)2 is a non-negative randomvariable andP
(
(X ′z)

√
g(X, θ) ,

0
)
> 0.
This shows that the matrix E

[
(X X ′)g(X, θ)

]
is positive definite. �

Proof of Theorem 2.2. We use Theorem 2 from Huber (1967) and show that the function ψ(Y, X, θ) as
given in (2.9) satisfies its assumptions. We do not need to show Lemma 2 from Huber (1967) since
the parameter space Θ is assumed to be compact and consequently every sequence θ̂ψ,n satisfying (2.8)
ultimately stays in the compact set Θ. As the product of continuous functions and the indicator function
1{Y≤X′θq }, the ψ-function is F -measurable, where F is the Borel σ-field on the space R×X . Separability
can be concluded with the help of Corollary C.3 since the process ψ is almost surely continuous in θ.

For the proof that ψ has a unique root at θ0, let us first define the sets

U =
{
ω ∈ Ω

��X(ω)′θq , X(ω)θq0
}
, and (B.12)

W =
{
ω ∈ Ω

��X(ω)′θq = X(ω)θq0
}
, (B.13)

such that Ω = W ∪U and W ∩U = ∅. We first show that P(U) > 0. In order to see this, we assume the
converse, i.e. let us assume that P(W) = P

(
X ′θq = X ′θq0

)
= 1, which implies that

(θq − θ
q
0 )
′ E[X X ′] (θq − θq0 ) = E

[ (
X ′θq − X ′θq0

)2]
= 0. (B.14)
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However, since θq , θq0 , this contradicts the assumption that the matrix E[X X ′] is positive definite and we
can conclude that P(U) > 0.

The quantity

λ1(θ) = E

[
X

(
αG′1(X

′θq) + G2(X ′θe)
) FY |X(X ′θq) − FY |X(X ′θ

q
0 )

α

]
(B.15)

exists under the moment conditions (M-1) in Appendix A and if θq = θq0 , it obviously holds that λ1(θ) = 0.
Now, let us assume that θ ∈ Θ such that θq , θq0 . By splitting the expectation, we get that

λ1(θ)
′(θq − θ

q
0 ) = E

[ (
αG′1(X

′θq) + G2(X ′θe)
) (

X ′θq − X ′θq0
) FY |X(X ′θq) − FY |X(X ′θ

q
0 )

α
1{ω∈W }

]
+ E

[ (
αG′1(X

′θq) + G2(X ′θe)
) (

X ′θq − X ′θq0
) FY |X(X ′θq) − FY |X(X ′θ

q
0 )

α
1{ω∈U }

]
.

The first summand is obviously zero since for all ω ∈ W , FY |X(X ′θq) − FY |X(X ′θ
q
0 ) = 0. Since the

distribution of Y given X has strictly positive density in a neighbourhood of X ′θq0 , we get that FY |X is
strictly increasing in a neighbourhood of X ′θq0 and thus

(
X ′θq − X ′θq0

) FY |X(X ′θq) − FY |X(X ′θ
q
0 )

α
> 0 (B.16)

for all ω ∈ U. Since furthermore αG′1(X
′θq) + G2(X ′θe) > 0 for all θ ∈ Θ and P(U) > 0, we get that

λ1(θ)
′(θq − θ

q
0 ) = E

[ (
αG′1(X

′θq) + G2(X ′θe)
) (

X ′θq − X ′θq0
) FY |X(X ′θq) − FY |X(X ′θ

q
0 )

α
1{ω∈U }

]
> 0,

(B.17)

and consequently λ1(θ) , 0. This implies that λ1(θ) = 0 if and only if θq = θq0 .
Furthermore,

λ2(θ) = E

[
XG′2(X

′θe)

(
X ′θq

FY |X(X ′θq) − α
α

+ X ′θe −
1
α
E
[
Y1{Y≤X′θq }

��X] )]
. (B.18)

Assuming that θq = θ
q
0 (from λ1(θ) = 0), we get that FY |X(X ′θq) = FY |X(X ′θ

q
0 ) = α and

1
αE

[
Y1{Y≤X′θq0 }

��X]
= X ′θe0 . Thus, (B.18) simplifies to

E
[
(X X ′)G′2(X

′θe)
] (
θe − θe0

)
, (B.19)

and by applying Lemma B.2, we get that the matrix E
[
(X X ′)G′2(X

′θe)
]
is positive definite for all θ ∈ Θ.

Consequently, λ2(θ) = 0 if and only if θe = θe0 and together with the arguments for λ1, we get that λ(θ) = 0
if and only if θ = θ0.

Eventually, assumption (B-2)’ from Theorem 2 of Huber (1967) follows directly from Lemma B.1,
which concludes this proof. �

B.2 Proof of Theorem 2.3

Proof of Theorem 2.3. For this proof, we apply Theorem 5.7 from van der Vaart (1998).
We start by showing uniform convergence in probability of the empirical mean of the objective

function, i.e. supθ∈Θ
�� 1
n

∑n
i=1 ρ(Yi, Xi, θ) − E

[
ρ(Y, X, θ)

] �� P
−→ 0, by the help of Lemma 2.4 of Newey and
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McFadden (1994). Since we have iid data, a compact parameter space Θ and ρ(Y, X, θ) is continuous for
all θ ∈ Θ, it remains to show that there exists a dominating function d(Y, X) ≥ |ρ(Y, X, θ)

�� for all θ ∈ Θ
with E

[
d(Y, X)

]
< ∞.

For this, we split the ρ-function by defining

ρ(Y, X, θ) = ρ1(Y, X, θ) + ρ2(Y, X, θ), (B.20)

where

ρ1(Y, X, θ) = 1{Y≤X′θq }

(
G1(X ′θq) − G1(Y ) +

1
α

G2(X ′θe)(X ′θq − Y )
)
, (B.21)

ρ2(Y, X, θ) = G2(X ′θe)
(
X ′θe − X ′θq

)
− G2(X ′θe) − αG1(X ′θq) + a(Y ). (B.22)

We now get that��ρ1(Y, X, θ)
�� ≤ sup

θ∈Θ

����G1(X ′θq) +
1
α

G2(X ′θe)(X ′θq − Y )
���� + ��G1(Y )

�� (B.23)

=: d1(Y, X), (B.24)

and equivalently,

ρ2(Y, X, θ) ≤ sup
θ∈Θ

��G2(X ′θe)
(
X ′θe − X ′θq

) �� + sup
θ∈Θ
|G2(X ′θe)| +

��αG1(Y ) + a(Y )
�� (B.25)

=: d2(Y, X). (B.26)

The functions d1(Y, X) and d2(Y, X) have finite expectation by the moment conditions (M-2) in Appendix
A, which eventually proofs the requirements for Lemma 2.4 of Newey and McFadden (1994) and we can
conclude that

sup
θ∈Θ

�����1n n∑
i=1

ρ(Yi, Xi, θ) − E
[
ρ(Y, X, θ)

] ����� P
−→ 0. (B.27)

It remains to show that E
[
ρ(Y, X, θ)

]
has a unique and global minimum at θ = θ0. For this, we assume

that θ ∈ Θ such that θ , θ0 and we define the sets

U =
{
ω ∈ Ω

��X(ω)′θq , X(ω)′θq0 or X(ω)′θe , X(ω)′θe0
}

and (B.28)
W =

{
ω ∈ Ω

��X(ω)′θq = X(ω)′θq0 and X(ω)′θe = X(ω)′θe0
}
, (B.29)

such that Ω = U ∪W and U ∩W = ∅.
We first show that P(U) > 0. In order to see this, we assume the converse, i.e. we assume that

P(W) = 1, which implies that

(θq − θ
q
0 )
′ E[X X ′] (θq − θq0 ) = E

[ (
X ′θq − X ′θq0

)2
]
= 0, (B.30)

since P
(
X ′θq = Xθq0

)
= 1, and equivalently

(θe − θe0)
′E[X X ′](θe − θe0) = 0. (B.31)

However, since θ , θ0 and consequently either θq , θq0 or θe , θe0 , this contradicts the assumption that
the matrix E[X X ′] is positive definite and we can conclude that P(U) > 0.

From the joint elicitability property of VaR and ES of Fissler and Ziegel (2016), Corollary 5.5 we get
that for all x ∈ X such that x ′θ , x ′θ0, it holds that

E
[
ρ(Y, X, θ0)

��X = x
]
< E

[
ρ(Y, X, θ)

��X = x
]
, (B.32)
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and thus for all ω ∈ U,

E
[
ρ(Y, X, θ0)

��X]
(ω) < E

[
ρ(Y, X, θ)

��X]
(ω), (B.33)

since the distribution of Y given X has finite first moment and a unique α-quantile. We define the random
variable

h(X, θ, θ0) = E
[
ρ(Y, X, θ0) − ρ(Y, X, θ)

��X]
, (B.34)

and (B.33) implies that h
(
X(ω), θ, θ0

)
< 0 for all ω ∈ U. Since P(U) > 0, this implies that

E
[
h(X, θ, θ0)1{ω∈U }

]
< 0. (B.35)

Furthermore, for all ω ∈ W , it obviously holds that h(X(ω), θ, θ0) = 0 and consequently,

E
[
h(X, θ, θ0)1{ω∈W }

]
= 0. (B.36)

Thus, we get that

E
[
h(X, θ, θ0)

]
= E

[
h(X, θ, θ0)1{ω∈U }

]
+ E

[
h(X, θ, θ0)1{ω∈W }

]
< 0 (B.37)

for all θ ∈ Θ such that θ , θ0, which shows that E
[
ρ(Y, X, θ)

]
has a unique minimum at θ = θ0. �

B.3 Proof of Theorem 2.4

For the proof of this theorem, we need the following two lemmas.

Lemma B.3. Assume that the regularity conditions in Assumption 2.1 and Moment Conditions (M-3) in
Appendix A hold. Then, for

λ(θ) = E
[
ψ(Y, X, θ)

]
, (B.38)

there are strictly positive numbers a, d0, such that

| |λ(θ)| | ≥ a · | |θ − θ0 | | for | |θ − θ0 | | ≤ d0. (B.39)

Proof. Let d0 > 0 and let | |θ − θ0 | | ≤ d0. Then, applying the mean value theorem, we get that

λ1(θ) =
1
α
E

[
(X X ′)

(
αG′1(X

′θq) + G2(X ′θe)
)

fY |X(X ′θ̃q)
]
(θq − θ

q
0 ) (B.40)

for some θ̃q on the line between θq and θq0 . Similarly, for the second component we get that

λ2(θ) = E

[
X

G′2(X
′θe) fY |X(X ′θ̃q)

α

[
X ′(θq − θq0 )

] [
X ′(θ̃q − θq)

] ]
+ E

[
(X X ′)G′2(X

′θe)
]
(θe − θe0),

(B.41)

where θ̃q lies on the line between θq and θq0 .
We first assume that | |θ − θ0 | | = | |θ

q − θ
q
0 | |, i.e. | |θ

q − θ
q
0 | | ≥ | |θ

e − θe0 | |. Since the matrix

A(θ) := E

[
(X X ′)

(
αG′1(X

′θq) + G2(X ′θe)
)

α
fY |X(X ′θ̃q)

]
(B.42)
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exists and has full rank for all θ ∈ Θ by Lemma B.2 and is obviously symmetric, A has strictly positive
real Eigenvalues γ1(θ), . . . , γk(θ) with minimum γ(1)(θ) and we thus get that2

| |λ(θ)| | ≥ | |λ1(θ)| | = | |A(θ)(θq − θ
q
0 )| | ≥ γ(1)(θ) · | |θ

q − θ
q
0 | | (B.43)

≥

(
inf

| |θ−θ0 | | ≤d0
γ(1)(θ)

)
· | |θq − θ

q
0 | | = c1 | |θ − θ0 | |. (B.44)

Since | |θ − θ0 | | ≤ d0 is a compact set and the function θ 7→ inf | |θ−θ0 | | ≤d0 γ(1)(θ), where γ(1)(θ) is the
smallest Eigenvalue of the matrix A(θ), is continuous3, we get that the infimum coincides with the
minimum and thus, the constant c1 := inf | |θ−θ0 | | ≤d0 γ(1)(θ) is strictly positive and does not depend on θ.

Now, we assume that | |θ − θ0 | | = | |θ
e − θe0 | | ≤ d0, i.e. | |θe − θe0 | | ≥ | |θ

q − θ
q
0 | |. For the first term of

λ2(θ), given in (B.41), we define the vector

b(θ) := E

[
X

G′2(X
′θe) fY |X(X ′θ̃q)

α

[
X ′(θq − θq0 )

] [
X ′θ̃q − X ′θq)

] ]
, (B.45)

and for its l-th component, we get that

|bl(θ)| =

�����∑i, j (θqi − θq0i)(θ̃qj − θqj )E
[
XiXjXl

G′2(X
′θe) fY |X(X ′θ̃q)

α

] �����
≤

∑
i, j

E

[�����XiXjXl

G′2(X
′θe) fY |X(X ′θ̃q)

α

�����
]
· |θ

q
i − θ

q
0i | · |θ̃

q
j − θ

q
j |

≤ c2
∑
i, j

|θ
q
i − θ

q
0i | · |θ̃

q
j − θ

q
j |

≤ c2k2 | |θ − θ0 | |
2,

(B.46)

for all l = 1, . . . , k, which implies that

| |b(θ)| | ≤ c3 | |θ − θ0 | |
2, (B.47)

for some c3 > 0. For D(θ) := E
[
(X X ′)G′2(X

′θe)
]
, it holds that | |D(θ)(θe−θe0)| | ≥ c4 | |θ

e−θe0 | | = c4 | |θ−θ0 | |

for c4 > 0 by the same arguments as in (B.43). From (B.46), we can choose d0 small enough such that

2| |b(θ)| | ≤ 2c3 | |θ − θ0 | |
2 ≤ c4 | |θ − θ0 | | ≤ | |D(θ)(θe − θe0)| |. (B.48)

Furthermore, by the submultiplicativity of the matrix norm, we also get that | |D(θ)(θe − θe0)| | ≤
| |D(θ)| | · | |θe − θe0 | | = c5 | |θ

e − θe0 | | and by the inverse triangle inequality, we get that

| |λ(θ)| | ≥ | |λ2(θ)| | =
����D(θ)(θe − θe0) + b(θ)

���� ≥ ���| |D(θ)(θe − θe0)| | − | |b(θ)| |���. (B.49)

From (B.48), we can choose d0 small enough such that | |D(θe − θe0)| | > 2| |b| | and thus���| |D(θe − θe0)| | − | |b| |��� = | |D(θe − θe0)| | − | |b| | ≥ 1
2
| |D(θe − θe0)| | (B.50)

≥
c4
2
| |θe − θe0 | | =

c4
2
| |θ − θ0 | |. (B.51)

�

2For a symmetric matrix A with full rank, we can find an orthogonal basis of Eigenvectors {v1, . . . , vk } with corresponding
nonzero Eigenvalues {γ1(θ), . . . , γk (θ)} such that x =

∑
bjvj with bj ∈ R. Then, | |Ax | | = | |A

∑
bjvj | | = | |

∑
bj Avj | | =

| |
∑

bjγjvj | | ≥ min |γj | · | |
∑

bjvj | | = min |γj | · | |x | |.
3 This follows since the entries of the matrix A(θ) are continuous in θ as the expectation of a continuous function which is

dominated by an integrable function is again a continuous by the dominated convergence theorem. Furthermore, the Eigenvalues
of a matrix are the solution of the characteristic polynomial, which has continuous coefficients since our matrix entries are
continuous in θ. Eventually, since the roots of any polynomial with continuous coefficients are again continuous, we can conclude
that the Eigenvalues of A(θ) are continuous in θ.
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Lemma B.4. Let

u(Y, X, θ, d) = sup
τ∈Ūd (θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����. (B.52)

and assume that the regularity conditions in Assumption 2.1 and Moment Conditions (M-3) in Appendix
A hold. Then, there are strictly positive numbers c and d0, such that

E
[
u(Y, X, θ, d)2

]
≤ c · d for | |θ − θ0 | | + d ≤ d0, (B.53)

for all d ≥ 0.
Proof. Let in the following d > 0 and θ ∈ Θ such that | |θ − θ0 | | + d ≤ d0. It holds that(

sup
τ∈Ūd (θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����)2

= sup
τ∈Ūd (θ)

����ψ(Y, X, τ) − ψ(Y, X, θ)
����2 (B.54)

and we consequently show that

E

[
sup

τ∈Ūd (θ)

����ψj(Y, X, τ) − ψj(Y, X, θ)
����2] = O(d) (B.55)

for both components j = 1, 2 and for some d > 0 small enough.
For the first squared component, we get that

E

[
sup

τ∈Ūd (θ)

����ψ1(Y, X, τ) − ψ1(Y, X, θ)
����2]

≤ max

(����1 − αα ����2 , 1) · E [
sup

τ∈Ūd (θ)

����X (
αG′1(X

′θq) + G2(X ′θe) − αG′1(X
′τq) − G2(X ′τe)

) ����2]
+

2
α2E

[
sup

τ∈Ūd (θ)

����X (
αG′1(X

′τq) + G2(X ′τe)
) ����2 | |X | | sup

τ∈Ūd (θ)

fY |X(X ′τq)

]
· d

+
2
α2 max

(
1 − α, α

)
E

[
sup

τ∈Ūd (θ)

����X (
αG′1(X

′θq) + G2(X ′θe) − αG′1(X
′τq) − G2(X ′τe)

) ����
·
����X (

αG′1(X
′τq) + G2(X ′τe)

) ����] ,
where we apply (B.5) for the second summand. The remaining two summands can be bounded linearly by
the arguments given in (B.7) since G′1 and G2 are continuously differentiable functions and the respective
moments are finite.

For the second component of ψ, we get that����ψ2(Y, X, τ) − ψ2(Y, X, θ)
����

≤
����X(X ′θe − X ′θq)G′2(X

′θe) − X(X ′τe − X ′τq)G′2(X
′τe)

����
+

�������� XG′2(X
′θe)X ′θq

α

(
1{Y≤X′θq } − 1{Y≤X′τq }

) ��������
+

��������1{Y≤X′τq } ( XG′2(X
′θe)X ′θq

α
−

XG′2(X
′τe)X ′τq

α

)��������
+

�������� XG′2(X
′θe)

α
Y

(
1{Y≤X′θq } − 1{Y≤X′τq }

) ��������
+

��������Y1{Y≤X′τq }α

(
XG′2(X

′θe) − XG′2(X
′τe)

) ��������
= (i) + (ii) + (iii) + (iv) + (v).

(B.56)
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Thus, in order to evaluate E
[
supτ∈Ūd (θ)

����ψ2(Y, X, τ) − ψ2(Y, X, θ)
����2] , we have to consider all the cross

products out of the five summands in (B.56). Since the techniques applied are very similar, we only show
details for two of the cross products.

E

[
sup

τ∈Ūd (θ)

(ii) · (v)

]
= E

[
sup

τ∈Ūd (θ)

�������� XG′2(X
′θe)X ′θq

α

(
1{Y≤X′θq } − 1{Y≤X′τq }

) ��������
·

��������Y1{Y≤X′τq }α

(
XG′2(X

′θe) − XG′2(X
′τe)

) ��������]
≤

1
α2E

[����XG′2(X
′θe)X ′θq

���� · E[|Y |��X]
· | |X | | · sup

τ∈Ūd (θ)

����G′2(X ′θe) − G′2(X
′τe

����]
≤

1
α2E

[����XG′2(X
′θe)X ′θq

���� · E[|Y |��X]
· | |X | | · sup

τ∈Ūd (θ)

����XG′′2 (X
′τe)

����] · d
= O(d),

by (B.7) since G′2 is continuously differentiable.
The following crossproducts can be bounded analogously by bounding the indicator functions and by

applying the mean value theorem as in (B.7): (i)2, (iii)2, (v)2, (i) · (iii), (i) · (iv), (i) · (v), (ii) · (iv), (ii) · (v),
(iii) · (iv), (iii) · (v) and (iv) · (v).

A second type of technique, similar to the arguments in (B.9) arises in the cases (ii)2, (iv)2 and (ii) · (iv).
We get that there exists θq−, θ

q
+ ∈ Ūd(θ) and a value θ̃q on the line between θq− and θ

q
+, such that

E

[
sup

τ∈Ūd (θ)

(iv)2
]
≤ E

[�������� XG′2(X
′θe)

α

��������2 EY |X [
sup

τ∈Ūd (θ)

��Y (
1{Y≤X′θq } − 1{Y≤X′τq }

) ��2] ]
≤ E

[�������� XG′2(X
′θe)

α

��������2 EY |X [
Y2 1{X′θq− ≤Y≤X′θq+ }

] ]
= E

[�������� XG′2(X
′θe)

α

��������2 ∫ X′θ
q
+

X′θ
q
−

y2 fY |X(y)dy

]
≤ E

[�������� XG′2(X
′θe)

α

��������2 (X ′θ̃q)2 fY |X(X ′θ̃q)
(
X ′θq+ − X ′θq−

) ]
≤

2
α
E

[����X ����3G′22 (X
′θe) · sup

τ∈Ūd (θ)

(X ′τq)2 fY |X(X ′τq)

]
· d

= O(d),

where we apply a multivariate version of the mean value theorem and notice that fY |X is bounded. �

Proof of Theorem 2.4. We apply Theorem 3 of Huber (1967) for the ψ-function as given in (2.9) and show
the respective assumptions of this theorem.

For the measureability and separability of the ψ function, we refer to the proof of Theorem 2.2. It
is already shown in the proof of Theorem 2.2 that there exists a θ0 ∈ Θ such that λ(θ0) = 0. For the
technical conditions (N-3), we apply Lemma B.3, Lemma B.1 and Lemma B.4. It remains to show that
E
[
| |ψ(Y, X, θ0)| |

2] < ∞, which follows from the subsequent computation of C and the Moment Conditions
(M-3) in Appendix A.
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The asymptotic covariance matrix is given by Λ−1CΛ−1, where

C = E
[
ψ(Y, X, θ0)ψ(Y, X, θ0)

′
]

(B.57)

and

Λ =
∂λ(θ)

∂θ

����
θ=θ0

=

(
Λ11 Λ12
Λ21 Λ22

)
=

©­­«
∂λ1(θ)
∂θq

]
θ0

∂λ1(θ)
∂θe

]
θ0

∂λ2(θ)
∂θq

]
θ0

∂λ2(θ)
∂θe

]
θ0

ª®®¬ . (B.58)

Straightforward calculations yield the matrix C as given in (2.21) - (2.23). For the computation of Λ, we
first notice that the function

E
[
ψ(Y, X, θ)

��X]
=

( 1
α

(
FY |X(X ′θq) − α

) (
αXG′1(X

′θq) + XG2(X ′θe)
)

XG′2(X
′θe)

(
X ′θe − X ′θq + 1

αE
[
(X ′θq − Y )1{Y≤X′θq }

��X] )) (B.59)

is continuously differentiable for all θ in some neighborhood Ud(θ0) around θ0. The computation of
∂
∂θE

[
ψ(Y, X, θ)

��X]
is straight-forward apart from the following term. Let us choose a value θ̃ in some

small neighborhood of θ such that the distribution of Y given X has a density for all τ ∈ Ud(θ) and such
that X ′θ̃ ≤ X ′θ. Then,

∂

∂θq
E
[
Y1{Y≤X′θq }

��X]
=

∂

∂θq
E
[
Y1{Y≤X′θ̃q }

��X]
+

∂

∂θq
E
[
Y1{X′θ̃q<Y≤X′θq }

��X]
=

∂

∂θq

∫ X′θq

X′θ̃q
y fY |X(y)dy

= X(X ′θq) fY |X(X ′θq).

(B.60)

We consequently get that for all θ ∈ Ud(θ0),

∂

∂θq
E
[
ψ1(Y, X, θ)

��X]
= (X X ′)

(
αG′1(X

′θq) + G2(X ′θe)

α

)
fY |X(X ′θq) (B.61)

+ (X X ′)G′′1 (X
′θq)

FY |X(X ′θq) − α
α

, (B.62)

∂

∂θe
E
[
ψ1(Y, X, θ)

��X]
=

∂

∂θq
E
[
ψ2(Y, X, θ)

��X]
= (X X ′)G′2(X

′θe)
FY |X(X ′θq) − α

α
, (B.63)

∂

∂θe
E
[
ψ2(Y, X, θ)

��X]
= (X X ′)G′′2 (X

′θe)

(
X ′θq

FY |X(X ′θq) − α
α

+ X ′θe −
1
α
E
[
Y1{Y≤X′θq }

��X] )
(B.64)

+ (X X ′)G′2(X
′θe). (B.65)

In order to conclude that
∂

∂θ
E
[
E
[
ψ(Y, X, θ)

��X] ]
= E

[
∂

∂θ
E
[
ψ(Y, X, θ)

��X] ]
, (B.66)

we apply a measure-theoretical version of the Leibniz integration rule, which mainly requires that
the derivative of the integrand exists and is absolutely bounded by some integrable function d(Y, X),
independent of θ. For the first term, this can easily be obtained by defining

d(Y, X) = sup
Ud (θ0)

��������(X X ′)
(
αG′1(X

′θq) + G2(X ′θe)

α

)
fY |X(X ′θq) (B.67)

+ (X X ′)G′′1 (X
′θq)

FY |X(X ′θq) − α
α

�������� , (B.68)
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which has finite expectation by assumption. The other two terms follow the same reasoning. Inserting
θ = θ0 eventually shows (2.19) and (2.20). �

B.4 Proof of Theorem 2.5

Proof of Theorem 2.5. For this proof, we apply Theorem 5.23 from van der Vaart (1998). For that, the
map (Y, X) 7→ ρ(Y, X, θ) is obviously measurable as the sum of measurable functions. Furthermore, the
map θ 7→ ρ(Y, X, θ) is almost surely differentiable since the only point of non-differentiability occurs
where Y = X ′θq which is a nullset with respect to the distribution of {Y, X} and for all θ ∈ Θ such that
Y , X ′θq, its derivative is given by ψ(Y, X, θ).

For the local Lipschitz continuity of ρ(Y, X, θ) (with measurable and square-integrable Lipschitz-
constant), we split the ρ-function such as in (B.20), i.e.

ρ(Y, X, θ) = ρ1(Y, X, θ) + ρ2(Y, X, θ), (B.69)

where

ρ1(Y, X, θ) = 1{Y≤X′θq }

(
G1(X ′θq) − G1(Y ) +

1
α

G2(X ′θe)(X ′θq − Y )
)
, (B.70)

ρ2(Y, X, θ) = G2(X ′θe)
(
X ′θe − X ′θq

)
− G2(X ′θe) − αG1(X ′θq) + a(Y ). (B.71)

Local Lipschitz continuity of ρ2 follows since it is a continuously differentiable function and thus locally
Lipschitz. We consequently get that for some d > 0 and for all θ1, θ2 ∈ Ud(θ0), it holds that��ρ2(Y, X, θ1) − ρ2(Y, X, θ2)

�� ≤ ����θ1 − θ2
���� · sup

θ∈Ud (θ0)

��������(−XG2(X ′θe) − αXG′1(X
′θq)

XG′2(X
′θe)

(
X ′θe − X ′θq

) )�������� , (B.72)

with square-integrable Lipschitz-constant

K(Y, X) = sup
θ∈Ud (θ0)

��������(−XG2(X ′θe) − αXG′1(X
′θq)

XG′2(X
′θe)

(
X ′θe − X ′θq

) )�������� . (B.73)

For the function ρ1, we consider three cases. First, let θ1, θ2 ∈ Θ such that X ′θq1 ≤ X ′θq2 < Y . Then it
holds that,

ρ1(Y, X, θ1) = ρ1(Y, X, θ2) = 0, (B.74)

since 1{Y≤X′θq1 } = 1{Y≤X′θq2 } = 0, which is obviously a Lipschitz continuous function.
Second, let θ1, θ2 ∈ Θ such that Y ≤ X ′θq1 ≤ X ′θq2 . Then, for θ = θ1, θ2,

ρ1(Y, X, θ) = G1(X ′θq) − G1(Y ) +
1
α

G2(X ′θe)(X ′θq − Y ), (B.75)

which is a continuously differentiable function and thus��ρ1(Y, X, θ1) − ρ1(Y, X, θ2)
�� ≤ ����θ1 − θ2

���� · sup
θ∈Ud (θ0)

��������(XG′1(X
′θq) + 1

αXG2(X ′θe)
1
αXG′2(X

′θe)(X ′θq − Y )

)�������� . (B.76)

Finally, let θ1, θ2 ∈ Θ such that X ′θq1 < Y ≤ X ′θq2 . Then, since G1 is increasing, we get that��ρ1(Y, X, θ1) − ρ1(Y, X, θ2)
�� = ����G1(X ′θ

q
2 ) − G1(Y ) +

1
α

G2(X ′θe2)(X
′θ

q
2 − Y )

����
≤

��G1(X ′θ
q
2 ) − G1(X ′θ

q
1 )

�� + ���� 1αG2(X ′θe2)(X
′θ

q
2 − X ′θq1 )

����
≤

����θq1 − θq2 ���� · sup
θ∈Ud (θ0)

(����XG′1(X
′θq)

���� + 1
α

����XG2(X ′θe)
����) .
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Thus, the function ρ(Y, X, θ) is locally Lipschitz continuous in θ with square-integrable Lipschitz constants,
E
[
K(Y, X)2

]
< ∞ by the Moment Conditions (M-4) in Appendix A.

We have already seen in the proof of Theorem 2.3 that the function E
[
ρ(Y, X, θ)

]
is uniquely minimized

at the point θ0 and is twice continuously differentiable and consequently admits a second-order Taylor
expansion at θ0. Thus, we have shown the necessary assumptions of Theorem 5.23 from van der Vaart
(1998). For the computation of the covariance matrix, we notice that the distribution of Y given X has a
density fY |X in a neighborhood of X ′θ0 and thus, by the same arguments as in (B.60), we get that

∂

∂θq
E
[
G1(Y )1{Y≤X′θq }

��X]
= XG1(X ′θq) fY |X(X ′θq). (B.77)

Straight-forward calculations yields that for all θ ∈ Ud(θ0),

∂

∂θq
E
[
ρ(Y, X, θ)

��X]
=

(
αXG′1(X

′θq) + XG2(X ′θe)
) FY |X(X ′θq) − α

α
(B.78)

= E
[
ψ1(Y, X, θ)

��X]
(B.79)

and

∂

∂θe
E
[
ρ(Y, X, θ)

��X]
= XG′2(X

′θe)

(
X ′θe − X ′θq +

1
α
E
[
(X ′θq − Y )1{Y≤X′θq }

��X] )
(B.80)

= E
[
ψ2(Y, X, θ)

��X]
. (B.81)

By applying the Leibniz integration rule such as in (B.66), we finally get that

∂

∂θ
E
[
ρ(Y, X, θ)

]
= E

[
ψ(Y, X, θ)

]
, (B.82)

and thus, the asymptotic covariance matrix equals the one given in Theorem 2.4. �

B.5 Proof of Proposition B.5

Proposition B.5. Let Y ∈ Y be an absolutely continuous random variable with distribution function F
and strictly positive density f on the whole support of Y . Then,

1
α2

∫ qα

−∞

∫ qα

−∞

F(x ∧ y) − F(x)F(y)dxdy =
1
α

Var(Y |Y ≤ qα) +
1 − α
α

(
qα − esα

)2
, (B.83)

where qα = F−1(α) denotes the α-quantile of Y and esα = E
[
Y
��Y ≤ qα

]
denotes the ES of Y .

Proof. We proof this proposition by showing some equalities first which will be used later in the proof.
Using integration by parts, we get that

E
[
Y
��Y ≤ qα

]
=

∫ qα

−∞

x
f (x)

F(qα)
dx =

1
α

∫ qα

−∞

x f (x)dx

= −
1
α

∫ qα

−∞

F(x)dx + αqα,
(B.84)

since for any distribution with finite first moments, it holds that limx→−∞ xF(x) = 0. Using the same line
of argumentation, we get that

E
[
Y2��Y ≤ qα

]
=

1
α

∫ qα

−∞

x2 f (x)dx = −
2
α

∫ qα

−∞

xF(x)dx + αq2
α, (B.85)
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since for a distribution having finite second moments, it holds that limx→−∞ x2F(x) = 0. By applying
(B.84), we get that∫ qα

−∞

∫ qα

−∞

F(x)F(y)dxdy =
(∫ qα

−∞

F(x)dx
)2
=

(
αqα − αE

[
Y
��Y ≤ qα

] )2
= α2 (qα − esα

)2
. (B.86)

Furthermore, notice that∫ qα

−∞

∫ qα

−∞

F(x ∧ y)dxdy =
∫ qα

−∞

(∫ y

−∞

F(x)dx +
∫ qα

y

F(y)dx
)

dy

=

∫ qα

−∞

∫ y

−∞

F(x)dxdy +
∫ qα

−∞

∫ qα

y

F(y)dxdy

=

∫ qα

−∞

∫ y

−∞

F(x)dxdy +
∫ qα

−∞

F(y)(qα − y)dy.

(B.87)

By rearranging the order of integration, for the first term in (B.87), we get that∫ qα

−∞

∫ y

−∞

F(x) dxdy =
∬

{(x,y): y≤qα, x≤y }

F(x) dxdy =
∬

{(x,y): x≤qα, y≥x }

F(x) dydx

=

∫ qα

−∞

∫ qα

x

F(x) dydx =
∫ qα

−∞

F(x)(qα − x) dy.

(B.88)

Thus, by first using (B.87) and (B.88) and by plugging in (B.84) and (B.86), we obtain∫ qα

−∞

∫ qα

−∞

F(x ∧ y)dxdy = −2
∫ qα

−∞

F(y)(qα − y) dy

= −2qα

∫ qα

−∞

F(y) dy + 2
∫ qα

−∞

yF(y) dy

= 2qα
(
αqα − αesα

)
+ αE

[
Y2��Y ≤ qα

]
− αqα

= αE
[
Y2��Y ≤ qα

]
+ αq2

α − 2αqαesα.

(B.89)

Eventually, using (B.86) and (B.89), we get that

1
α2

∫ qα

−∞

∫ qα

−∞

F(x ∧ y) − F(x)F(y)dxdy (B.90)

=
1
α2

∫ qα

−∞

∫ qα

−∞

F(x ∧ y)dxdy −
1
α2

∫ qα

−∞

∫ qα

−∞

F(x)F(y)dxdy (B.91)

=
1
α

(
E
[
Y2��Y ≤ qα

]
+ q2

α − 2qαesα
)
−

(
qα − esα

)2 (B.92)

=
1
α

Var(Y |Y ≤ qα) +
1 − α
α

(
qα − esα

)2
, (B.93)

which concludes the proof. �

Appendix C Separability of almost surely continuous functions

Definition C.1 (Separability of a Stochastic Process). A stochastic process ψ(x, θ) : Ω × Θ → Y is
called separable in the sense of Doob, if there exists in Ω an everywhere dense countable set I, and in Ω a
nullset N such that for any arbitrary open set G ⊂ Θ and every closed set F ⊂ Y , the two sets

{x |ψ(x, θ) ∈ F, ∀θ ∈ G} and (C.1)
{x |ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I} (C.2)

differ from each other at most by a subset of N .
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Proposition C.2 (Gikhman and Skorokhod (2004)). Let Θ and Y be metric spaces, Θ be a separable
space. The sets (C.1) and (C.2) coincide for all x ∈ Ω for which the stochastic process ψ(x, θ) is continuous
in θ.

Proof. It is clear that {x |ψ(x, θ) ∈ F, ∀θ ∈ G} ⊆ {x |ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I}. We thus only show the
reverse.

Let G ⊂ Θ be an arbitrary open set and F ⊂ Y an arbitrary closed set. Let furthermore x ∈ Ω such
that ψ(x, θ) ∈ F for all θ ∈ G ∩ I. We have to show that ψ(x, θ̃) ∈ F for all θ̃ ∈ G but θ̃ < I.

Thus, let θ̃ ∈ G \ I. Since I is a dense set in Θ, there exists a sequence (θn)n∈N ∈ Θ ∩ I, such that
θn → θ̃ and since G is an open set in Θ and θ̃ ∈ G, we can conclude that for m ∈ N large enough, θn ∈ G
for all n ≥ m. Furthermore, by continuity at θ, it holds that ψ(x, θn) → ψ(x, θ̃) and since θn ∈ G ∩ I for
all n large enough, ψ(x, θn) ∈ F by assumption. Eventually, since F is a closed set, ψ(x, θ̃) ∈ F which
proves the proposition. �

Corollary C.3 (Separability of continuous functions). Let Θ and Y be metric spaces, Θ be a separable
space, and let the stochastic process ψ(x, θ) be almost surely continuous. Then, ψ is separable.

Proof. Since ψ(x, θ) is continuous for all x ∈ Ω \ N for some N ⊂ Ω with P(N) = 0. We get from
Proposition C.2 that the sets (C.1) and (C.2) coincide for all x ∈ Ω \ N , i.e. they differ only by a subset of
N . �
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Appendix D Additional Monte-Carlo Simulation Results
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Figure 6: Relative bias (average estimated parameter divided by the true parameter) for all G2-functions, data generating processes
and a range of sample sizes.
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